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Abstract
This paper proposes a grey-box modelling approach to predict marine biofouling growth and its effects on ship performance.
The approach combines empirical or experimental-based white-box models with data-driven black-box models. First, a
white-box model is built to predict ship resistance considering a bare hull. This prediction is based on calm water resistance,
wind, waves, and temperature differences. Subsequently, marine biofouling growth is predicted using an experimental
model that estimates the level of roughness on the ship hull. Finally, a deep extreme learning machine is used as a black-box
model, employing a feedforward neural network technique. To test the approach, a superyacht case study was selected as
a category of vessel heavily exposed to fouling. The study used a 2-year dataset obtained through a collaboration with
Feadship. Results showed that the black-box approach outperforms the white-box approach in predictive capabilities.
However, when the knowledge encapsulated in the white-box model is included in the grey-box approach, the model shows
the highest prediction accuracy achieved by leveraging less historical data. This study demonstrates the potential of the
proposed grey-box approach to accurately predict marine biofouling growth and its effects on ship performance, which
can benefit ship operators and designers in improving operational efficiency and reducing maintenance costs.

Keywords: Marine Biofouling; Power Increase Prediction; Yachts; Deep Extreme Learning Machine; Grey-box Models.

1 INTRODUCTION

Marine biofouling, a phenomenon of the ac-
cumulation of micro and macro-organisms on im-
mersed surfaces, has a strong influence on the per-
formance of vessels by increasing surface rough-
ness and consequently increasing fuel consumption
and emissions of greenhouse gases [1]. Biofouling
creates roughness on the hull and propeller which
leads to additional frictional resistance and loss of
propeller efficiency, also known as additional sea
margin. Research has shown that fuel costs can be
increased up to 35% when the ship hull is heav-
ily fouled [2]. Additionally, biofouling threatens
ecological balance by transferring invasive aquatic
species in waters where they have little to no natu-
ral enemies [3]. A trade-off is often made for ship
owners and operators between the additional cost
of maintenance to keep the ship clean compared
to the increase in operational cost of sailing with
a fouled hull. The current practice is that the hull
and propeller are cleaned when other maintenance is
scheduled, which does not guarantee optimal clean-
ing schedules [4].

Accurate prediction of biofouling may lead to
significant benefits for ship design, maintenance
and operations. For ship design, the added sea
margin is the result of both added hull resistance
and decreased propeller efficiency and can be taken
into account either within hydrodynamic analysis or
within the calculation of the powering of the vessel.
Additionally, for ship’s maintenance and operation,
accurate marine biofouling prediction may lead to
optimal maintenance and cleaning schedules.

Marine biofouling is a complex phenomenon be-
cause it depends on various variables such as sea-
water surface temperature, salinity, acidity, speed
of water flow, and light intensity [1]. There is cur-
rently no accurate and universal method for predict-
ing biofouling and associated added sea margin [5].
The standard approach for estimating the speed loss
is by applying ISO 19030 (ISO 19030-2, 2016),
which prescribes methods for measuring changes
in hull and propeller performance to give an indi-
cation for hull and propeller efficiency. However,
this approach lacks a clear method on how to pre-
dict added sea margin due to fouling for ship design.
As such, only low-fidelity analytical expressions ex-
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ist recommended by the Propulsion Committee of
the 28th ITTC, having an average error of around
20% [6].

State-of-the-art methods for predicting the addi-
tional sea margin and the effect of biofouling on a
propeller’s performance are based on first-principle
experimental based models (e.g., [7]), computa-
tional fluid dynamics (CFD) (e.g., [8]–[10], and
data-driven modelling [11]. The main strengths of
first-principle experimental based models are their
interpretability and low computational cost to per-
form evaluations. Such models can give a good in-
sight into the relevant physics, such as those related
to added frictional resistance of a flat plate [12].
However, conventional models cannot represent all
fouling situations, and models are often limited to
static growth of fouling [13]. On the other hand,
CFD can provide accurate predictions of the addi-
tional sea margin. However, at a high computational
cost, thus limiting results to the chosen ship hull.
Authors of [12], [14] have shown promising results
with only a few percentage deviation between pre-
dicted resistance and power compared to verified
results.

