
PROCEEDINGS OF MOSES2023 CONFERENCE
4TH INTERNATIONAL CONFERENCE ON MODELLING AND OPTIMISATION OF SHIP ENERGY SYSTEMS

26-27 OCTOBER 2023, DELFT, NETHERLANDS

Topology Generation of Naval Propulsion Architecture

Florian Dugasta,*, Stéphane Bénacb, Pierre Martya, and Pascal Chesséa

aNantes Université, École Centrale Nantes, CNRS, LHEEA, UMR 6598, F-44000 Nantes, France
bNaval Group, CEMEP, Technocampus Ocean, Bouguenais, France

*florian.dugast@ec-nantes.fr

Abstract
Reducing shipping emissions at an affordable cost is critical and can be achieved through propulsion architecture optimiza-
tion. The multiple choices of components and constraints to be fulfilled (required speed, fuel consumption, maintenance,
...) make architecture design increasingly complex. Some optimization methods have already been used, for example,
to optimize diesel generators (number, type and load) for fuel consumption reduction. More complex architectures have
been studied by including the absence or presence of some components in a superconfiguration but in the end the number
of configurations remains limited. In this study, the ship architecture is not predetermined but is generated by a list of
components associated with constraints and rules, making architecture creation more flexible. The algorithm written for
this purpose follows the principles found in hybrid vehicle design but with adapted rules and components for naval appli-
cations. The main objective of this paper is to explain in detail the topology generation architecture algorithm rather than
to find an optimal architecture for a specific ship. From this perspective, the test cases presented are general to demonstrate
that the algorithm can be applied to various system configurations. The components are linked together based on their
input and output energy type and the architecture is generated to comply with propulsion and hotel load requirements.
Next, physical constraints are added to build realistic designs such as avoiding spurious redundant connections or defining
the maximal occurrence for each component. All the constraints and the generation algorithm are written in Prolog. Two
numerical applications are presented where the list of components covers different types of propulsion (mechanical and/or
electrical with gas turbines and/or diesel engines) along with hotel load or heating requirements.

Keywords: Synthesis design; logic programming; naval propulsion architecture.

1 INTRODUCTION

In engineering design, system architecture can
be increasingly complex to establish due to the
multiple choice of components and the number of
constraints to be fulfilled (performance, cost, en-
vironmental impact, energy savings, maintenance,
etc) [1], [2]. In this context, the design of naval
vessels is particularly critical because of their im-
portant role in transportation or military and the
need for efficiency to meet greenhouse gas reduc-
tion requirements at an affordable cost. In general,
the conception of any system relies on different
levels such as topology, size and control [3], [4].
The topology refers here to the presence/absence
of components and how they are connected to each
other. The “size level” determines the number of
each component in the architecture whereas some
optimal design points are determined at the “con-
trol level”. For a naval design, the topology can
refer to the type of propulsion (electric, mechanical
or hybrid) [5] and how the hotel load is gener-
ated (combined with the propulsion system or not)

whereas the number of diesel engines, for exam-
ple, and their load are determined at the size and
control level respectively. Note that the terminol-
ogy ”topology, size, control” is mostly employed in
hybrid vehicle design whereas ”synthesis, design,
operation” are widely used in ship design literature
[6], [7] referring to the same concepts. In this
article, we focus on the synthesis level as it is a
challenging topic that needs further development
[6].

The architecture at the synthesis level is de-
scribed as a list of components and connections
between two components. Network representation
is used for ship design in [8] to represent zone
decks (e.g hangar, propulsion plant, flight deck) and
their connectivity. The arrangement of the different
nodes is evaluated based on logical and physical
levels, representing the system connectivity and the
spatial locations, respectively. The design explo-
ration of the main users in ship architecture was also
realized in [9]. The components are similar to those
in [8] with some additional details on the propulsion

