Ship system design changes for the transition to hydrogen carriers
DOI:
https://doi.org/10.59490/imdc.2024.894Keywords:
Hydrogen carriers, Heat exchangers, Dehydrogenation, Solid hydrogen carrier, LOHCAbstract
Reducing the use of fossil fuels in shipping requires new, alternative maritime fuels. Hydrogen carriers offer a safe and energy-dense solution for storing hydrogen, a zero-emission alternative fuel. This research focuses on ammonia borane, NaBH4, n-ethylcarbazole and dibenzyltoluene. Applying hydrogen carriers influences ship design significantly, as they require additional specialised equipment to remove hydrogen from the hydrogen carrier. This research estimates the size of the equipment. As this equipment will need
to be stored and maintained on the ship, the exact sizing and sequence of the additional equipment will likely influence ship design. Results show that the reactor size is significant for all hydrogen carriers. The mixing tank is considerably sized for NaBH4 and ammonia borane, while the heat exchangers are large for dibenzyltoluene and n-ethylcarbazole.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
Categories
License
Copyright (c) 2024 E.S. van Rheenen, J.T. Padding, A.A. Kana, K. Visser
This work is licensed under a Creative Commons Attribution 4.0 International License.