Finally, data-driven black-box models are based
on Machine Learning (ML) techniques and are able
to address complex problems and improve the accu-
racy of the predictions. These data-driven models
show great potential to predict added sea margin
by giving new insights and accounting for all vari-
ables with limited simplifications [11]. However,
data-driven models typically suffer from a lack of
interpretability. Authors of [11] developed a data
driven digital twin to estimate the speed loss due
to marine biofouling, which showed significant im-
provement compared to ISO 19030.

Authors of [15] investigated and compared the
applicability of both Artificial Neural Networks
(ANNs) and Gaussian processes (GPs) to the pre-
diction of fuel efficiency in ship propulsion by using
sensors’ data. White-box modelling trends were ap-
plied to account for fouling. The authors concluded
that the ANN performed slightly better than the
GPs. Additionally, [11] developed a data-driven
digital twin using data from on-board sensors to
estimate the speed loss due to marine biofouling.
The method used was Deep Extreme Learning Ma-
chine (DELM), which uses a feedforward neural
network. This overcomes the problems resulting
from the backward-propagation training algorithm
with potentially low convergence rates, critical tun-
ing of optimization parameters, and presence of lo-
cal minima that call for multi-start and re-training

strategies [16].
To the best of the authors’ knowledge, the appli-

cability of a grey-box modelling approach, which
combines a white- and a black-box model, for the
prediction of marine biofouling has not yet been
explored. The authors thus propose a grey-box ap-
proach to predict the power increase for ships due
to marine biofouling. The white-box model is used
for the estimation of the required power in a fouled
situation, dependent on time and the ship environ-
mental conditions. The collected sensors’ data and
the white-box power prediction are used as inputs
for the black-box model based on DELM.

To test the approach, a superyacht case study
was selected because superyachts are particularly
heavily exposed to marine biofouling due to their
operational profile, which includes longer periods
of being stationary compared to commercial ves-
sels, often staying in ports or being anchored for
long periods of time [17]. The operational profile
of each superyacht can be very different and change
over time. With an increasing and diversifying yacht
fleet, understanding biofouling and its influence on
yacht performance is important to minimizing their
environmental footprint.

For this research, the collected data provided
by Feadship came from both on-board sensors and
company’s databases. The available data contains
ship design specifications, various captain logs,
maintenance, engine, motion, voyage report, and
auxiliary power data. Here the voyage report data
contains onboard feedback monitoring of the fol-
lowing parameters: ship speed and heading, wave
conditions (height, period, and directions), wind
conditions (speed and direction), and corresponding
measured operational profiles from Feadship fleet.

2 PHYSICS-BASED MODEL FOR BIO-
FOULING ESTIMATION

This section explains the physical model for pre-
dicting the fouled ship power. This contains both
a short discussion on the predicted smooth ship re-
sistance in Section 2.1, together with further elab-
oration on the prediction of fouling roughness in
Section 2.2, while the fouled ship power prediction
is presented in Section 2.3.

2.1 Smooth Ship Resistance

The ship resistance is predicted based on calm
water, wind, and wave resistance together with dif-
ferences due to temperature. The method proposed
is in line with recommendations given by the [18].



As a basis for the resistance prediction in any given
condition, the calm water resistance is computed
based on the ship’s speed. The speed over water
is used, rather than the speed over ground as mea-
sured with AIS. The relative wind speed is based on
the ship’s speed, wind speed, and wind direction.
The wind resistance coefficient, area of maximum
transverse section exposed to wind, air density, and
relative wind speed have been used to determine the
added resistance due to wind in accordance with the
methodology reported in [18].

To determine the added wave resistance, first
the added thrust in waves is found based on ship
speed, heading, length, displacement, and water-
plane coefficient of the foreship [19]. With the
added thrust in waves known, the added wave re-
sistance can be found. An actual sea state is nor-
mally described by a wave spectrum such as the
one proposed by Pierson-Moskowitz [20]. To al-
low for flexible spectrum shapes, the spectrum is
multiplied with the peak enhancement factor, using
the JONSWAP spectrum [21]. Next, the directional
wave spectrum is found by multiplying the JON-
SWAP spectrum with the angular distribution func-
tion. Last, a correction accounts for the difference
in resistance due to change in water temperature and
difference in ship draft due to salinity. With this ap-
proach, a change of frictional resistance coefficient
and change in resistance due to ship displacement
can be found [18], [22].