@2023 Dugast, F. et al. published by TU Delft OPEN Publishing on behalf of the authors. Licensed under a Creative Commons Attribution CC BY
license.
DOI: https://doi.org/10.59490/moses.2023.667



system : eight options available (COmbined Diesel
And Gas, COmbined Gas And Gas, Hybrid Electric
Drive or Integrated Propulsion System) with two
main propulsion engines and four secondary en-
gines. In these studies, the entire propulsion system
is considered as one object in the ship structure. In
our work, we intend to explore in more detail the
architecture of the propulsion system as it plays a
critical role in ship performance, so the next articles
presented will focus on this topic. In [10], the con-
nections in ship energy distribution systems were
determined by a combination of an adjacency ma-
trix and a genetic algorithm. The adjacency matrix
exhibits unfeasible constraints whereas the genetic
algorithm minimizes the number of connections or
maximizes system reconfigurability. The number of
possibilities for different connections configurations
is very important but the number of each component
is fixed (i.e 4 DG, 4 switchboards, etc) which can
limit design space exploration. Compared to [10],
the number of components is not fixed in [11] but
calculated using an optimization process. However
the absence/presence of components is predeter-
mined by a ”superconfiguration” and at the end the
flexibility of the topology in the architecture is rela-
tively low, relying only on the presence/absence of
HRSG units and with only one HRSG per engine.
Some extensions of this work have been published
to simulate the use of gas turbines [12] or to add
ship resistance for the optimization of ship speed
[13]. A superconfiguration is also used in [14] to
incorporate ORC, Stirling units or thermal storage
systems. Depending on the number of components
and interactions between them, the creation of such
a superconfiguration can become cumbersome or
intractable.

In this article, we propose an algorithm for the
creation of architecture topology by searching for
both the number of possible components and the
connections between them to allow the generation
to go over a large design space. The objective is
to obtain a ship architecture without the use of a
predefined superconfiguration, but with only a list
of components and generic constraints included in a
constraint-satisfactory problem. Automation of the
creation of architecture connections can be useful
to handle an important number of components and
obtaining ship architecture with all possible con-
figurations in an efficient way. Most of the articles
published on this topic have focused on hybrid ve-
hicle design [15]–[19] due to its important market.
For example, Wijknet et al. [19] used the Prolog

(logic programming) language [20] to implement
constraints for powertrain architecture generation
in order to reduce the design space. More details
regarding the architecture generation algorithms for
hybrid vehicles can be found in the review of Hu et
al. [18].

In this work, the architecture is generated with
similar methods developed for hybrid vehicle de-
sign (constraint-satisfaction problem solved in Pro-
log) but with an application on ship architecture.
The connections between components are realized
based on identical input/output energy types and
the algorithm is written to achieve both propulsion
and hotel load requirements. Other constraints are
added to obtain feasible and realistic ship architec-
tures. The algorithm for the architecture topology
generation is presented in Section 2 and two numeri-
cal examples are given in Section 3 as an illustration
of the method.

2 ARCHITECTURE TOPOLOGY GENERA-
TION ALGORITHM

The architecture is described by a list of con-
nections between blocks, where a block can be a
resource, a component or a user. In this case, a
component can be used either for energy conversion
or to gather energy from different sources.The block
database is user-defined and the list of connections
is obtained by logic programming implemented in
Prolog. In this section, the constraints and process
developed to generate the architecture will be de-
tailed. The reference example used throughout the
article is based on the list of blocks in Table 1:

full name input output
Propulsion (prop) sea /
Hotel load (hl) el.network /
Propeller (ppel) mech.en sea
Elec. motor (elm) el.network mech.en
Elec. network (eln) el.en el.network
Gas turbine (gt) fuel mech.en
Diesel engine (de) fuel mech.en
Alternator (al) mech.en el.en
Fuel tank (fuel) / fuel

Table 1: Reference block list

The input and output of a block can be an en-
ergy type or a specific interface name. In Table 1, a
block with no input is a resource (e.g Fuel tank), a
block with no output is a user (e.g Propulsion or Ho-
tel load) and the remaining blocks are components.



