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Modelling the constitutive relations of chemically corroded carbonate rocks is important for the design and stability evaluation 

of engineering constructions in karst areas (e.g., mines, tunnels and dams, etc.) [1-4]. This paper presents a sequentially coupled 

chemical-mechanical (C-M) damage constitutive model for engineering rocks in karst areas. First, the chemical damage caused by 

carbonate dissolution and the mechanical damage caused by external loads are investigated based on experimental results. After 

that, the chemical damage is expressed by the degradation ratio of Young's modulus under the effect of the chemically induced 

secondary pores compaction. The chemically induced secondary pore is quantified by reactive transport behavior considering the 

geochemical procedure of free-face dissolution and precipitation under different H+ concentrations, temperature and corrosion pe-

riods [5]. The mechanical damage is formulated based on a statistical theory [6,7], which underlines the strength of the mesoscopic 

element and considers the damage initiation threshold. To capture the nonlinear strength responses of the mesoscopic element at 

various chemical damage and confining pressures, a modified Mohr-Coulomb (M-C) criterion is introduced, in which the instanta-

neous friction angle and cohesion are expressed as functions of the confining pressure and chemical damage. The proposed model 

is validated and shows good agreement with experimental data.  

Result of this research shows that: (1) the porosity increases with increasing corrosion period and the increase rate (i.e., the slope 

of the porosity curve) is steep initially and then decreases gradually (see Fig. 1 (a)). (2) As shown in Fig. 1 (b), Young's modulus 

decrease with porosity growth. (3) The C-M coupled damage evolution curve is S-shaped and consists of four stages (see Fig. 1(c)), 

i.e., a linear elastic stage, a stable damage stage, a damage acceleration stage and a post-peak stage. In damage stage 1, stress is 

lower than the mechanical damage initiation threshold and the stress-strain curve is in a linear elastic state. At this stage, mechanical 

damage doesn’t initiate (i.e., 𝐷𝑚 = 0). Therefore, the total damage (Dcm) evolution curve is horizontal and only contains chemical 

damage (Dc=0.165) caused by carbonate dissolution. Once the axial strain exceeds the mechanical damage initiation threshold, the 

damage enters stage 2. In this stage, total damage (Dcm) begins to slightly rise and steadily increases with the increasing load. In 

damage stage 3, the damage-strain curve rises concave upward. After the peak strength point, damage development comes to stage 

4, i.e., the post-peak stage. 
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Figure 1: (a) Porosity versus chemical corrosion period of the samples in pH3 solution. (b) Young's modulus (E) versus 

porosity of the samples in pH3 solution. (c) Stress-strain and damage-strain curves of limestone sample calculated by the 

proposed C-M damage model. I, II, III and IV denote linear elastic stage, stable damage stage, damage acceleration stage 

and post-peak stage, respectively. 𝛔𝐜𝐢, 𝛆𝐜𝐢, 𝛔𝐜𝐝, 𝛆𝐜𝐝,, 𝛔𝐩 and 𝛆𝐩 denote the stress and strain at the thresholds of the damage 

stages. Dc denotes chemical damage caused by carbonate dissolution and Dcm denotes the C-M coupled damage. 
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