2.2 Fouling roughness

For the prediction of biofouling growth, the
model proposed by Uzun, Demirel, Coraddu, et al.
was used [13]. The model makes use of two main
principles: i) a fouling rating and ii) the fouling
surface coverage for calcareous fouling. The foul-
ing rating forms a basis for the model, combining
slime, non-shells organisms, and calcareous fouling
into one overall fouling rating. Together, this gives
a good indication of the level of fouling present on
the ship and its resulting roughness. However, when
calcareous fouling is present on the ship, its level of
surface coverage can be a dominant factor. Due
to this, the authors introduced the calcareous sur-
face coverage as an additional parameter. For this
reason, a different function is used for the biofoul-
ing growth when the calcareous surface coverage
increases above 5%.

With analyses limited to the given regions,
the authors suggest interpolating and extrapolating
found patterns based on sea surface temperature as
the dominant fouling parameter. With the help of

the proposed functions, biofouling growth trends
for the Equator and Mediterranean can be inter- and
extrapolated for all locations, to obtain the rough-
ness thickness present on the ship. In this case, the
roughness is modelled by using the equivalent sand
roughness height (ks). For a full explanation of the
model, see [13].

2.3 Fouled Ship Power Prediction

The effects of the obtained roughness on the hull
and propeller surface are determined next. First,
the added frictional resistance coefficient (∆CF ) as
a result of this roughness can be calculated. This is
done based on the equivalent sand roughness height,
the ship waterline length (LWL), and Reynolds num-
ber (Re) with the function of [23] (Equation 1).

∆CF = 0.044

[(
ks

LWL

) 1
3

− 10 ·Re−
1
3

]
+0.000125

(1)
Next, the added frictional resistance due to bio-

fouling is found via Equation 2.

∆RF =
1

2
ρS∆CFV

2
S (2)

The approach by [7] was employed to simulate
the impacts of biofouling on the ship propeller. With
this model, the change in thrust and torque coeffi-
cient due to biofouling is computed, and a new open
water efficiency is found. This is done by find-
ing the change in drag and lift for both coefficients
(see [7] for the full method). However, it can be
seen that the changes in the coefficients are a func-
tion of the propeller characteristics: propeller pitch,
diameter, number of blades, chord length, and max-
imum thickness, together with fouling roughness. It
is important to mention that both chord length and
maximum thickness are taken at a radius of 0.75.
Next, the drag and lift coefficient can be determined
for the propeller in smooth and rough condition.
Here, the smooth frictional coefficient can be found
by either using Schroenherrs friction line (in Equa-
tion 3) or with the ITTC-1957 skin friction line
(Equation 4), based on the method of the [24]. For
the rough condition, the added frictional resistance
coefficient is found using Equation 1, where the
plate length (LWL) is taken as the chord length (c)
at radius 0.75R.

0.242√
CFS

= log(Re · CFS) (3)

CFS =
0.075

(log(Re)− 2)2
(4)



With changes found, the open water efficiency for
a fouled propeller can be found with the propeller
thrust and torque coefficient for rough conditions.

Last, it can be noted that while marine biofouling
mainly has an influence on the frictional resistance
of the ship, it also has some effects on the wave re-
sistance. One of the key findings by [25] is the de-
creasing wave resistance with an increasing surface
roughness. This trend was later also found and con-
firmed by others [10], [26], [27]. It is important to
mention that these findings go against the traditional
view that wave-making resistance is not affected by
hull-roughness [28]. The author proposes to use
changes in wave coefficients based on [26], and in-
terpolate and extrapolate these between researched
speeds and equivalent sand roughness heights.

