Inteligência artificial como apoio à tomada de decisão no setor público
DOI:
https://doi.org/10.59490/dgo.2025.997Keywords:
Processo Decisório, Informação, Tratamento de dados, Gestão de processos, GovernançaAbstract
O artigo apresenta uma Revisão Sistemática da Literatura sobre a adoção de soluções de inteligência artificial (IA) como ferramenta de apoio à tomada de decisão na administração pública, destacando como essa tecnologia pode contribuir para modernizar os processos de gestão governamental. O levantamento de 38 artigos sobre inteligência artificial aplicada à tomada de decisão destaca sua versatilidade em diversas áreas, incluindo governança, serviços sociais, saúde, meio ambiente, justiça e orçamento público. Na governança, enfatizam-se a transparência, a explicabilidade e a supervisão humana, essenciais para decisões automatizadas confiáveis. Serviços sociais enfrentam desafios éticos, como impactos no bem-estar dos trabalhadores e desumanização do atendimento. Na saúde, IA otimiza cadeias de suprimentos e resposta a crises, enquanto na justiça, melhora a análise de dados e a prevenção de crimes. Na operação de sistemas de energia e em sistemas ambientais o foco está na eficiência e precisão. Embora a inteligência artificial tenha um enorme potencial para transformar a gestão pública, seu uso requer uma análise criteriosa de questões éticas, governança e transparência. Problemas como viés algorítmico e ausência de supervisão reforçam a importância de regulamentações adequadas e de diferentes abordagens que integrem a tecnologia com a supervisão humana.
Downloads
References
Alon-Barkat, S., & Busuioc, M. (2022). Human-AI interactions in public sector decision-making: “Automation bias” and “selective adherence” to algorithmic advice. Journal of Public Administration Research and Theory, 33(1), 153–169. https://doi.org/10.1093/jopart/muac007
Ayat Mohammad Salem, Serife Zihni Eyupoglu, & Mohammad Khaleel Ma’aitah. (2024). The Influence of Machine Learning on Enhancing Rational Decision-Making and Trust Levels in e-Government. Systems, 12(9), 373–373. https://doi.org/10.3390/systems12090373
Ban, Y. (2020). Energy decision making of steel company based on energy management system. IFAC-PapersOnLine, 53(5), 608–613. https://doi.org/10.1016/j.ifacol.2021.04.151.
Bardin, L. Análise de conteúdo. Lisboa: Edições 70, 2010.
Bertoncini, C., Brito, A., Leme, E., Silva, I., Silva, T., Ferreira, Perri, R., Alves, A., & Autônomo. (n.d.). PROCESSO DECISÓRIO: A TOMADA DE DECISÃO. Retrieved February 9, 2025, from [link]
Bokhari, S. A. A., & Myeong, S. (2022). Use of Artificial Intelligence in Smart Cities for Smart Decision-Making: A Social Innovation Perspective. Sustainability, 14(2), 620. https://doi.org/10.3390/su14020620
Bokhari, S. A. A., & Myeong, S. (2023). The Impact of AI Applications on Smart Decision-making in Smart Cities as Mediated by the Internet of Things and Smart Governance. IEEE Access, 11, 120827–120844. https://doi.org/10.1109/access.2023.3327174
Brasil. Ministério da Ciência, Tecnologia e Inovações. Plano Brasileiro de Inteligência Artificial (PBIA) 2024. Laboratório Nacio nal de Computação Científica - LNCC, 7 ago. 2024. Disponível em: [link] cias-1/plano-brasileiro-de-inteligencia-artificial-pbia-2024-2028.
Brynjolfsson, E., & Mcafee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. (2025). Google Books. [link]
Choi, W., Joonyeop Na, & Lee, S. (2024). Evaluating Intelligent CPTED Systems to Support Crime Prevention Decision-Making in Municipal Control Centers. Applied Sciences, 14(15), 6581–6581. https://doi.org/10.3390/app14156581
Choi, Y., Gil-Garcia, R., Aranay, O., Burke, B., & Werthmuller, D. (2021). Using Artificial Intelligence Techniques for Evidence-Based Decision Making in Government: Random Forest and Deep Neural Network Classification for Predicting Harmful Algal Blooms in New York State. DG.O2021: The 22nd Annual International Conference on Digital Government Research, 27–37. https://doi.org/10.1145/3463677.3463713
de Bruijn, H., Warnier, M., & Janssen, M. (2021). The perils and pitfalls of explainable AI: Strategies for explaining algorithmic decision-making. Government Information Quarterly, 39(2), 101666. https://doi.org/10.1016/j.giq.2021.101666
Sousa, W. G. de, Melo, E. R. P. de, Bermejo, P. H. D. S., Farias, R. A. S., & Gomes, A. O. (2019). How and where is artificial intelligence in the public sector going? A literature review and research agenda. Government Information Quarterly, 36(4), 101392. https://doi.org/10.1016/j.giq.2019.07.004.
