

Peer-reviewed Conference Contribution

Transient temperature and water distributions in compacted MX80 bentonite under high temperature gradients

Yu Lu1 and John S. McCartney2, *

^{*} Corresponding author: mccartney@ucsd.edu

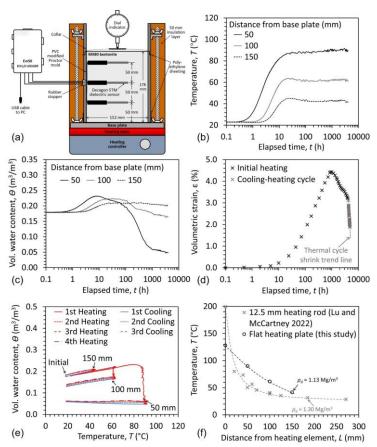


Figure 1: Schematic diagram of set up and test results: (a) Schematic diagram, (b) Temperature evolution, (c) Volumetric water content evolution, (d) Volumetric strain evolution; (e) Relationship between temperature and volumetric water content, (f) Temperature distribution and comparison with literature data.

Data Availability Statement

All data used during the study appear in the submitted article.

Contributor statement

Lu: performed tests, analyzed data; McCartney: supervision, review.

Acknowledgments

The authors appreciate support from US Department of Energy Nuclear Energy University Program award DE-NE008951. The views in this paper are those of the authors alone.

¹ University of California San Diego, California, USA

References

- [1] Gens, A., de Vasconcelos, R.B., & Olivella, S. (2020). Towards higher temperatures in nuclear waste repositories. In *E3S Web of Conferences* (Vol. 205, No. 01001, pp. 1-8). EDP Sciences.
- [2] Grimsel Test Site (GTS). (2022). HotBENT Introduction. GTS.
- [3] Lu, Y. & McCartney, J.S. (2022). Physical Modeling of Coupled Thermohydraulic Behavior of Compacted MX80 Bentonite during Heating. *Geotechnical Testing Journal*, 45(6), 20220054
- [4] Tang, A.M., & Cui, Y.J. (2009). Modelling the thermomechanical volume change behaviour of compacted expansive clays. *Géotechnique*, 59(3), 185-195
- [5] Villar, M.V., Martín, P.L., Bárcena, I., García-Siñeriz, J.L., Gómez-Espina, R., & Lloret, A. (2012). Long-term experimental evidences of saturation of compacted bentonite under repository conditions. *Engineering Geology*, 149, 57-69.