Improving Public Health Supply Chains
Time Series Techniques for Medication Demand Forecasting
DOI:
https://doi.org/10.59490/dgo.2025.1013Keywords:
demand forecasting, ARIMA, public health supply chains, exponential smoothing, efficiency improvementAbstract
The National Pharmaceutical Assistance Policy (PNAF) in Brazil aims to ensure universal access to essential medications through primary care. To achieve this goal and reduce healthcare access inequalities, efficient health system supply chains are crucial. This study evaluates time series forecasting methods, specifically exponential smoothing (ETS) and autoregressive integrated moving average (ARIMA) models, to predict the demand for captopril, a widely used antihypertensive drug, in São Paulo’s Basic Health Units. Data on medicine consumption and demand from January 2018 to March 2023 were collected and analyzed to address current inefficiencies in demand prediction, compared through the Mean Absolute Percentage Error (MAPE). Results indicate that the ETS model achieved the best performance in captopril demand forecasting, with a MAPE of 2.26%, significantly improving on the 77.97% MAPE of the existing methodology. Holt-Winters seasonal models and ARIMA also demonstrated robust predictive capabilities, with MAPEs of 3.81% and 3.47%, respectively. This research highlights the potential of data-driven forecasting techniques, such as the ETS model, to optimize resource allocation, ensure medication availability, and improve service quality, providing a framework for future applications in similar contexts.
Downloads
References
Ackermann, A. E. F., & Sellitto, M. A. (2022). Métodos de previsão de demanda: uma revisão da literatura. Innovar, 32(85), 83-89. https://doi.org/10.15446/innovar.v32n85.100979
Álvares, J., Guerra Junior, A. A., Araújo, V. E., Almeida, A. M., & Dias, C. Z. (2017). Acesso aos medicamentos pelos usuários da atenção primária no Sistema Único de Saúde. Revista de Saúde Pública, 51(Sup), 1-10. https://doi.org/10.11606/S1518-8787.2017051007139
Al-Zaidi, W. A., Al-Karawi, A. J., & Al-Zuhairi, A. Kh. (2018). Role of demand forecasting and lead time on waste in supply chain: a case study in Diyala health sector-Iraq. Journal of Advanced Management Science, 6(3), 155-160. https://doi.org/10.18178/joams.6.3.155-160
Barros, A. C., Mattos, D. M., Oliveira, I. C. L., Ferreira, P. G. C., & Duca, V. E. L. A. (2017). Análise de Séries Temporais em R: Curso Introdutório. (1ª ed.). Grupo GEN.
Bhat, S. S., Srihari, V. R., Prabhune, A., Satheesh, S. S., & Bidrohi, A. B. (2024). Optimizing medication access in public healthcare centers: a machine learning stochastic model for inventory management and demand forecasting in primary health services. In 2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE) (pp. 1-5). IEEE.
Brazil. (1988). Constituição da República Federativa do Brasil de 1988 (Federal Constitution of Brazil, 1988). Brasília, DF: Presidência da República. Retrieved March 21, 2023, from [link]
Brazil. (1990). Lei n. 8080, de 19 de setembro de 1990. Dispõe sobre as condições para a promoção, proteção e recuperação da saúde, a organização e o funcionamento dos serviços correspondentes e dá outras providências. Diário Oficial da União. Retrieved March 21, 2023, from [link].
Bvuchete, M., Grobbelaar, S. S., & Eeden, J. van. (2020). Best practices for demand-driven supply chain management in public healthcare sector: A systematic literature review. South African Journal of Industrial Engineering, 31(2), 11-27. Retrieved June 05, 2023, from [link]
Chapman, J., Clinton, R., Kerber, T., Khabaza, T., Reinartz, C., & Wirth, R. (2000). CRISP-DM 1.0 step-by-step data mining guide (1st ed.). Morgan Kaufmann.
Chen, C., Twycross, J., & Garibaldi, J. M. (2017). A new accuracy measure based on bounded relative error for time series forecasting. PloS One, 12(3), 1-23. https://doi.org/10.1371/journal.pone.0174202
Choudhary, A., Kumar, S., Sharma, M., & Sharma, K. P. (2022). A framework for data prediction and forecasting in WSN with Auto ARIMA. Wireless Personal Communications, 123, 2245–2259. https://doi.org/10.1007/s11277-021-09237-x
Dickman, S. L., Himmelstein, D. U., & Woolhandler, S. (2017). Inequality and the health-care system in the USA. Lancet, 389 (10077), 1437-1441. https://doi.org/10.1016/S0140-6736(17)30398-7
Dixit, A., Routroy, S., & Dubey, S. (2022). Analyzing the operational barriers of government-supported healthcare supply chain. International Journal of Productivity and Performance Management, 71(8), 3766-3791. https://doi.org/10.1108/IJPPM-09-2020-0493
Elias, F. T. S. (2013). A importância da avaliação de tecnologias para o Sistema Único de Saúde. Boletim do Instituto de Saúde-BIS, 14(2), 143-150. Retrieved April 20, 2025, from [link]
Fattah, J., Ezzine, L., Aman, Z., & El Moussami, H. (2018). Forecasting of demand using ARIMA model. International Journal of Engineering Business Management, 10, 1-9. https://doi.org/10.1177/1847979018808673
Gil, A. C. (2017). Como elaborar projetos de pesquisa (6ª ed.). Atlas.
Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27(3), 1-22. https://doi.org/10.18637/jss.v027.i03
Hyndman, R. J., & Koehler, A. B. (2005). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688. https://doi.org/10.1016/j.ijforecast.2006.03.001
Hyndman, R. J., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential smoothing: The state space approach (1st ed.). Springer Science & Business Media.
Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and practice (3rd ed.). OTexts.