This list has been composed to be representative of
the components for the energy propulsion system of
a large cruise or a naval vessel with possible high
requirements on ship velocity or hotel load. With
the inputs/outputs listed in Table 1, the electricity
supply can be used for either propulsion or hotel
load needs.

2.1 Constraints implementation

The different physical or logical constraints used
to generate the architecture are :

1. Constraint 1 : Two components are linked to-
gether if they share a common input/output, see
Fig. 1

ppel
sea

mech.en

elm
mech.en el.en

ppel
sea mech.en

al
el.en mech.en

Figure 1: Constraint on connection input/output

2. Constraint 2 : From empirical knowledge, it is
assumed that the same connection cannot occur
twice in the elementary chain to avoid unrealistic
architectures. For example in Fig. 2 on top, if an
electric motor is connected to an alternator, this
alternator is not allowed to be connected to an
electric motor again.

Figure 2: Constraints on redundant connection and
shaft allocation

3. Constraint 3 : Only one mechanical component
is allowed per shaft; for example two diesel en-
gines cannot be connected to the same alternator
(see Fig. 2 at the bottom).

4. Constraint 4 : The configuration of the propellers
must exhibit a symmetry pattern, as shown in
Fig. 3.

Figure 3: Constraint on propeller arrangement

5. Constraint 5 : A limitation on the maximal num-
ber of each component is provided (see Table 2
for the blocks listed in Table 1).

Block name Max1 Max2 Max3
Propulsion 1 1 1
Hotel load 1 1 1
Propeller 4 2 4
Electrical motor 4 2 4
Electrical network 1 1 2
Gas turbine 4 2 4
Diesel engine 4 6 4
Alternator 4 6 4
Fuel tank 1 1 1

Table 2: Maximal occurrence of the reference block
list

The maximal occurrence of users (Propulsion,
Hotel load) and resources (Fuel tank) is set to
1. For the components, different cases will be
studied :

• Max1 configuration : all the occurrences are
arbitrarily set to four apart from the electrical
network, as a good compromise between the
diversity and compactness of the architecture

• Max2 configuration : the maximal occur-
rences are based on values found in literature
([13], [21])

• Max3 configuration : identical to Max1 but
with two electrical networks



2.2 Architecture construction

The generation of the architecture is divided in
five main steps :

1. Research of the elementary chains required for
each user, the definition of an elementary chain
will be given later;

2. Construction of the architecture structure based
on the maximal mutualization (i.e with the small-
est possible number of components) of all the
elementary chains;

3. Determination of the occurrence of each group
found in the architecture structure. This choice
considers constraints based on the maximal num-
ber of each component;

4. Creation of the architecture connections;
5. Creation of the diagram of nodes and edges for

visualization.

In step 3, the system of equations is generated
manually from step 2 at this point. Au automation
of this step is currently under development. For
step 5, the graph generation algorithm has not been
deeply investigated at the moment so it is sometimes
necessary to manually adjust the node locations to
avoid overlapping. Otherwise all the other steps
are done automatically by the algorithm. After this
process, the architecture is given as a list of connec-
tions between components. Each component name
is composed of the component key and a unique
number to distinguish between all the components.

2.2.1 Creation of elementary chains

An elementary chain (EC) consists of a minimal
number of connections that can bring power to a user
in the ship architecture, that is, propulsion or hotel
load, in the example given above. Starting from a
user, the connections are established based on the
input and output of each component. Components
A and B are connected if the output of A is equal
to the input of B based on Constraint 1. If several
connections are possible for the block A, each con-
nection creates a different EC. In Table 1, there is
only one input and one output for each component
but it is possible to specify several inputs or outputs
if necessary. The research on the corresponding
inputs and outputs is also restrained by Constraint
2 and the EC ends when a block without output is
encountered. The list of ECs based on the example
in Table 1 is shown in Fig. 4.