With a resistance prediction for smooth ship out-
lined and fouling growth and effects predicted, next
a fouled ship power prediction can be made. First,
the total resistance (RT ) can be found based on the
calm water resistance (Rcalm), the air drag resis-
tance (RAA), the wave resistance including changes
due to biofouling (RW + ∆RW ), friction changes
due to temperature (∆R∆T ), changes due to dis-
placement (R∆D), and added frictional resistance
due to biofouling (∆RF ), as shown in Equation 5

RT = Rcalm +RAA +RW +∆RW

+∆R∆T +∆R∆D +∆RF (5)

Next, the fouled brake power (PBR) can be pre-
dicted, with the help of the found total resistance
for the fouled situation together with ship speed,
hull efficiency (ηH ), rough open water efficiency
(ηOR), relative rotative efficiency (ηR), propulsive
efficiency (ηD), gearbox efficiency (ηGB) and shaft
efficiency (ηS) as shown in Equations 6 and 7.

PE = RTVS (6)

PBR =
PE

ηH · ηOR · ηR · ηGB · ηS
(7)

3 GREY-BOX MODEL APPROACH

In this section, a comprehensive description of
the grey-box model applied for predicting marine
biofouling growth and its effects on ship perfor-
mance is provided. First, the underlying principles
of DELM are detailed in Section 3.1, while the char-
acteristics and parameters of the model’s input are
described in Section 3.2.

3.1 Deep Extreme Learning Machine

The task of predicting marine biofouling growth
and its subsequent impact on ship performance,
based on the data delineated in Section 1, can
be mapped into the classical ML regression prob-
lem [29].

To better comprehend the aforementioned prob-
lem, let’s recall the fundamental concepts of the
ML regression problem. Let us define X ⊆ Rd as
the input space composed of d distinct features, and
Y ⊆ R as the corresponding output space.

Consider a sequence of n ∈ N∗ distinct sam-
ples, symbolized asDn = {(x1, y1), . . . , (xn, yn)},
where each xi ∈ X and yi ∈ Y for all i ∈ 1, · · · , n.
These samples are independently drawn from an
undefined probability distribution µ encompassing
X × Y . Within this scenario, we opt for a function
(or model) f : X → Y from a set F of potential
models. An algorithm, characterized by its hyper-
parameters H and denoted as AH : Dn × F → f ,
is employed to choose a model from the suite of
possible choices, guided by the available dataset.

The efficacy of the function f in modeling the
unobserved system S is evaluated by employing a
predetermined loss function, ℓ : Y × Y → [0,∞).
Given that the issue at hand is one of regres-
sion, the most fitting choice for the loss function
is the squared loss, expressed as ℓ(f(x), y) =
[f(x) − y]2 [30]. Consequently, we can define the
true error, or the generalization error, of f as

L(f) = E(x,y)ℓ(f(x, y)). (8)

Since L(f) cannot be computed, its empirical esti-
mator (the empirical error) can be derived as follow

L̂(f) =
1

n

n∑
i=1

ℓ(f(xi, yi)). (9)

When it comes to the selection of an algorithm,
this paper capitalizes on the DELM. Various al-
gorithms for tackling regression problems abound
in the existing literature [29]. In particular, three
principal categories of methods have demonstrated
practical effectiveness [29], [31], [32]: kernel meth-
ods, ensemble methods, and neural networks. In
our study, we leverage insights from [11] to adopt
a specific subset of neural networks, namely, the
DELM [33]. DELM represents an evolution from
the Shallow Extreme Learning Machine (SELM),
developed for single-hidden-layer feedforward neu-
ral networks, with the aim of creating an algorithm
capable of not only learning new features from avail-
able raw variables but also building a robust regres-
sion model.



SELM were originally developed for the single-
hidden-layer feedforward neural networks

f(x) =
h∑

i=1

wigi(x). (10)

Here, gi : Rd → R, i ∈ 1, · · · , h denotes the out-
put from the hidden layer corresponding to the input
sample x ∈ Rd, while w ∈ Rh represents the out-
put weight vector linking the hidden layer to the
output layer.