Infante, M., & Santos, M. A. B. D. (2007). A organização do abastecimento do hospital público a partir da cadeia produtiva: uma abordagem logística para a área de saúde. Ciência & Saúde Coletiva, 12, 945-954. Retrieved April 20, 2025 from [link]
Ingle, C., Bakliwal, D., Jain, J., Singh, P., Kale, P., & Chhajed, V. (2021). Demand forecasting: Literature review on various methodologies. In Proceedings of the 12th International Conference on Computing Communication and Networking Technologies (pp. 1-7). Kharagpur, India. https://doi.org/10.1109/ICCCNT51525.2021.9580139
Lee, H. L., Padmanabhan, V., & Whang, S. (1997). The bullwhip effect in supply chains. Sloan Management Review, 38(3), 92-102. Retrieved January 24, 2025, from [link]
Morettin, P. A., & Toloi, C. M. (2004). Análise de séries temporais: Modelos lineares univariados (3ª ed.). Edgar Blucher.
Oliveira, L. C. F., Assis, M. M. A., & Barboni, A. R. (2010). Assistência farmacêutica no Sistema Único de Saúde: Da Política Nacional de Medicamentos à Atenção Básica à Saúde. Ciência & Saúde Coletiva, 15(3), 3561-3567. Retrieved January 24, 2025, from [link]
Oliveira, T. L., Santos, C. M., Miranda, L. P., Nery, M. L. F., & Caldeira, A. P. (2021). Fatores associados ao custo das internações hospitalares por doenças sensíveis à Atenção Primária no Sistema Único de Saúde. Ciência & Saúde Coletiva, 26(10), 4541-4552. Retrieved April 20, 2025, from [link]
PRODAM-SP. (2008). Manual GSS2 para unidades de saúde (Versão 2.3). Secretaria Municipal da Saúde de São Paulo.
Reis, A. M. M., & Perini, E. (2008). Desabastecimento de medicamentos: Determinantes, consequências e gerenciamento. Ciência & Saúde Coletiva, 13(Sup), 603-610. Retrieved January 24, 2025, from [link]
Shah, V., Gupta, V., Gandhi, T., & Gupta, R. K. (2023). Efficient medical supply chain forecasting using time series analysis. In Proceedings of the International Conference on Computer Vision and Machine Intelligence (pp. 1-6). Paris, France. https://doi.org/10.1109/CVMI59935.2023.10465213
Saha, E., & Rathore, P. (2024). The impact of healthcare 4.0 technologies on healthcare supply chain performance: Extending the organizational information processing theory. Technological Forecasting & Social Change, 201, 1-16. https://doi.org/10.1016/j.techfore.2024.123256
Schroer, C., Kruse, F., & Gómez, J. M. (2021). A systematic literature review on applying the CRISP-DM process model. Procedia Computer Science, 181, 526–534. https://doi.org/10.1016/j.procs.2021.01.199
Senna, P., Reis, A. D. C., Leão Santos, I., & Dias, A. C. (2022). Healthcare supply chain risk management in Rio de Janeiro, Brazil: What is the current situation?. Work, 72(2), 511-527. https://doi.org/10.3233/WOR-205216
Soyiri, I. N., & Reidpath, D. D. (2013). An overview of health forecasting. Environmental Health and Preventive Medicine, 18, 1-9. https://doi.org/10.1007/s12199-012-0294-6
Starfield, B. (2001). New paradigms for quality in primary care. The British Journal of General Practice, 51(465), 303. Retrieved April 21, 2025, from [link]
Storey, J., Emberson, C., Godsell, J., & Harrison, A. (2006). Supply chain management: Theory, practice and future challenges. International Journal of Operations & Production Management, 26(7), 754-774. https://doi.org/10.1108/01443570610672220
Subramanian, L. (2021). Effective demand forecasting in health supply chains: Emerging trend, enablers, and blockers. Logistics, 5(12), 1-21. https://doi.org/10.3390/logistics5010012
Tetteh, F. K., Amoako, D. K., Kyeremeh, A., Atiki, G., Degbe, F. D., & Nyame, P. E. D. (2025). Unraveling the interplay between supply chain analytics and healthcare supply chain performance: establishing an underlying mechanism and a boundary condition. International Journal of Quality & Reliability Management, 42(2), 752-783. https://doi.org/10.1108/IJQRM-12-2023-0400
Thomaz, P. S., Mattos, V. L. D., Nakamura, L. R., Nunes, G. S., & Konrath, A. C. (2018). O uso de métodos de suavização exponencial na modelagem de séries temporais sem sazonalidade. RETEC – Revista de Tecnologias, 11(3), 17-27. Retrieved January 24, 2025, from [link]
Villani, M., Earnest, A., Nanayakkara, N., Smith, K., Courten, B., & Zoungas, S. (2017). Time series modelling to forecast prehospital EMS demand for diabetic emergencies. Health Services Research, 17(332), 1-9. https://doi.org/10.1186/s12913-017-2280-6
Wang, C. C. (2011). A comparison study between fuzzy time series model and ARIMA model for forecasting Taiwan export. Expert Systems with Applications, 38(8), 9296–9304. https://doi.org/10.1016/j.eswa.2011.01.015
World Health Organization (WHO). (1978). International Conference on Primary Health Care - Alma-Ata Declaration. Retrieved March 22, 2023, from [link]
Yadav, P. (2015). Health product supply chains in developing countries: Diagnosis of the root causes of underperformance and an agenda for reform. Health Systems & Reform, 1(2), 142-154. https://doi.org/10.4161/23288604.2014.968005
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Ilka Corrêa De Meo, João Vitor Matos Gonçalves

This work is licensed under a Creative Commons Attribution 4.0 International License.
