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Clays and clay soils or shales have attracted a lot of interest in a variety of applications, including the development of geothermal 

resources [1], energy foundations [2], oil exploration [3], energy storage [4], and the storage of nuclear waste [5]. The continued 

operation of ground source heat pump installations can lead to considerable long-term settlements, which could negatively affect 

the adjacent or underlying foundations [1]. Therefore, thermal volume change has been widely experimentally investigated in clays 

[4, 7, 8, 9]. Especially in [4] the authors studied the thermal and mechanical consolidation of saturated marine clays through labor-

atory element tests, where excess pore pressures were generated by heating samples at constant water content and then allowed to 

dissipate. In constant stress creep experiments described in [4] it was documented that thermal creep strains typically increased 

linearly with log time at rates controlled by the prevailing temperature. 

On the other hand, the mechanical time dependency of the stress–strain behaviour of soft soils, especially highly plastic clay, is 

generally too significant to be ignored [10, 11]. The constitutive modelling of the time-dependent stress–strain behaviour of soils 

has been an active area of research for five decades and has attracted much attention from the international geotechnical community 

in recent years as denoted in [12]. In [13] a visco-hypoplastic (VHP) model for normally and overconsolidated clays has been 

proposed. Probably the most salient feature of hypoplasticity itself is that loading and unloading can be described with only one 

equation as �̇� = E: (�̇� − �̇�ℎ𝑝 − �̇�𝑣𝑖𝑠) = E: (�̇� − 𝑌𝒎‖�̇�‖ − 𝐼𝑣𝜆 (
1

𝑂𝐶𝑅
)

1

𝐼𝑣 𝒎) , with the strain and stress rate denoted as �̇� and �̇�, re-

spectively. The elastic stiffness tensor is represented by E; 𝑌 is the degree of nonlinearity and 𝒎 is the flow rule (direction of hypo-

plastic strain). The last part of the equation expresses the time-dependent strain rate (i.e. viscous) with the material parameters 𝐼𝑣  as 

the viscosity index and 𝜆 being the compression index. 𝑂𝐶𝑅 denotes the overconsolidation ratio. As may be observed, the model is 

not restricted solely to time-dependent clay materials, because 𝐼𝑣 = 0 does not represent a singularity for the constitutive equation 

as in other hypoplastic models. The model has been extended in [14] to account for the small-strain stiffness and the mechanical 

behaviour under cyclic loading. It follows the critical state theory and incorporates a loading surface for the definition of 𝑂𝐶𝑅, see 

Fig. 1A). Time-dependent one-dimensional behaviour of clays is in most cases explained by the isotache framework, which assumes 

a unique relation between effective stress, strain, and strain rate in compression, shown as loci of constant strain rate in 𝑒 − log(𝑝′) 

space, see Fig. 1B). The creep deformation at constant effective stress (𝑝0′; Fig. 1C)) corresponds to a decrease in strain rate of the 

soil (path A to B′ in Fig. 1C)). Consolidation stress history, represented by swelling along the path A−C′, causes a marked reduction 

in compressive creep rates at low 𝑂𝐶𝑅 (C′ −D′), while expansive/dilative creep strains occur at higher 𝑂𝐶𝑅 (C′ −E′ −E′′).  

Due to the temperature dependency of the compressibility of clays the isotachs may be considered as temperature dependent as 

well. As shown in [6] the isotache loci at a given strain rate for normally consolidated states are functions of strain rate and temper-

ature. Increases in temperature cause additional compressive thermal creep strains for NC and lightly OC states (B′ −B′′ and D′ −D′′ 

in Fig.1C)) and augment the swelling strains at higher 𝑂𝐶𝑅 (E′ −E′′).  
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Figure 1: A) Critical state and loading surface; B) Oedometer simulations with different strain rates (isotachs); C) Uni-

fication of thermal and mechanical creep in 1D compression tests through isotache framework from [6]. 

 

In the framework of hypoplasticity, the non-isothermal behaviour has not gained much attention [15]. This work is devoted to 

the extension of the VHP model formulation to present a unified model for both thermal and viscous strains in clays. The model 

predictions are assessed through comparisons with existing laboratory experiments from [7] on two clays with measurements of 

both isothermal/mechanical creep and thermally induced creep strains, providing a thorough calibration scheme as well. 
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