Denhardt, J. V., & Denhardt, R. B. (2015). The New Public Service Revisited. Public Administration Review, 75(5), 664–672. https://doi.org/10.1111/puar.12347
Deveci, M. (2023). Effective use of artificial intelligence in healthcare supply chain resilience using fuzzy decision-making model. Soft Computing. https://doi.org/10.1007/s00500-023-08906-2
Di Vaio, A., Hassan, R., & Alavoine, C. (2022). Data intelligence and analytics: A bibliometric analysis of human–Artificial intelligence in public sector decision-making effectiveness. Technological Forecasting and Social Change, 174, 121201. https://doi.org/10.1016/j.techfore.2021.121201
Erick, & Antônio, M. (2024). A IMPORTÂNCIA DA TOMADA DE DECISÕES NA GESTÃO EMPRESARIAL. Contemporânea, 4(3), e3663–e3663. https://doi.org/10.56083/rcv4n3-122
Fischer-Abaigar, U., Kern, C., Barda, N., & Kreuter, F. (2024). Bridging the gap: Towards an expanded toolkit for AI-driven decision-making in the public sector. Government Information Quarterly, 41(4), 101976. https://doi.org/10.1016/j.giq.2024.101976
Frost, N. (2024). The Impoverished Publicness of Algorithmic Decision Making. Oxford Journal of Legal Studies. https://doi.org/10.1093/ojls/gqae027
Gelashvili, T., & Pappel, I. (2021, July 1). Challenges of Transition to Paperless Management: Readiness of Incorporating AI in Decision-making processes. IEEE Xplore. https://doi.org/10.1109/ICEDEG52154.2021.9530905
Grimmelikhuijsen, S. (2023). Explaining why the computer says no: Algorithmic transparency affects the perceived trustworthiness of automated decision-making. Public Administration Review, 83(1), 12-25. https://doi.org/10.1111/puar.13483.
Governo Federal do Brasil. (2024). Plano Brasileiro de Inteligência Artificial (PBIA) 2024-2028. Brasília, DF: Ministério da Ciência, Tecnologia e Inovação. Recuperado de [link].
Guo, X., Chen, P., Liang, S., Jiao, Z., Li, L., Yan, J., Huang, Y., Liu, Y., & Fan, W. (2022). PaCAR: COVID-19 Pandemic Control Decision Making via Large-Scale Agent-Based Modeling and Deep Reinforcement Learning. Medical Decision Making, 0272989X2211079. https://doi.org/10.1177/0272989x221107902
Hanne Hirvonen. (2023). Just accountability structures – a way to promote the safe use of automated decision-making in the public sector. AI & SOCIETY. https://doi.org/10.1007/s00146-023-01731-z
Ingrams, A., Kaufmann, W., & Jacobs, D. (2021). In AI we trust? Citizen perceptions of AI in government decision making. Policy & Internet. https://doi.org/10.1002/poi3.276
Janssen, M., Hartog, M., Matheus, R., Yi Ding, A., & Kuk, G. (2020). Will Algorithms Blind People? The Effect of Explainable AI and Decision-Makers’ Experience on AI-supported Decision-Making in Government. Social Science Computer Review, 40(2), 089443932098011. https://doi.org/10.1177/0894439320980118
Kolkman, D., Bex, F., Narayan, N., & van. (2024). Justitia ex machina: The impact of an AI system on legal decision-making and discretionary authority. Big Data & Society, 11(2). https://doi.org/10.1177/20539517241255101
Kuziemski, M., & Misuraca, G. (2020). AI governance in the public sector: Three tales from the frontiers of automated decision-making in democratic settings. Telecommunications Policy, 44(6), 101976. https://doi.org/10.1016/j.telpol.2020.101976
Liu, H. K., Tang, M., & Chen, K.-H. (2020). Public Decision Making. 214–222. https://doi.org/10.1145/3396956.3396965
Liu, B., Luo, J., & Su, X. (2021). The Framework of 6G Self-Evolving Networks and the Decision-Making Scheme for Massive IoT. Applied Sciences, 11(19), 9353. https://doi.org/10.3390/app11199353
Matthias Döring, Kim Sass Mikkelsen, Jonas Krogh Madsen, & Kristian Bloch Haug. (2024). Creating a workforce of fatigued cynics? A randomized controlled trial of implementing an algorithmic decision-making support tool. Government Information Quarterly, 41(1), 101911–101911. https://doi.org/10.1016/j.giq.2024.101911
Maximiano, A. C. A. (2000). Introdução à administração (5. ed.). São Paulo: Atlas.
Mills, D., Pudney, S., Pevcin, P., & Dvorak, J. (2021). Evidence-Based Public Policy Decision-Making in Smart Cities: Does Extant Theory Support Achievement of City Sustainability Objectives? Sustainability, 14(1), 3. https://doi.org/10.3390/su14010003
Monarcha-Matlak, A. (2021). Automated decision-making in public administration. Procedia Computer Science, 192, 2077–2084. https://doi.org/10.1016/j.procs.2021.08.215
Mourby, M. J. (2021). “Leading by Science” through Covid-19: the GDPR & Automated Decision-Making. International Journal of Population Data Science, 5(4). https://doi.org/10.23889/ijpds.v5i4.1402
O’Reilly, T. (2011). Government as a Platform. Innovations: Technology, Governance, Globalization, 6(1), 13–40. https://doi.org/10.1162/inov_a_00056
Pereira, F., Silva, L., Souza, L., et al. (2021). A transformação digital no setor público: Desafios e oportunidades da inteligência artificial. Revista de Administração Pública, 55(3), 451-470.
