BEPP-DS
Building Evidence-Based Public Policies with Data Science
DOI:
https://doi.org/10.59490/dgo.2025.1045Keywords:
Data Science, Evidence-Based Public Policies, E-Government, Public Administration, Big Data, Policy Analytics, Digital Governance, Decision Support SystemsAbstract
The exponential growth of data and the advancement of computational tools have made Data Science (DS) an essential discipline for addressing complex societal challenges. In the public sector, Evidence-Based Public Policies (EBPP) leverage data-driven insights to enhance governance transparency, efficiency, and effectiveness. However, the integration of Data Science into policymaking presents challenges, including data quality, interdisciplinary collaboration, and institutional resistance. This paper introduces BEPP-DS, a structured methodology for developing EBPP using DS principles, emphasizing transparency, reproducibility, and scalability. The methodology is informed by real-world applications such as Big Data Social and Big Data Fortaleza, which illustrate how data-driven strategies improve policy design, implementation, and monitoring. BEPP-DS defines a structured framework, from problem identification to policy evaluation, ensuring data-driven decision-making in governance. The methodology provides a replicable model for governments seeking to harness Data Science in policy formulation. Future work includes expanding AI-driven analytics and strengthening citizen engagement in data governance.
Downloads
References
Anderson, L. M., Brownson, R. C., Fullilove, M. T., Teutsch, S. M., Novick, L. F., Fielding, J., & Land, G. H. (2005). Evidence-based public health policy and practice: Promises and limits. American journal of preventive medicine, 28(5), 226–230.
Batista, É., Andrade, R. M., Santos, I. S., Nogueira, T. P., Oliveira, P. A., Lelli, V., & Oliveira, V. T. (2024). Fortaleza city hall strategic planning based on data analysis and forecasting. Congresso Ibero-Americano em Engenharia de Software (CIbSE), 433–436.
Furtado, L. S., Moura, G., Vasconcelos, D. J., Fernandes, G. S., Cruz, L. A., Magalhães, R. P., & Coelho da Silva, T. L. (2023). An analytical citizen relation management system (czrm) for social vulnerability mapping and policy recommendation in brazil. Decision Support Systems, 172, 113995. DOI: https://doi.org/10.1016/j.dss.2023.113995.
MacArthur, B. D., Dorobantu, C. L., & Margetts, H. Z. (2022). Resilient government requires data science reform. Nature Human Behaviour, 6(8), 1035–1037.
Musafir, V. E. N. (2018). Brazilian e-government policy and implementation. International E-Government Development: Policy, Implementation and Best Practice, 155–186.
Pereira, G., Monteiro, I., Vasconcelos, D., Braz, L., & Silva, C. (2021). Classificação taxonômica de categorias de serviços públicos para aplicações digitais. Anais do IX Workshop de Computação Aplicada em Governo Eletrônico, 119–130. DOI: https://doi.org/10.5753/wcge.2021.15982.
Rahul, K., & Banyal, R. K. (2020). Data life cycle management in big data analytics. Procedia Computer Science, 173, 364–371.
Saltelli, A., Bammer, G., Bruno, I., Charters, E., Di Fiore, M., Didier, E., Nelson Espeland, W., Kay, J., Lo Piano, S., Mayo, D., Pielke Jr, R., Portaluri, T., Porter, T. M., Puy, A., Rafols, I., Ravetz, J. R., Reinert, E., Sarewitz, D., Stark, P. B., … Vineis, P. (2020). Five ways to ensure that models serve society: A manifesto. Nature, 582(7813), 482–484. DOI: https://doi.org/10.1038/d41586-020-01812-9.
Santos, I. S., Oliveira, P. A. M., Oliveira, V. T., Nogueira, T. P., Dantas, A. B. O., Menescal, L. M., Batista, É., & Andrade, R. M. C. (2023). Big Data Fortaleza: Plataforma Inteligente para Políticas Públicas Baseadas em Evidências. Workshop de Computação Aplicada em Governo Eletrônico (WCGE), 200–211. DOI: https://doi.org/10.5753/wcge.2023.230796.
Schröer, C., Kruse, F., & Gómez, J. M. (2021). A systematic literature review on applying crisp-dm process model [CENTERIS 2020 - International Conference on ENTERprise Information Systems / ProjMAN 2020 - International Conference on Project MANagement / HCist 2020 - International Conference on Health and Social Care Information Systems and Technologies 2020, CENTERIS/ProjMAN/HCist 2020]. Procedia Computer Science, 181, 526–534. DOI: https://doi.org/10.1016/j.procs.2021.01.199.
Silcock, R. (2001). What is e-government. Parliamentary affairs, 54(1), 88–101.
Silva, W. C. P., Macedo, J. A. F. D., & De Queiroz Neto, J. F. (2022). Usando um modelo de classificação para a adequada implantação do patrulhamento policial para o enfrentamento à assaltos a bancos no nordeste do Brasil. Revista Brasileira de Ciências Policiais, 13(9), 185–205. DOI: https://doi.org/10.31412/rbcp.v13i9.845.
Sucupira Furtado, L., Da Silva, T. L. C., Ferreira, M. G. F., De Macedo, J. A. F., & De Melo Lima Cavalcanti Moreira, J. K. (2023a). A framework for Digital Transformation towards Smart Governance: Using big data tools to target SDGs in Ceará, Brazil. Journal of Urban Management, 12(1), 74–87. DOI: https://doi.org/10.1016/j.jum.2023.01.003.
Sucupira Furtado, L., da Silva, T. L. C., Ferreira, M. G. F., de Macedo, J. A. F., & de Melo Lima Cavalcanti Moreira, J. K. (2023b). A framework for digital transformation towards smart governance: Using big data tools to target sdgs in ceará, brazil [Digital Technologies in Urban Planning and Urban Management]. Journal of Urban Management, 12(1), 74–87. DOI: https://doi.org/10.1016/j.jum.2023.01.003.
Van Der Aalst, W., & van der Aalst, W. (2016). Data science in action. Springer.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 José Antonio F. Macedo, Rossana Maria de Castro Andrade, Regis P. Magalhães, Livia A. Cruz, José Florêncio Q. Neto, Samir B. Chavez, Mauricio Feijo B. M. Filho, Joaquim José Escola, Amanda Sousa, Pedro Almir M. Oliveira, Davyson S. Ribeiro, Paulo V. A. Fabrício

This work is licensed under a Creative Commons Attribution 4.0 International License.
