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Geological subsurface storage is a promising strategy for large-scale, cost-efficient energy storage systems. Stress sen-

sitivity has notably influence on the long-term stability and serviceability of subsurface reservoirs set for energy storage use. 

The evolution of the field stress of stress-sensitive reservoirs and the associated structural deformation, often a consequence 

of fluid production and injection, can cause significant changes to the reservoir stress-dependent properties [1]. These prop-

erties include pore and void compressibility, and porosity. For fractured and faulted reservoirs, field stress variation may 

also impact fracture conductivity, alter pre-existing fractures, and reactivate faults [4]. 

 Current geomechanical reservoir simulators incorporate the evolution of the reservoir mechanical state by means of 

material constitutive modelling, typically within a Finite Element Modelling (FEM) framework. In efforts to honour the 

heterogeneity and multi-scale nature of subsurface reservoirs, multi-scale solution methods are commonly adopted. For a 

reservoir multi-scale simulation, the micro-scale problem must be iteratively solved for different input parameters, render-

ing the solution method computationally exhaustive, particularly for two-way coupled problems. 

The combination of machine learning-based solution methods and FEM frameworks can address the computational in-

efficiency of conventional multi-scale reservoir modelling schemes. In principle, a machine learning algorithm trained to 

learn the constitutive behaviour of a material can replace in-built material constitutive models in a FEM framework. We 

resort to Thermodynamics-based Artificial Neural Networks (TANNs), a physics-based data-driven machine learning algo-

rithm introduced in [5] for material constitutive modelling. TANNs have been shown to guarantee the thermodynamic con-

sistency of learnt material constitutive models. The first and second laws of thermodynamics are directly encoded in the 

architecture of TANNs through the definition of two scalar functions, an energy potential and a dissipation function, and the 

computation of their differentials [3]. 

TANNs can be incorporated in FEM tools, in what is referred to as TANNxFEM in [6]. We present the application of 

the TANNxFEM framework to geomechanical reservoir modelling. This work aims to introduce a computationally efficient 

reservoir modelling framework, for which uncertainty quantification is possible. The proposed framework can maximise the 

use of information inherently contained in high-dimensional data, and significantly reduce computation demands necessary 

for accurate statistical evaluation, while warranting physical and geological realism. 

TANNs are first trained on analytical material data, computed by numerical integration of an incremental, thermody-

namically consistent material model presented in [2]. The trained TANNs are then imported into a user material subroutine 

for the finite element package Abaqus. Through an input file, the parameters of the trained neural network are read as a set 

of material properties. The material subroutine then evaluates the incorporated trained neural network to construct the stress 

and elasticity tensors necessary for large-scale finite element reservoir simulation. The above proposed framework is vali-

dated against a large-scale finite element simulation with a user material subroutine implementing the constitutive model 
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used to first generate the training data for TANNs. The free-energy, dissipation, and the stress-strain response of the two 

finite element simulations are compared for model verification.  
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