Leveraging AI Models for Automated Pattern Detection in Citizen Participation Data
DOI:
https://doi.org/10.59490/dgo.2025.1068Keywords:
Citizen participation, Artificial Intelligence models, Data analysis, Pattern detection, Semantic, spatial and temporal analysisAbstract
Citizen Participation (CP) is essential for urban projects, traditionally done through face-to-face meetings. Information Technologies (IT) have introduced electronic participation (e- Participation), enhancing inclusivity and engagement. CPPs generate valuable data for decisionmaking, but processing large volumes of unstructured data is challenging. Traditional methods are inefficient. AI algorithms can improve data analysis, automate classification, detect patterns, and extract relevant information, reducing the workload for decision-makers. This research explores how AI can detect and classify patterns in CPP data, contributing to best practices in applying AI to government operations.
Downloads
References
Andrienko, G., Andrienko, N., Demsar, U., Dransch, D., Dykes, J., Fabrikant, S. I., & Tominski, C. (2010). Space, time and visual analytics. International Journal of Geographical Information Science, 24(10), 1577–1600.
Anis, A. (2022, March). Pytorch lstm: The definitive guide. [link]
Bondielli, A., Passaro, L., & Lenci, A. (2018). Corenlp-it: A ud pipeline for italian based on stanford corenlp. Proceedings of the Fifth Italian Conference on Computational Linguistics CLiC-it 2018, 57–61.
Bonsón, E., Royo, S., & Ratkai, M. (2015). Citizens’ engagement on local governments’ facebook sites. an empirical analysis: The impact of different media and content types in western europe. Gov. Inf. Q., 32, 52–62.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877–1901.
Burgess-Allen, J., & Owen-Smith, V. (2010). Using mind mapping techniques for rapid qualitative data analysis in public participation processes. Health Expectations, 13(4), 406–415. DOI: https://doi.org/10.1111/j.1369-7625.2010.00594.x.
Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., & Derczynski, L. (2014). Developing language processing components with gate version 8. University of Sheffield Department of Computer Science.
Dasagrandhi. (2021). Understanding named entity recognition pre-trained models. [link]
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), 4171–4186.
Elsherif, H. M., Alomari, K. M., AlHamad, A. Q. M., & Shaalan, K. (2019). Arabic rule-based named entity recognition system using gate. MLDM (1), 1–15.
Feldman, R., & Sanger, J. (2007). The text mining handbook: Advanced approaches in analyzing unstructured data. Cambridge University Press.
Lafrance, F., Daniel, S., & Dragićević, S. (2019). Multidimensional web gis approach for citizen participation in urban evolution. ISPRS International Journal of Geo-Information, 8(6), 253.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
Marrero, M., et al. (2013). Named entity recognition: Fallacies, challenges and opportunities. Computer Standards Interfaces, 35(5), 482–489.
Marzouki, A., Mellouli, S., & Daniel, S. (2022a). The identification of stakeholders’ living contexts in stakeholder participation data: A semantic, spatial, and temporal analysis. Land, 11(6), 798.
Marzouki, A., Mellouli, S., & Daniel, S. (2022b). Understanding issues with stakeholders participation processes: A conceptual model of spps’ dimensions of issues. Government Information Quarterly, 39(2), 101668.
Meersman, R. (1997). Introduction: An essay on the role and evolution of data(base) semantics. In Database applications semantics (pp. 1–7).
Mohanan, M., & Samuel, P. (2016). Open nlp based refinement of software requirements. International Journal of Computer Information Systems and Industrial Management Applications, 293–300.
Mohit. (2014). Named entity recognition. In Natural language processing of semitic languages (pp. 221–245).
Partalidou, E., Spyromitros-Xioufis, E., Doropoulos, S., Vologiannidis, S., & Diamantaras, K. (2019). Design and implementation of an open source greek pos tagger and entity recognizer using spacy. IEEE/WIC/ACM International Conference on Web Intelligence, 337–341. DOI: https://doi.org/10.1145/3350546.3352543.
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of machine learning research, 21(140), 1–67.
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: A modern approach. Pearson.
Sanford, C., & Rose, J. (2007). Characterizing eparticipation. International Journal Of Information Management, 27(6), 406–421. DOI: https://doi.org/10.1016/j.ijinfomgt.2007.08.002.
Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
Sayadi, K. (2017). Classification du texte numérique et numérisé. approche fondée sur les algorithmes d’apprentissage automatique [Doctoral dissertation, Université Pierre et Marie Curie-Paris VI].
Schmidhuber, J., & Hochreiter, S. (1997). Long short-term memory. Neural Comput, 9(8), 1735–1780.
Siva Rama Rao, A. V., Vamsi, P. V. V., Rashmika, N., Hemanth, K., & Aditya Kumar, K. (2022). Named entity recognition using stanford classes and nltk. Proceedings of Second International Conference on Sustainable Expert Systems: ICSES 2021, 583–597.
Widiastuti, N. I. (2019). Convolution neural network for text mining and natural language processing. IOP Conference Series: Materials Science and Engineering, 662(5), 052010.
Zhang, M., Wang, K., Zhang, C., Chen, H., Liu, H., Yue, Y., & Qi, X. (2011). Using the radial basis function network model to assess rocky desertification in northwest guangxi, china. Environmental Earth Sciences, 62, 69–76.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Amal Marzouki, Boutheyna Nouri, Sehl Mellouli

This work is licensed under a Creative Commons Attribution 4.0 International License.