1: prop ppel elm eln al de fuel

2: prop ppel elm eln al gt fuel

3: prop ppel de fuel

4: prop prl gt fuel

5: hl eln al de fuel

6: hl eln al gt fuel

Figure 4: List of ECs for the reference block list

The first four elementary chains represent dif-
ferent ship propulsion alternatives : electric (ECs 1
and 2) or mechanical (ECs 3 and 4). For both op-
tions, diesel engines or gas turbines can be used to
deliver mechanical power. The last two elementary
chains provide an hotel load for the ship, with either
diesel engines or gas turbines.

2.2.2 Construction of the architecture struc-
ture

The structure is a combination of all the elemen-
tary chains found for the set of components. The
elementary chains have some components in com-
mon so one component can belong to several ele-
mentary chains if it does not violate any constraint,
it is called mutualization in the following of the ar-
ticle. For example, the components diesel engine
and alternator are both in the elementary chains 1
and 5, see Fig. 5.

Structure with mutualisation of elementary chains

prop1 ppel1 elm1 eln1 al1 de1 fuel1

hl1
G1

Structure without mutualisation of elementary chains

Elementary chain 1 Elementary chain 5

prop1 ppel1 elm1 eln1

al1 de1

al2 de2

fuel1

hl1 G2

G3

Figure 5: Mutualization of elementary chains in the
architecture structure

At this stage, two options are possible to rep-
resent it : a mutualization of the diesel-alternator
to combine both EC 1 and EC 5 into one group
(see G1 on top of Fig. 5) or a separation into two
groups for each elementary chain (see G2 and G3
at the bottom of Fig. 5). When this case is encoun-



tered, the mutualization is always chosen to avoid
duplicate architectures in the end. Indeed after the
creation of the architecture structure, the occurrence
of each components is decided and for example, the
architecture with one group G2 and no group G3
would be the same than with no group G2 and one
group G3. However the same configuration is only
represented by one group G1 for the structure with
mutualization which is more advantageous. For the
set of components indicated in Table 1, the architec-
ture structure is presented in Fig. 6. One can see that
for the electricity generation with the diesel engine
and the gas turbine, one alternator is dedicated to
each component due to Constraint 3. The presence
(=1) or absence (=0) of each elementary chain in
the architecture structure is summarized in Table 3.

prop1

ppel1

ppel2

ppel3

elm1 eln1

al1

al2

de1

gt1

de2

gt2

fuel1
hl1

G1

G2

G3

G4

G5

Figure 6: Architecture structure 1

EC G1 G2 G3 G4 G5
1 1 0 0 1 0
2 1 0 0 0 1
3 0 1 0 0 0
4 0 0 1 0 0
5 0 0 0 1 0
6 0 0 0 0 1

Table 3: Relationships between groups and elemen-
tary chains

2.2.3 Occurrence of the architecture structure
groups

After the creation of the architecture structure,
the next step to obtain a complete definition of the
architecture topology is to define the occurrence of
each component in the structure based on the maxi-
mal number of each component defined by the user
and on some constraints. When some components
are linked together due Constraint 3, they are linked
together in a group because their occurrence must

be the same. The different groups are represented
by red boxes in Fig. 6 and the number of occurrences
of each group Gi is indicated as NGi. This vector is
determined by the following system of equations :

NGi ∈ [0,∞], i ∈ [1, 5]

0 < NG4 +NG5 ≤ Nmax
al

0 < NG1 +NG2 +NG3 ≤ Nmax
ppel

NG2 +NG4 ≤ Nmax
de

NG3 +NG5 ≤ Nmax
gt

checkSymmetry1(NG1, NG2, NG3)

(1)

Generally the number of occurrence of one
group can be zero in order to indicate the absence
of a specific part of the architecture structure. How-
ever the users needs (propulsion and hotel load)
must always be met, that is why the constraints
NG1+NG2+NG3 > 0 and NG4+NG5 > 0 exists,
due to the propulsion and hotel load requirement
respectively. The function checkSymmetry1 verifies
Constraint 4 by counting the number of pairs of each
different components connected to the propellers.