The input layer, equipped with d neurons, com-
municates with the hidden layer (which has h neu-
rons) via a set of weightsW ∈ Rh×d and a nonlinear
activation function. For this study, we selected the
tanh function as the activation function, as sug-
gested in the seminal work of [33]. It is worth
noting, however, that the choice of other activation
functions, such as the sigmoid function, doesn’t sig-
nificantly impact the final performance, φ : R → R.
Consequently, the response of the i-th hidden neu-
ron to an input stimulus x is given by:

gi(x) = φ

Wi,0 +
d∑

j=1

Wi,jxj

 . (11)

In SELM, the parametersW are randomly assigned.
A weight vector, w ∈ Rh, devoid of any bias,
bridges the hidden neurons to the output neuron.
The comprehensive output function of the network
is given by:

f(x)=
h∑

i=1

wiφ

Wi,0+
d∑

j=1

Wi,jxj

 . (12)

For practicality, we define an activation matrix,
A ∈ Rn×h, in which the element Ai,j signifies the
activation value of the j-th hidden neuron for the
i-th input pattern. Consequently, the A matrix takes
the form:

A =

[
φ1(x1) ··· φh(x1)

... . . . ...
φ1(xn) ··· φh(xn)

]
. (13)

In SELM models, the weights W are set ran-
domly and remain unmodified, leaving the quantity
w in Eq.(12) as the sole degree of freedom. This
circumstance simplifies the training to a direct Reg-
ularized Least Squares (RLS) problem [34]:

w∗ = argmin
w

∥Aw − y∥2 + λ ∥w∥2 , (14)

where, λ ∈ [0,∞) signifies a hyperparameter that
requires tuning during the Model Selection (MS)
phase [35]. This tuning process establishes a bal-
ance between model complexity and accuracy, mea-
sured by the square loss and the L2 regularizer re-
spectively. As a result, the optimal weight vector,
denoted as w∗, can be determined as follows:

w∗ = (ATA+ λI)+ATy, (15)

where I ∈ Rh×h denotes an identity matrix, and
(·)+ refers to the Moore-Penrose matrix pseudoin-
verse. It’s crucial to note that h, the count of hidden
neurons, is another hyperparameter requiring fine-
tuning, based on the specific problem under con-
sideration. Additionally, other regularizers, such as
sparse regularizers, can be employed [36].

Given its shallow architecture, SELM might not
offer efficient feature learning, even when h is large.
As feature learning frequently enhances the final
model’s accuracy, multi-layer (deep) solutions are
often required. In this context, [37] develops multi-
layer learning architectures using ELM-based au-
toencoder (AE) as the fundamental building block,
leading to the creation of DELM. In a DELM, each
layer i out of the l layers — each composed of
hi∈1,···,l neurons — strives to reconstruct the input
data. The outputs from the previous layer are then
utilized as inputs for the next. Consequently, instead
of yielding a single output, a sequence of outputs x̂j
is obtained, with j ∈ 1, · · ·, d, such that:

x̂j =
h∑

i=1

wi,jφ

Wi,0 +
d∑

j=1

Wi,jxj

 (16)

x̂j =
h∑

i=1

wi,jφi(x), (17)

where wi,j with i ∈ {1, · · ·, h} are found with the
same approach of SELM.

In the DELM model, before the supervised reg-
ularized least mean square optimization occurs, the
encoded outputs are directly channeled to the last
layer for decision-making, bypassing any random
feature mapping. Unlike SELM, DELM doesn’t
necessitate fine-tuning for the entire system, en-
abling much faster training speed than traditional
backpropagation-based Deep Learning. Training a
DELM is essentially equivalent to training multiple
SELMs. Therefore, the advantages of a deep archi-
tecture can be harnessed using only the optimization
tools designed for the SELM. It’s worth noting that
the DELM model encompasses numerous hyper-
parameters: the number of layers, the number of
nodes per layer, and the regularization coefficient,



expressed as H = {l, h1, · · · , hl, λ}. These param-
eters must be carefully fine-tuned to minimize the
final model’s generalization error. Accordingly, a
model selection phase consistent with [38] has been
conducted in this study.

We utilize the nonparametric Bootstrap approach
for model selection, a frequently implemented
method within the resampling method family. The
original dataset Dn has been resampled once or sev-
eral times (nr), either with or without replacement,
to create two independent datasets — the training set
Lr
nl

and the validation set Vr
nv

, respectively. Here,
r ∈ {1, · · · , nr} and the two sets are mutually ex-
clusive and collectively exhaustive: Lr

nl
∩Vr

nv
= ⊘,

Lr
nl

∪ Vr
nv

= Dn. Following this, to perform the
model selection phase and identify the optimal com-
bination of hyperparameters H from a set of pos-
sible ones SH = {H1,H2, · · · } for the algorithm
AH, we apply the subsequent procedure:

