Interactive Data Visualization for Decision-making in Government-funded Advanced Research Computing Service
DOI:
https://doi.org/10.59490/dgo.2025.946Keywords:
Data visualization, interactive dashboard, graphical user interface, decision-making, cyberinfrastructure, XSEDEAbstract
Data-driven decision-making has become more prevalent in the field of digital government. Data visualization as a key tool for data exploration, can help decision makers quickly understand data and grasp insights behind pages of spreadsheets. To better support scientific discovery through advanced research computing, the U.S. National Science Foundation has funded the cyberinfrastructure programs including TeraGrid, XSEDE, and ACCESS for over twenty years. These programs have generated extensive data about the awarded projects along with their resource allocation and usage. However, existing visualization tools for these data were not designed for in-depth analysis or direct decision-making support. This research investigated the needs of resource providers and users, analyzed the data collected from TeraGrid and XSEDE projects between 2003 and 2022, and developed a publicly accessible interactive visualization dashboard. The goal of this visual platform is to enable resource providers and users to independently explore data through graphs and tables and make informed comparisons and decisions. Resource providers can use the platform to study and compare trends in resource allocation and usage across projects funded at various institutions and within different fields, identify more efficient resource users and research directions, and provide personalized services to institutions and principal investigators in need. Resource users can search for potential collaborators and helpers from successful cyberinfrastructure project awardees in similar fields, nearby locations, or related research topics. Additionally, this paper demonstrates the practical application of the visualization dashboard through three examples: a research-intensive institution, an under-represented minority-serving institution, and a junior researcher from a specific field of science, showcasing how each can leverage the platform for decision-making.
Downloads
References
Aden-Buie, G., Sievert, C., Iannone, R., Allaire, J., & Borges, B. (2023). flexdashboard: R Markdown Format for Flexible Dashboards (Version 0.6.2) [R]. https://doi.org/10.32614/CRAN.package.flexdashboard
Ansari, B., Barati, M., & Martin, E. G. (2022). Enhancing the usability and usefulness of open government data: A comprehensive review of the state of open government data visualization research. Government Information Quarterly, 39(1), 101657. https://doi.org/10.1016/j.giq.2021.101657
Becker, R. A., Cleveland, W. S., & Wilks, A. R. (1987). Dynamic graphics for data analysis. Statistical science, 2(4), 355-383.
Bertot, J. C., Jaeger, P. T., & Grimes, J. M. (2010). Using ICTs to create a culture of transparency: E-government and social media as openness and anti-corruption tools for societies. Government Information Quarterly, 27(3), 264–271. https://doi.org/10.1016/j.giq.2010.03.001
Boerner, T. J., Deems, S., Furlani, T. R., Knuth, S. L., & Towns, J. (2023). Access: Advancing innovation: NSF’s advanced cyberinfrastructure coordination ecosystem: Services & support. In Practice and Experience in Advanced Research Computing (pp. 173-176).
Brazil, M., Brunson, D., Culich, A., DeStefano, L., Jennewein, D., Jolley, T., Middelkoop, T., Neeman, H., Rivera, L., Smith, J., & Wernert, J. (2019). Campus champions: Building and sustaining a thriving community of practice around research computing and data. In Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning) (pp. 1-7).
Chang, W., Cheng, J., Allaire, J. J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A., & Borges, B. (2024). shiny: Web Application Framework for R (Version 1.10.0) [R]. https://doi.org/10.32614/CRAN.package.shiny
Charles, V., Rana, N. P., & Carter, L. (2022). Artificial Intelligence for data-driven decision-making and governance in public affairs. Government Information Quarterly, 39(4), 101742. https://doi.org/10.1016/j.giq.2022.101742
Chen, Y.-C. (2017). Managing digital governance: Issues, challenges, and solutions. Routledge, Taylor & Francis Group.
Chen, Y.-C., & Knepper, R. (2021). US cyberinfrastructure for scientific innovation: adaptation, management, and performance. In Research Handbook on E-Government (pp. 222-241). Edward Elgar Publishing.
Chen, Y.-C., Cheng, X., & Knepper, R. (2021, June). Performance of US Scientific Research Cyberinfrastructure: Structural and Relational Factors for Usage. In DG. O2021: The 22nd Annual International Conference on Digital Government Research (pp. 424-436).