From this point, the exhaustive search for the
NGi is performed in Prolog based on the constraints
in (1). Note that the NGi could also be found by an
optimization process if a physical model and data
are available but it is beyond the scope of this article.

2.2.4 Creation of architecture connections

Once the number of each group is determined,
there is a potential last degree of freedom in the
architecture generation regarding how two compo-
nents from different groups are connected together.
For example, if there is more than one electrical
network in the architecture and several alternators,
one could find different ways of connecting these
components, as shown in Fig. 7.

Configuration 1

eln1al1

eln2al2

Configuration 2

eln1al1

eln2al2

Configuration 3

eln1al1

eln2al2

Figure 7: Architecture connections configurations

Note that some configurations are not repre-
sented in this figure as there would be similar to
one of the three configurations already drawn by as-
suming that components 1 and 2 are identical. One
drawback of these different configurations is the re-
quirement of additional variables, that is the energy



partition between the different components if the ar-
chitecture is to be calculated with a physical model.
In addition, it can lead to identical performance at
the end depending on the energy partition. For ex-
ample, the energy gathered in eln1 and eln2 will be
the same for configurations 1 and 3 if the energy is
equally balanced in configuration 3. Therefore, the
maximal number of electrical networks has been
usually set to 1 in Table 2 and Table 6. A study
has been added about the use of two electrical net-
works if redundancy is a critical criterion in the ship
design.

3 ARCHITECTURE GENERATION RE-
SULTS

In the following numerical cases, calculations
and timings have been performed on a standard lap-
top computer.

3.1 Reference case

Based on the architecture structure presented in
Fig. 6, different architectures are shown in Fig. 8.

G1 = 0, G2 = 0, G3 = 1,
G4 = 2, G5 = 0

Architecture 1 prop1 ppel1

eln1
al1

al2

de1

de2

gt1

fuel1

hl1

Architecture 2
G1 = 1, G2 = 0, G3 = 0,
G4 = 1, G5 = 2

prop1 ppel1 elm1

eln1

al1

al2

al3

de1

gt1

gt2

fuel1

hl1

Architecture 3
G1 = 2, G2 = 0, G3 = 1,
G4 = 1, G5 = 1

prop1

ppel1

ppel2

ppel3

elm1

elm2

eln1 al1

al2

de1

gt1

gt2
fuel1

hl1

Figure 8: Architecture generation results 1

Architectures 1, 2 and 3 exhibit a pure mechan-
ical, a pure electrical and a mechanical-electrical
propulsion, respectively. The number of architec-
tures obtained and the corresponding computational
time depend on the maximal occurrence of each
components, and the results have been gathered in
Table 4.

Max1 Max2 Max3
Number of architectures 226 82 1888
Computational time (ms) 29 9 98

Table 4: Architecture results for the reference case

3.2 Case 2

The same methodology is applied to a more com-
plex set of components to evaluate the flexibility of
the algorithm. This example is referred to as Case
2 in the following section. The list of components
still refers to a standard ship architecture propulsion
but it also considers the production and circulation
of heat. The heat can be used from the engines to
produce steam, which can then be used either for
heating or as an input to a steam turbine. The list
of components for this second case along with their
inputs and outputs are given in Table 5.

full name input output
Propulsion (prop) sea /
Hotel load (hl) el.network /
Heating (heat) steam /
Propeller (ppel) shaft sea
Shaft (shaft) mech.en shaft
Elec. motor (elm) el.network mech.en
Elec. network (eln) el.en el.network
Gas turbine (gt) fuel mech.en,heat
Steam turbine (st) steam mech.en,heat
HRSG (hrsg) water,heat steam
AB (ab) fuel,water steam
Diesel engine (de) fuel mech.en,heat
Alternator (al) mech.en el.en
Fuel tank (fuel) / fuel
Water tank (water) / water

