The Impact of Data Orchestration on Data Value Generation in the Judicial Data Ecosystem
DOI:
https://doi.org/10.59490/dgo.2025.993Keywords:
Data orchestration, data value, resource orchestration theory, data ecosystemsAbstract
This study investigates the role of data orchestration in enhancing data value generation within the judicial data ecosystem, grounded in Resource-Orchestration Theory (ROT). Data orchestration is defined as a multidimensional construct comprising data strategy, data governance, synergy, and technological infrastructure. These dimensions collectively facilitate the integration and coordination of data resources, processes, and stakeholders to maximize data value. Guided by the principles of ROT, which conceptualizes data as strategic resources to be structured, bundled, and leveraged, this study emphasizes the importance of orchestrating data resources to enhance their value within the judicial data ecosystem, where diverse actors and complex systems interact, ensuring data is effectively utilized as a strategic asset. A quantitative methodology was employed, with a survey conducted among experts from Brazilian courts and councils. Regression analysis was used to evaluate the relationship between data orchestration and data value, revealing a significant positive effect (0.687, p < 0.001), with data orchestration explaining 45.6% of the variance in data value. These findings demonstrate that coordinated efforts to align data-related resources and practices significantly enhance the value generated from data within the judicial ecosystem. By operationalizing ROT in this context, the study provides empirical evidence of how data orchestration contributes to improving the strategic potential of data in data ecosystems. The research advances theoretical understanding of ROT in the field of data ecosystems and offers practical insights for improving data management and governance in judicial settings. Although limited by sample size, the study opens pathways for future research to explore additional dimensions influencing data value generation and to validate these findings in other institutional contexts, acknowledging that generalizability is constrained by the specific characteristics of the Brazilian judicial data ecosystem.
Downloads
References
Abraham, R., Schneider, J., & vom Brocke, J. (2019). Data governance: A conceptual framework, structured review, and research agenda. International Journal of Information Management, 49, 424-438. https://doi.org/10.1016/j.ijinfomgt.2019.07.010
Alexandre, N. M. C., & Coluci, M. Z. O. (2011). Validade de conteúdo nos processos de construção e adaptação de instrumentos de medidas. Ciência & Saúde Coletiva, 16(7). https://doi.org/10.1590/S1413-81232011000800006
Autio, E. (2022). Orchestrating ecosystems: A multi-layered framework. Innovation, 24(1), 96–109. https://doi.org/10.1080/14479338.2021.1919120
Barreto, G. L., & Costa, V. R. M. (2020). O impacto das novas tecnologias na administração da justiça em breve perspectiva comparada e internacional: A experiência brasileira e europeia. Revista CNJ, 6(2). [link]
Brazil. (1988). Constituição da República Federativa do Brasil de 1988. Retrieved from [link]
Castro, G. P. V. (2022). Desafios do Poder Judiciário do futuro: comunicação criativa. Revista Judicial Brasileira, 2, 135–163. https://doi.org/10.54795/RejuBespecial.InvJud.219
Chiang, Y., Zhang, Y., Luo, H., Chen, T.-Y., Chen, G.-H., Chen, H.-T., Wang, Y.-J., Wei, H.-Y., & Chou, C.-T. (2023). Management and Orchestration of Edge Computing for IoT: A Comprehensive Survey. IEEE Internet of Things Journal, 1–1. https://doi.org/10.1109/JIOT.2023.3245611
Conselho Nacional de Justiça (CNJ). (2009). Resolução Nº 76 de 12 de maio de 2009. Dispõe sobre os princípios do Sistema de Estatística do Poder Judiciário, estabelece seus indicadores, fixa prazos, determina penalidades e dá outras providências. Disponível em [link]
Conselho Nacional de Justiça (CNJ). (2020). Resolução Nº 333 de 21 de setembro de 2020. Determina a inclusão de campo/espaço denominado Estatística na página principal dos sítios eletrônicos dos órgãos do Poder Judiciário. Disponível em [link]
Conselho Nacional de Justiça (CNJ). (2022a). Relatório de diagnóstico dos tribunais nas atividades de saneamento de dados do Datajud. [link]
Conselho Nacional de Justiça (CNJ). (2022b). Relatório final Gestão Ministro Luiz Fux - Programa Justiça 4.0. [link]
Conselho Nacional de Justiça (CNJ). (2023a). Relatório de entregas do Programa Justiça 4.0 - Gestão da ministra Rosa Weber. [link]
Conselho Nacional de Justiça (CNJ). (2023b). Acompanhamento Datajud. [link]
Conselho Nacional de Justiça (CNJ). (s.n.). Plataforma Codex. Disponível em [link]
Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52(4), 281–302, https://doi.org/10.1037/h0040957.