Cheng, J., Schloerke, B., Karambelkar, B., & Xie, Y. (2024). leaflet: Create Interactive Web Maps with the JavaScript “Leaflet” Library (Version 2.2.2) [R]. https://doi.org/10.32614/CRAN.package.leaflet
Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American statistical association, 79(387), 531-554.
Cleveland, W. S. (1985). The elements of graphing data. Wadsworth Advanced Books and Software.
Cleveland, W. S. (1993). A model for studying display methods of statistical graphics. Journal of Computational and Graphical Statistics, 2(4), 323-343.
Cohen, I. B. (1984). Florence nightingale. Scientific American, 250(3), 128-137.
Cook, D., Buja, A., Cabrera, J., & Hurley, C. (1995). Grand tour and projection pursuit. Journal of Computational and Graphical Statistics, 4(3), 155-172.
Cook, D., & Swayne, D. F. (with Buja, A., Lang, D. T., Hofmann, H., Wickham, H., & Lawrence, M.). (2007). Interactive and Dynamic Graphics for Data Analysis: With R and GGobi (2007 edition). Springer.
Edwards, P. N., Jackson, S. J., Bowker, G., & Knobel, C. (2007). Understanding Infrastructure: Dynamics, Tensions, and Design. National Science Foundation. [link]
Furlani, T. R., Schneider, B. L., Jones, M. D., Towns, J., Hart, D. L., Gallo, S. M., DeLeon, R. L., Lu, C.-D., Ghadersohi, A., Gentner, R. J., Patra, A. K., von Laszewski, G., Wang, F., Palmer, J. T., & Simakov, N. (2013). Using XDMoD to facilitate XSEDE operations, planning and analysis. Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery, 1–8. https://doi.org/10.1145/2484762.2484763
Grimmelikhuijsen, S. G., & Welch, E. W. (2012). Developing and Testing a Theoretical Framework for Computer-Mediated Transparency of Local Governments. Public Administration Review, 72(4), 562–571.
Indiana University Center for Postsecondary Research (2021). The Carnegie Classification of Institutions of Higher Education, 2021 edition, Bloomington, IN. [link]
Janssen, M., Matheus, R., & Zuiderwijk, A. (2015). Big and Open Linked Data (BOLD) to Create Smart Cities and Citizens: Insights from Smart Energy and Mobility Cases. In E. Tambouris, M. Janssen, H. J. Scholl, M. A. Wimmer, K. Tarabanis, M. Gascó, B. Klievink, I. Lindgren, & P. Parycek (Eds.), 14th International Conference on Electronic Government (EGOV): Vol. LNCS-9248 (pp. 79–90). https://doi.org/10.1007/978-3-319-22479-4_6
Matheus, R., Janssen, M., & Maheshwari, D. (2020). Data science empowering the public: Data-driven dashboards for transparent and accountable decision-making in smart cities. Government Information Quarterly, 37(3), 101284.
McDonald, J. A. (1982). INTERACTIVE GRAPHICS FOR DATA ANALYSIS (Technical Report No. SLAC-253). Stanford Linear Accelerator Center, Stanford University. [link]
Morel, P. (2018). Gramm: grammar of graphics plotting in Matlab. Journal of Open Source Software, 3(23), 568.
National Science Foundation’s Cyberinfrastructure Council. (2007). Cyberinfrastructure Vision for 21st Century Discovery. [link]
NSF. (2016). NSF awards $110 million to bring advanced cyberinfrastructure to nation’s scientists, engineers. Retrieved from [link]
OpenStreetMap Contributors. (2017). Planet dump retrieved from [link] [Dataset]. [link]
Palmer, J. T., Gallo, S. M., Furlani, T. R., Jones, M. D., DeLeon, R. L., White, J. P., Simakov, N., Patra, A. K., Sperhac, J., Yearke, T., Rathsam, R., Innus, M., Cornelius, C. D., Browne, J. C., Barth, W. L., & Evans, R. T. (2015). Open XDMoD: A Tool for the Comprehensive Management of High-Performance Computing Resources. Computing in Science & Engineering, 17(4), 52–62. https://doi.org/10.1109/MCSE.2015.68
Parashar, M., Friedlander, A., Gianchandani, E., & Martonosi, M. (2022). Transforming science through cyberinfrastructure. Communications of the ACM, 65(8), 30-32.