Table 5: Case 2 : block list

hl eln alt st hrsg

gt

water

fuel

Figure 9: Elementary chain example for Case 2

HRSG and AB represent the heat recovery steam
generator and auxiliary boiler, respectively. One
change to the reference case is the use of several
keywords for some components in input or output.
For example, both water and heat are required to pro-
duce steam in the HRSG component. It means that
on the elementary chains, one component can have



several connections, as seen in Fig. 9. The number
of elementary chains for this case is 18 compared
to 6 for the reference case : 10 for propulsion, 5 for
hotel load and 3 for heating. Also in this example,
multiple components can be connected to the same
shaft but the diesel engines and turbines cannot be
connected simultaneously on a drive shaft and on
a alternator. Based on the list of components and
on these rules, the architecture structure is shown in
Fig. 10.

fuel1

water1

al1 de1

al2 gt1

shaft1

de2elm1

gt2

ppel1

hl1 eln1

prop1 ab1

hrsg1

heat1
al3

st1

st2

G1

G2

G3

G4

G5

G6

G7

G8

Figure 10: Architecture structure 2

The study about the influence on the maximal
occurrence of each component is also performed
for this case, see Table 6.

Block name Max1 Max2 Max3
Propulsion 1 1 1
Hotel load 1 1 1
Heating 1 1 1
Propeller 4 2 4
Shaft 4 2 4
Elec. motor 4 2 4
Elec. network 1 1 2
Gas turbine 4 2 4
Steam turbine 4 2 4
HRSG 1 1 1
AB 1 1 1
Diesel engine 4 2 4
Alternator 4 2 4
Fuel tank 1 1 1
Water tank 1 1 1

Table 6: Maximal occurrence of the block list for
Case 2

Apart from the users (heat,p,hl) and the re-
sources (water,fuel), the components ab,hrsg and

eln have been set to 1 for simplification. At the end
of topology generation, the objective is to evaluate
the architecture performance based on its fuel con-
sumption to achieve a user requirement (specified
speed, hotel load and heating) and the speed seems
the most critical goal so the focus is on the diesel
engines and turbines configuration rather than on
the steam generation process here.

Based on the structure in Fig. 10, the follow-
ing system of equations is solved to determine the
architecture set :

NGi ∈ [0,∞], i ∈ [1, 8]

0 < NG8 < min(Nmax
ppel , N

max
shaft )

NG6 +NG4 +NG3 +NG7 > 0

0 < NG1 +NG2 +NG5 ≤ Nmax
al

NG5 +NG6 ≤ Nmax
st

NG7 ≤ Nmax
elm

NG2 +NG4 < Nmax
gt

NG1 +NG3 < Nmax
de

checkSymmetry2(NG3, NG4, NG7, NG8)

(2)

The function checkSymmetry2 ensure that ev-
ery driving shaft is connected to the same com-
ponents by checking mod(NGj , NG8) = 0 with
j = [3, 4, 6, 7]. Solving the system (2) leads to
the following results in Table 7:

Max1 Max2 Max3
Number of ar-
chitectures

11143 3011 420703

Computational
time (ms)

440 163 16710

Table 7: Architecture results for Case 2

Compared to the reference case with the Max1
configuration, there are 50 times more architectures
in Case 2 but the simulation time only increased by
a factor 15 so it demonstrates a good scalability of
the algorithm. Three examples are shown in Fig. 11.
Architecture 1 represents a mechanical propulsion
with two gas turbines on one driving shaft. Archi-
tecture 2 is also a mechanical propulsion but with
two driving shafts. In this configuration each gas
turbine is connected to one shaft only. Finally, Ar-
chitecture 3 is an electrical propulsion with two gas
turbines for the electricity generation and one elec-
tric motor for propulsion.