Cui, M., & Han, Y. (2022). Resource orchestration in the ecosystem strategy for sustainability: A Chinese case study. Sustainable Computing: Informatics and Systems, 36. https://doi.org/10.1016/j.suscom.2022.100796
Curry, E., Metzger, A., Zillner, S., Pazzaglia, J.-C., & García Robles, A. (Eds.). (2021). The Elements of Big Data Value. Springer International Publishing. https://doi.org/10.1007/978-3-030-68176-0
Darlington, R. B., & Hayes, A. F. (2017). Regression Analysis and Linear Models: Concepts, Applications, and Implementation. New York: The Guilford Press.
Fredriksson, A., Hagberg, J. From Strategy to Execution Bridging the Gap between Data Strategy and Data Governance. Master’s Thesis. Department of Technology Management and Economics. Division of Entrepreneurship and Strategy. Chalmers University of Technology, 2023. [link]
Gao, Y., Yang, X., & Li, S. (2022). Government Supports, Digital Capability, and Organizational Resilience Capacity during COVID-19: The Moderation Role of Organizational Unlearning. Sustainability, 14(15), 9520. https://doi.org/10.3390/su14159520
Garg, S., Wang, S., & Ranjan, R. (2018). Orchestration Tools for Big Data. In S. Sakr & A. Zomaya (Eds.), Encyclopedia of Big Data Technologies. Springer. https://doi.org/10.1007/978-3-319-63962-8_43-1
Gelhaar, J.; Groß, T. & Otto, B. (2021) A Taxonomy for Data Ecosystems. Proceedings of the 54th Hawaii International Conference on System Sciences, 6113-3123. [link]
Guggenberger, T. M., Altendeitering, M., & Otto, B. (2020). Challenges in the emergence of data ecosystems. Proceedings of the Twenty-Third Pacific Asia Conference on Information Systems. https://doi.org/10.17705/1CAIS.04310
Gupta, A., Panagiotopoulos, P. & Bowen, F. (2020) An orchestration approach to smart city data ecosystems. Technological Forecasting and Social Change, 153. https://doi.org/10.1016/j.techfore.2020.119929.
Gür, I., Spiekermann, M., Arbter, M., & Otto, B. (2021). Data Strategy Development: A Taxonomy for Data Strategy Tools and Methodologies in the Economy. Wirtschaftsinformatik Proceedings. [link]
Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Thousand Oaks, CA: Sage Publications.
Hair, J.F., Risher, J.J., Sarstedt, M. and Ringle, C.M. (2019) When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
Jolliffe, I. T. (2002). Principal Component Analysis. In Springer Series in Statistics. Springer-Verlag. https://doi.org/10.1007/b98835
Kim, H. E. & Cho, J. (2018). Data governance framework for big data implementation with NPS Case Analysis in Korea. Journal of Business & Retail Management Research, 12(3). https://doi.org/10.24052/JBRMR/V12IS03/ART-04
Lin, J., Lin, S., Benitez, J., Luo, X., & Ajamieh, A. (2023). How to build supply chain resilience: The role of fit mechanisms between digitally-driven business capability and supply chain governance. Information & Management, 60(2). https://doi.org/10.1016/j.im.2022.103747
Lis, D., Gelhaar, J., & Otto, B. (2023). Data Strategy and Policies: The Role of Data Governance in Data Ecosystems. In I. Caballero & M. Piattini (Eds.), Data Governance, 1–13. Springer. https://doi.org/10.1007/978-3-031-43773-1_2
Marr, B. (2021). Data Strategy: How to Profit from a World of Big Data, Analytics and the Internet of Things (2nd ed.). London: Kogan Page Ltd.
Mikalef, P., Krogstie, J., Pappas, I. O., & Giannakos, M. N. (2023). Information Governance in the Big Data Era: Aligning Organizational Capabilities. Hawaii International Conference on System Sciences. [link]
Nikiforova, A., Lnenicka, M., Milić, P., Luterek, M., & Rodríguez Bolívar, M. P. (2024). From the evolution of public data ecosystems to the evolving horizons of the forward-looking intelligent public data ecosystem empowered by emerging technologies. In International Conference on Electronic Government, 402-418. [link]
Oliveira, M. I. S.; Lóscio, B. F. (2019) Ecossistemas de Dados na Web: da teoria aos desafios. Tópicos em Gerenciamento de Dados e Informações, Outubro. [link]
Otto, B. (2011). A morphology of the organisation of Data Governance. ECIS 2011 Proceedings, Paper 272, [link]
Otto, B., Lis, D., Jürjens, J., Cirullies, J., Howar, F., Meister, S., Spiekermann, M., Pettenpohl, H., Möller, F., Rehof, J. & Opriel, S. (2019). Data Ecosystems. Conceptual Foundations, Constituents and Recommendations for Action. Fraunhofer-Institut für Software-und Systemtechnik ISST.
