

Peer-reviewed Conference Contribution

Hydrothermal karst cavities in a Devonian carbonate reservoir analogue (Rhenish Massif, Germany): Implications for geothermal energy potential

Mathias Mueller^{1, *}, Benjamin F. Walter², Aratz Beranoaguirre², Manfred Heinelt³ and Adrian Immenhauser¹

¹Institute of Geology, Mineralogy, and Geophysics, Ruhr-University Bochum, Bochum, Germany

- ²Karlsruhe Institute for Technology, Chair of Economic Geology and Geochemistry, Karlsruhe, Germany
- ³Fraunhofer IEG, Bochum, Germany
- * Corresponding author: mathias.mueller-l1y@rub.de

Deep geothermal reservoirs can provide renewable energy for electricity and heat generation [1]. In the Rhine-Ruhr area of western Germany, where Europe's largest district heating network is located, up to 1,300 m thick carbonates of Devonian age are available in \geq 4,000 m depth [2, 3]. Near the surface, these rocks contain karst cavities, which host some of Germany's longest caves [4, 5]. At reservoir depth, abundant karstification may significantly increase the geothermal reservoir potential [6] (Figure 1).

Figure 1: (A) Drone image displaying the WSW-ENE (340/45) striking Ennepe Thrust (Variscan) and NNW-SSE (245/85) striking Großholthausener Sprung (Post-Variscan) in Steltenberg Quarry. (B) Surface karst structures with karstified walls including fossils. (C) Hydrothermal karst cavity with laminated cement/sediment infill at the southern quarry wall.

In the Munich area (southern Germany) deep-seated karstified Upper Jurassic rocks are widely used for the city's district heating network [7]. Most deep-seated geothermal systems are located at a depth of 1,000 m or more at temperatures over 60 °C [8]. Therefore, it is important to assess deep-seated karstified structures elsewhere to assess their geothermal reservoir potential. In the Rhine-Ruhr area, these could have the potential to be used as an alternative renewable energy resource.

This study aims at the geological characterization of deep-seated (hydrothermal) karst cavities in Steltenberg Quarry (western Germany) where Middle/Upper Devonian carbonates (Massenkalk limestone) are present in the vicinity of two regional fault zones [9, 10]. We applied state of the art petrographical, geochemical, palaeothermometrical methods, and U-Pb dating. Here we present the first U-Pb age data of deep-seated hydrothermal karst precipitates in Germany, which formed at the Permian-Triassic boundary (252.4 \pm 8.6 My, Table 1). The U-Pb age data of calcite cement veins (LMC 8), which were cutting the near-surface karst cavities before they got dissolved, points to an Oligocene maximum age (30.0 \pm 2.81 My) of the karst cavities.

 Table 2: Geochemical (carbon, oxygen, strontium isotopes), palaeothermometry (clumped isotopes, fluid-inclusions), and

 U-Pb age data of some relevant phases from Steltenberg Quarry.

Phase	δ ¹³ C (‰)			δ ¹⁸ O (‰)			87 Sr/ 86 Sr (± 2 σ)		Δ_{47} (°C)	Primary T _h (°C)	U-PB age (My)
	min.	max.	mean	min.	max.	mean	min.	max.	(±SD)		(±SD)
LMC 10	-6.4	-5.6	-6.0	-9.2	-7.5	-8.2	no data	no data	no data	no gas phase	no data
LMC 9	-5.3	-3.6	-4.3	-5.8	-5.0	-5.4	0.709386 (5)	0.709386 (5)	23 (8)	no gas phase	no data
LMC 8	-2.9	-1.5	-2.2	-3.8	-3.4	-3.6	0.711656 (5)	0.711656 (5)	73 (1)	164-196 (n = 5)	30.0 (2.81)
Laminite 1	-3.0	-2.1	-2.6	-4.5	-0.4	-2.3	0.709028 (5)	0.714721 (6)	93 (18)	207-221 (n = 9)	252.4 (8.6)
MK Fossils	2.8	3.0	2.8	-7.7	-7.1	-7.3	0.707915 (5)	0.707915 (5)	no data	no data	388.8 (5.4)
MK lime- stone matrix	2.4	3.2	2.8	-9.9	-5.2	-7.1	0.708027 (5)	0.708879 (5)	85 (41)	no data	no data

Contributor statement

Mathias Mueller: Project administration, fieldwork, data curation, investigation, visualization, writing – original draft; Benjamin F. Walter: Fieldwork, data curation, investigation, review and edit; Aratz Beranoaguirre: Data curation, review and edit; Manfred Heinelt: Fieldwork, review and edit; Adrian Immenhauser: Project administration, fieldwork, review and edit.

References

- Balcewicz, M., Ahrens, A., Lippert, K. and Saenger, E. H., 2021. Characterisation of discontinuities in potential reservoir rocks for geothermal applications in the Rhine-Ruhr metropolitan area (Germany). Solid Earth Discussions, Vol. 12, p. 35-58.
- [2] Ford, D. and Williams, P. D., 2013. Karst hydrogeology and geomorphology. John Wiley & Sons Ltd, 626 pp.
- [3] Götte, T., 2004. Petrographische und geochemische Untersuchungen zu den postvariszischen Mineralisationen im devonischen Massenkalk des nordwestlichen Rechtsrheinischen Schiefergebirges unter besonderer Berücksichtigung der Kathodolumineszenz. Dissertation University of Bochum, 186 pp.
- [4] Niggemann, S., Richter, D. K., Voigt, S. and Weber, H. W., 2008. Karst und Höhlen im devonischen Massenkalk der Umgebung von Hagen/Iserlohn. Jahresbericht und Mitteilung des Oberrheinischen Geologischen Vereins, p. 401-434.
- [5] Ford, D. and Williams, P. D., 2013. Karst hydrogeology and geomorphology. John Wiley & Sons Ltd, 626 pp.
- [6] Drozdzewski, G., Richter, D. K. and Wrede, V., 2017. Hydrothermalkarst im nördlichen Rheinischen Schiefergebirge. Verband der Deutschen Höhlen und Karstforscher e. V., München, 89 pp.
- [7] Lippert, K., Ahrens, B., Nehler, M., Balcewicz, M., Mueller, M., Bracke, R. and Immenhauser, A., 2022. Geothermal reservoir characterization of Devonian carbonates in North Rhine-Westphalia (W. Germany): Mineralogy- and depofacies-related extrapolation of petrophysical parameters. Geothermics, Vol. 106 (4), 102549.
- [8] Stober, I. and Bucher, K., 2013. Geothermal energy: Springer-Verlag Berlin Heidelberg. 390 pp.
- [9] Gillhaus, A., Götte, T. and Richter, D.K., 2003. Polyphase spätdiagenetische Dolomitbildung im mittel- bis oberdevonischen Massenkalk von Hagen-Hohenlimburg (Remscheid-Altenaer Sattel, Rheinisches Schiefergebirge. Mitt. Ges. Geol. Bergbaustud. Österr., Vol. 46, p. 51-66.
- [10] Pederson C., Mueller, M., Lippert, K., Igbokwe, O. A., Riechelmann, S., Lersch, S., Benger, P., Verdecchia, A. and Immenhauser, A., 2021. Impact of regional fault zone on the properties of a deep geothermal carbonate reservoir unit (Devonian of NRW). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, Vol. 172 (3) p. 339-364.