Architecture 1

fuel1

water1

al2 de2

al1 de1

shaft1
gt2

gt1
ppel1

hl1 eln1

prop1

ab1

hrsg1

heat1

G1 = 2,
G2 = 0,
G3 = 0,
G4 = 2,
G5 = 0,
G6 = 0,
G7 = 0,
G8 = 1

Architecture 2

f1

water1

al1 de1

al2 gt1

shaft1

shaft2 gt3

gt2ppel1

ppel2

hl1 rel1

prop1

ab1

hrsg1

heat1

G1 = 1
G2 = 1
G3 = 0
G4 = 1
G5 = 0
G6 = 0
G7 = 0
G8 = 2

Architecture 3 f1

water1

gt1

gt2

al1

al2

eln1

shaft1

elm1

ppel1

hl1

prop1
ab1

hrsg1

heat1

G1 = 0, G2 = 2, G3 = 0,
G4 = 0, G5 = 0, G6 = 0,
G7 = 1, G8 = 1

Figure 11: Architecture generation results 2

4 CONCLUSION

An architecture generation algorithm for naval
applications has been presented in this article. The
presence/absence of components and their connec-
tions with each other are determined with some con-
straints implemented in the logic programming lan-
guage Prolog. The definition of input/output key-
words for each component along with general con-
straints (prevention of redundant connections, limi-
tation of the maximal number of components) made
the algorithm easily adaptable for different configu-
rations. Next, a large number of architectures have
been found in a short computational time using con-
straint logic programming combined with architec-
ture structure construction. Two numerical exam-
ples has been provided to illustrate this method,
leading to diverse feasible architectures with differ-
ent properties (mechanical or electrical propulsion,
use of diesel engines or gas turbines among others).
One perspective of this work is to add components
for energy storage (batteries) and for a more detailed
description of the mechanical part of the architec-
ture (gearboxes and clutches). Also it is desirable to
have more generic keywords for input and output of
the components. For example, the keyword ”sea”
was chosen for the output of the propeller in the ref-
erence list in order to get a connection for the block
Propulsion but adding custom keywords for specific

connections could be difficult to handle for a larger
list of components so it will be addressed in future
research.

ACKNOWLEDGMENTS

We gratefully thank the Join Laboratory of Ma-
rine Technology (J.L.M.T) from Ecole Centrale
Nantes and Naval Group for its financial support
in this research work.

REFERENCES

[1] G. Doulgeris, T. Korakianitis, P. Pilidis, and E.
Tsoudis, “Techno-economic and environmental
risk analysis for advanced marine propulsion sys-
tems,” Applied Energy, vol. 99, pp. 1–12, 2012,
issn: 0306-2619.

[2] A. Batra, S. Sampath, T. Nikolaidis, and P. Pilidis,
“Techno-economic model-based design space ex-
ploration of combined ship propulsion systems,”
Journal of Marine Science and Technology, Feb.
2023, issn: 0948-4280.

[3] E. Silvas, T. Hofman, N. Murgovski, L. F. P. Et-
man, and M. Steinbuch, “Review of optimization
strategies for system-level design in hybrid elec-
tric vehicles,” IEEE Transactions on Vehicular
Technology, vol. 66, no. 1, pp. 57–70, 2017.

[4] Z. Qin, Y. Luo, W. Zhuang, Z. Pan, K. Li, and H.
Peng, “Simultaneous optimization of topology,
control and size for multi-mode hybrid tracked
vehicles,” Applied Energy, vol. 212, pp. 1627–
1641, 2018, issn: 0306-2619.

[5] O. B. Inal, J.-F. Charpentier, and C. Deniz, “Hy-
brid power and propulsion systems for ships: Cur-
rent status and future challenges,” Renewable and
Sustainable Energy Reviews, vol. 156, p. 111 965,
2022, issn: 1364-0321.

[6] C. A. Frangopoulos, “Developments, trends, and
challenges in optimization of ship energy sys-
tems,” Applied Sciences, vol. 10, no. 13, 2020,
issn: 2076-3417.

[7] N. L. Trivyza, A. Rentizelas, G. Theotokatos, and
E. Boulougouris, “Decision support methods for
sustainable ship energy systems: A state-of-the-
art review,” Energy, vol. 239, p. 122 288, 2022,
issn: 0360-5442.