Pinsonneault, A., & Kraemer, K. (1993). Survey Research Methodology in Management Information Systems: An Assessment. Journal of Management Information Systems, 10(2), 75–105. https://doi.org/10.1080/07421222.1993.11518001
Queiroz, M., Coltman, T., Sharma, R., Tallon, P. P., & Reynolds, P. (2020). Aligning the IT portfolio with business strategy: Evidence for complementarity of corporate and business unit alignment. Journal of Strategic Information Systems, 29(1). https://doi.org/10.1016/j.jsis.2020.101623
Ranjan, R., Garg, S., Khoskbar, A., Solaiman, E., James, P., & Georgakopoulos, D. (2017). Orchestrating Big Data Analysis Workflows. IEEE Cloud Computing, 4(4), 20–28. https://doi.org/10.1109/MCC.2017.55
Salerno, F. F., & Maçada, A. C. G. (2024a). The impact of data quality orchestration in data ecosystems: Quantitative evidence from the Brazilian Judiciary. MCIS 2024 Proceedings, 10. [link]
Salerno, F. F., & Maçada, A. C. G. (2024b). Opportunities Arising from Data Orchestration: A Case Study of the Educational Data Ecosystem of a Brazilian State. Anais do XXVII Seminários em Administração – XXVII SemeAd 2024. [link]
Schreieck, M., Wiesche, M., & Krcmar, H. (2022). From Product Platform Ecosystem to Innovation Platform Ecosystem: An Institutional Perspective on the Governance of Ecosystem Transformations. Journal of the Association for Information Systems, 23(6), 1354–1385. https://doi.org/10.17705/1jais.00764
Sirmon, D. G., Hitt, M. A., Ireland, R. D., & Gilbert, B. A. (2007). Managing Firm Resources in Dynamic Environments to Create Value: Looking Inside the Black Box. Academy of Management Review, 32(1), 273–292. https://doi.org/10.5465/AMR.2007.23466005
Sirmon, D. G., Hitt, M., Ireland, R. D. & Gilbert, B. A. (2011). Resource Orchestration to Create Competitive
Advantage: Breadth, Depth, and Life Cycle Effects. Journal of Management, 7(5), 1390-1412. [link]
Solomonides, A. (2023). Research Data Governance, Roles, and Infrastructure. In R. L. Richesson, J. E. Andrews, & K. Fultz Hollis (Eds.), Clinical Research Informatics , 1–11. Springer. https://doi.org/10.1007/978-3-031-27173-1_11
Spencer, D. (2009). Card Sorting: Designing Usable Categories. Brooklyn, NY: Rosenfeld Media.
Tabachnick, B. G., & Fidell, L. S. (2019). Using Multivariate Statistics (7th ed.). Boston, MA: Pearson.
Taber, K. S. (2018). The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Research in Science Education, 48, 1273–1296. https://doi.org/10.1007/s11165-016-9602-2
Teece, D. J. (2020) Hand in Glove: Open Innovation and the Dynamic Capabilities Framework. Journal of Software Maintenance and Evolution: Research and Practice, 1, 233-253. https://dx.doi.org/10.1561/111.00000010
Vafaei-Zadeh, A., Ramayah, T., Hanifah, H., Kurnia, S. & Mahmud, I. (2020) Supply chain information integration and its impact on the operational performance of manufacturing firms in Malaysia. Information & Management, 57(8). https://doi.org/10.1016/j.im.2020.103386
Vayyavur, R. (2024). Effective Data Strategy for AI and Big Data Implementation: Insights from Industry Applications. International Journal of Research, 11(9), 151–155. https://doi.org/10.5281/zenodo.13767694
Vivian, S. G. (2020). Transformação digital e o Poder Judiciário. Revista de Direitos Fundamentais e Tributação – RDFT, 123-145. https://doi.org/10.47319
Weber, P., Hiller, S., Kurrle, S., Werling, M. & Werth, D. (2024) Evolutionary Milestones in the Development of Data Ecosystems. AMCIS 2024 Proceedings. 4. [link]
Xu, J. & Pero, E. P. (2023) A resource orchestration perspective of organizational big data analytics adoption: evidence from supply chain planning. International Journal of Physical Distribution & Logistics Management, 53(11), 71-97. [link]
Zhang, C., Han, Y., Wang, J., & Pero, J. (2022). Orchestrating big data analytics capability for sustainability: A study of air pollution management in China. Information & Management, 59(1). https://doi.org/10.1016/j.im.2021.103231
Downloads
Additional Files
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Felipe Fonseca Salerno, Antonio Carlos Gastaud Maçada, Juliana Obino Mastella

This work is licensed under a Creative Commons Attribution 4.0 International License.