PRISMA. (2020). Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). Www.prisma-Statement.org. [link]
Ranerup, A., & Henriksen, H. Z. (2020). Digital Discretion: Unpacking Human and Technological Agency in Automated Decision Making in Sweden’s Social Services. Social Science Computer Review, 40(2), 089443932098043. https://doi.org/10.1177/0894439320980434
Rinta-Kahila, T., Someh, I., Gillespie, N., Indulska, M., & Gregor, S. (2021). Algorithmic decision-making and system destructiveness: A case of automatic debt recovery. European Journal of Information Systems, 31(3), 1–26. https://doi.org/10.1080/0960085x.2021.1960905
Sampaio, R. C., Sabbatini, M., & Limongi, R. (2024). Diretrizes para o uso ético e responsável da inteligência artificial generativa: Um guia prático para pesquisadores. São Paulo: Editora Intercom.
Seyedzadeh, S., Pour Rahimian, F., Oliver, S., Rodriguez, S., & Glesk, I. (2020). Machine learning modelling for predicting non-domestic buildings energy performance: A model to support deep energy retrofit decision-making. Applied Energy, 279, 115908. https://doi.org/10.1016/j.apenergy.2020.115908
Silva, W. F. da, Silva, F. S., & Rabêlo, O. D. S. (2021). Tendências no Uso de Inteligência Artificial e sua Influência na Requalificação da Força de Trabalho no Setor Público. Cadernos de Prospecção, 14(3), 824. https://doi.org/10.9771/cp.v14i3.36727
Simon, H. A. (1997). Administrative behavior: A study of decision-making processes in administrative organizations (4. ed.). New York: Free Press.
Silva, W. F. da, Silva, F. S., & Rabêlo, O. D. S. (2021). Tendências no Uso de Inteligência Artificial e sua Influência na Requalificação da Força de Trabalho no Setor Público. Cadernos de Prospecção, 14(3), 824. https://doi.org/10.9771/cp.v14i3.36727
Sleep, L. (2024). “This is NOT human services”: Counter-mapping automated decision-making in social services in Australia. Journal of Sociology, 60(3), 618–642. https://doi.org/10.1177/14407833241266022
Tayeb, A., Alzubi, A., & Iyiola, K. (2024). Artificial intelligence and smart decision making in smart cities: a parallel moderated mediation approach. International Journal of Urban Sciences, 1–29. https://doi.org/10.1080/12265934.2024.2407796
Tran Thi Hoang, G., Dupont, L., & Camargo, M. (2019). Application of Decision-Making Methods in Smart City Projects: A Systematic Literature Review. Smart Cities, 2(3), 433–452. https://doi.org/10.3390/smartcities2030027
Valle-Cruz, D., Fernandez-Cortez, V., & Gil-Garcia, J. R. (2021). From E-budgeting to smart budgeting: Exploring the potential of artificial intelligence in government decision-making for resource allocation. Government Information Quarterly, 39(2), 101644. https://doi.org/10.1016/j.giq.2021.101644
Virmani, N., Rajesh Kumar Singh, Agarwal, V., & Emel Aktas. (2024). Artificial Intelligence Applications for Responsive Healthcare Supply Chains: A Decision-Making Framework. IEEE Transactions on Engineering Management, 1–41. https://doi.org/10.1109/tem.2024.3370377
Wang, S., Min, C., Liang, Z., Zhang, Y., & Gao, Q. (2024). The decision-making by citizens: Evaluating the effects of rule-driven and learning-driven automated responders on citizen-initiated contact. Computers in Human Behavior, 161, 108413. https://doi.org/10.1016/j.chb.2024.108413
Warthon, M. (2024). Restricting access to AI decision-making in the public interest: The justificatory role of proportionality and its balancing factors. Internet Policy Review, 13(3). https://doi.org/10.14763/2024.3.1801
Wilson, C., & van der Velden, M. (2022). Sustainable AI: An integrated model to guide public sector decision-making. Technology in Society, 68, 101926. https://doi.org/10.1016/j.techsoc.2022.101926
Zabihi, O., Siamaki, M., Gheibi, M., Akrami, M., & Hajiaghaei-Keshteli, M. (2023). A smart sustainable system for flood damage management with the application of artificial intelligence and multi-criteria decision-making computations. International Journal of Disaster Risk Reduction, 84, 103470. https://doi.org/10.1016/j.ijdrr.2022.103470
Zuiderwijk, A., Chen, Y.-C., & Salem, F. (2021). Implications of the use of artificial intelligence in public governance: A systematic literature review and a research agenda. Government Information Quarterly, 38(3), 101577. Sciencedirect. https://doi.org/10.1016/j.giq.2021.101577
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Camila Taciana Sandrini, Taiane Ritta Coelho, Milton Cesar Adriao, Edelvino Razzolini Filho

This work is licensed under a Creative Commons Attribution 4.0 International License.