R Core Team. (2024). R: A Language and Environment for Statistical Computing [Computer software]. R Foundation for Statistical Computing. [link]
Reed, D. A., & Berman, F. (2001). The TeraGrid: Cyberinfrastructure for 21st Century Science and Engineering. National Science Foundation. [link]
Ryan, G. W., Bloom, E. W., Lowsky, D. J., Linthicum, M. T., Juday, T., Rosenblatt, L., Kulkarni, S., Goldman, D., & Sayles, J. N. (2014). Data-driven decision-making tools to improve public resource allocation for care and prevention of HIV/AIDS. Health Affairs, 33(3), 410-417.
Sievert, C. (2020). Interactive web-based data visualization with R, plotly, and shiny (1st edition). Chapman and Hall/CRC.
Snow, J. (1856). On the mode of communication of cholera. Edinburgh medical journal, 1(7), 668.
Stewart, C. A., Costa, C. M., Wernert, J. A., Hancock, D. Y., McMullen, D. F., Blood, P., Sinkovits, R., Mehringer, S., Knepper, R., Fischer, J., Bland, M., Rogers, G., Couvares, P., Campbell, T., Jankowski, H., Snapp-Childs, W., & Towns, J. (2022). Metrics of financial effectiveness: Return On Investment in XSEDE, a national cyberinfrastructure coordination and support organization. Practice and Experience in Advanced Research Computing 2022: Revolutionary: Computing, Connections, You, 1–9. https://doi.org/10.1145/3491418.3530287
Theus, M., & Urbanek, S. (2008). Interactive graphics for data analysis: principles and examples. CRC Press.
Towns, J., Roskies, R., Boisseau, J., Kovatch, P., & Andrews, P. (2011). XSEDE: eXtreme Science and Engineering Discovery Environment. National Science Foundation.
Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G. D., Roskies, R., Scott, J. R., & Wilkins-Diehr, N. (2014). XSEDE: Accelerating Scientific Discovery. Computing in Science & Engineering, 16(5), 62–74. https://doi.org/10.1109/MCSE.2014.80
Towns, J., & Hart, D. (2023). XSEDE: Allocations Awards and Usage for the NSF Cyberfrastructure Portfolio, 2004-2022. https://doi.org/10.13012/B2IDB-3731847_V1
Unwin, A. (2020). Why is data visualization important? What is important in data visualization? Harvard Data Science Review, 2(1), 1.
Valle-Cruz, D., Criado, J. I., Sandoval-Almazán, R., & Ruvalcaba-Gomez, E. A. (2020). Assessing the public policy-cycle framework in the age of artificial intelligence: From agenda-setting to policy evaluation. Government Information Quarterly, 37(4), 101509. https://doi.org/10.1016/j.giq.2020.101509
van Ooijen, C., Ubaldi, B., & Welby, B. (2019). A data-driven public sector: Enabling the strategic use of data for productive, inclusive and trustworthy governance (No. No. 33; OECD Working Papers on Public Governance). OECD Publishing. https://doi.org/10.1787/09ab162c-en
Wickham, H. (2010). A layered grammar of graphics. Journal of computational and graphical statistics, 19(1), 3-28.
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (2nd ed.). Springer.
Wilkinson, L., Wills, D., Rope, D., Norton, A., & Dubbs, R. (2005). The Grammar of Graphics (2nd edition). Springer.
Xie, Y. (2013). animation: An R package for creating animations and demonstrating statistical methods. Journal of Statistical Software, 53, 1-27.
XSEDE. (2016). XSEDE PY5 Annual Report: July 1, 2011 through June 30, 2016. Washington D.C.: XSEDE Office.
XSEDE-Extreme Science and Engineering Discovery Environment. (2020). XSEDE: Allocations Awards for the NSF Cyberinfrastructure Portfolio, 2004-2019 [Dataset]. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-0757799_V1
Yim, A., Chung, C., & Yu, A. (2018). Matplotlib for Python Developers: Effective techniques for data visualization with Python. Packt Publishing Ltd.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Xiaoyue Cheng, Yu-Che Chen, Rich Knepper, Andrew Burk

This work is licensed under a Creative Commons Attribution 4.0 International License.