[8] C. P. Shields, M. J. Sypniewski, and D. J. Singer,
“Characterizing general arrangements and dis-
tributed system configurations in early-stage ship
design,” Ocean Engineering, vol. 163, pp. 107–
114, 2018, issn: 0029-8018.

[9] M. A. Parsons, “Network-based naval ship dis-
tributed system design and mission effectiveness
using dynamic architecture flow optimization,”
Ph.D. dissertation, Virginia Polytechnic Institute
and State University, 2021.



[10] P. de Vos and D. Stapersma, “Automatic topol-
ogy generation for early design of on-board en-
ergy distribution systems,” Ocean Engineering,
vol. 170, pp. 55–73, 2018, issn: 0029-8018.

[11] G. N. Sakalis and C. A. Frangopoulos, “Intertem-
poral optimization of synthesis, design and oper-
ation of integrated energy systems of ships: Gen-
eral method and application on a system with
diesel main engines,” Applied Energy, vol. 226,
pp. 991–1008, 2018, issn: 0306-2619.

[12] G. N. Sakalis, G. J. Tzortzis, and C. A. Fran-
gopoulos, “Intertemporal static and dynamic op-
timization of synthesis, design, and operation of
integrated energy systems of ships,” Energies,
vol. 12, no. 5, 2019, issn: 1996-1073.

[13] G. N. Sakalis, G. J. Tzortzis, and C. A. Fran-
gopoulos, “Synthesis, design and operation opti-
mization of a combined cycle integrated energy
system including optimization of the seasonal
speed of a vlcc,” Proceedings of the Institution of
Mechanical Engineers, Part M: Journal of Engi-
neering for the Maritime Environment, vol. 235,
no. 1, pp. 41–67, 2021.

[14] P. Gnes, P. Pinamonti, and M. Reini, “Bi-level
optimization of the energy recovery system from
internal combustion engines of a cruise ship,” Ap-
plied Sciences, vol. 10, no. 19, 2020, issn: 2076-
3417.

[15] E. Silvas, T. Hofman, A. Serebrenik, and M.
Steinbuch, “Functional and cost-based auto-
matic generator for hybrid vehicles topolo-

gies,” IEEE/ASME Transactions on Mechatron-
ics, vol. 20, no. 4, pp. 1561–1572, 2015.

[16] X. Zhang, H. Peng, J. Sun, and S. Li, “Auto-
mated modeling and mode screening for exhaus-
tive search of double-planetary-gear power split
hybrid powertrains,” Dynamic Systems and Con-
trol Conference, vol. 1, 2014.

[17] C. Song, J. Hwang, and D. Kum, “Efficient design
space exploration of multi-mode, two-planetary-
gear, power-split hybrid electric powertrains via
virtual levers,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 4, pp. 3498–
3509, 2022.

[18] X. Hu, J. Han, X. Tang, and X. Lin, “Powertrain
design and control in electrified vehicles: A crit-
ical review,” IEEE Transactions on Transporta-
tion Electrification, vol. 7, no. 3, pp. 1990–2009,
2021.

[19] J. Wijkniet and T. Hofman, “Modified compu-
tational design synthesis using simulation-based
evaluation and constraint consistency for vehi-
cle powertrain systems,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 9, pp. 8065–
8076, 2018.

[20] I. Bratko, Prolog Programming for Artifi-
cial Intelligence (International Computer Sci-
ence Series). Addison-Wesley, 2011, isbn:
9780321417466.

[21] P. Marty, “Étude de l’efficacité énergétique des
navires : développement et application d’une
méthode d’analyse,” Ph.D. dissertation, Ecole
Centrale de Nantes (ECN), 2014.


	Introduction
	Architecture topology generation algorithm
	Constraints implementation
	Architecture construction
	Creation of elementary chains
	Construction of the architecture structure
	Occurrence of the architecture structure groups
	Creation of architecture connections


	Architecture generation results
	Reference case
	Case 2

	Conclusion