H∗ : min
H∈SH

1

nr

nr∑
r=1

1

nv

∑
(x,y)∈Vr

nv

ℓ(AH,Lr
nl
(x), y),

(18)

where AH,Lr
nl

is a model built with the algorithm
AH trained with Lr

nl
. Since the data in Lr

nl
is in-

dependent of that in Vr
nv

, the optimized hyperpa-
rameters H∗ should achieve low error rates on a
dataset distinct from the one used for training. It’s
important to note that the nonparametric Bootstrap
approach differs from other resampling methods in
two key aspects: firstly, nl = n and secondly, Lr

nl
is

sampled with replacement from Dn. We also note
that Vrnv is the complement of Lr

nl
within Dn, that

is, Vrnv = Dn \ Lrnl.

3.2 Model Input

Using the selected grey-box approach, all avail-
able data, as previously described, has been incor-
porated into the grey-box model, along with the
estimate found from the white-box prediction, fol-
lowing the serial grey-box configuration of [39]. In
the white-box biofouling growth approach, the foul-
ing at each anchorage was predicted in conjunction
with its corresponding average sea surface temper-
ature, therefore, for the grey-box model, the sea
surface temperature is used (see Fig 1). Note that
sensor data for the sea surface temperature was not
available for the full investigated period, when this
was the case an additional dataset with the ships
location and time was employed for an estimate of
this parameter. The white-box approach contains
both the total anchorage days since cleaning that

are processed per anchorage and the sailing days
since cleaning, and the biofouling growth model
does not have a prediction of how this changes dur-
ing sailing, as the model is based only on static
tests. Nonetheless, this parameter is entered into
the grey-box model so that possible fouling changes
during sailing can be found. Last, the delivered
brake power by the ship is taken as the model output
at different speeds (Fig 2). An overview of the input
and output parameters is shown in Table 1.

Figure 1: Sea surface temperature over time.

Figure 2: Ship speed vs power.



Table 1: Input and output for grey-box model.

Input Unit
White-box prediction [kW]
Ship speed [knots]
Ship direction [°]
Wave height [m]
Wave direction [°]
Wave period [s]
Wind speed [m/s]
Wind direction [°]
Average sea surface temperature [°C]
Anchorage days since clean ship [days]
Sailing days since clean ship [days]
Average ship speed [knots]
Mean roll [°]
Mean pitch [°]
Roll deviation [°/s]
Pitch deviation [°/s]
Output Unit
Fouled ship power [kW]

Once input and output have been defined, the
data still requires preparation for use in the grey-box
model. To achieve this, the data was filtered using
Chauvenet’s criterion [40]. Moreover, a filtering
technique that incorporates engineering knowledge
to curate the data has been applied. The data selec-
tion for these predictions was determined by specific
criteria related to ship speed and wind conditions.
For ship speed, we incorporated all data exceeding
10 knots. Meanwhile, for wind speed, we restricted
the dataset to conditions below 8 m/s to exclude
instances of severe weather, which render ship per-
formance difficult to predict. In addition to these
factors, changes in ship speed were also considered.
Significant speed fluctuations in a short period of
time typically indicate that the ship is either accel-
erating or decelerating. As the current methodology
does not account for these motions, they could po-
tentially lead to inaccurate power predictions and
adversely affect the quality of analysis data. There-
fore, with data sampling every three minutes, we
chose to analyze only those ship speeds where the
preceding speed was within a one-knot range. This
approach led to a total number of 34,448 samples.
This approach was adopted based on the study cited
in [11].

4 RESULTS AND DISCUSSION

In this section, we will evaluate the performance
of the proposed grey-box approach utilizing the val-
idation techniques outlined in Section 3. First,
we examine the accuracy of the white-box model,

detailed in Section 2, that forms the basis of the
grey-box construction. We present its performance
through both quantitative and qualitative metrics.
The dataset was filtered to focus on a fixed speed
of 13.5 knots, one of the most frequently attained
speeds, using for the overall prediction accuracy the
mean absolute percentage error (MAPE). To give
better insight into which extent this number is true,
a 95% confidence level interval has been applied.
Upon inspection of this filtered data, a noticeable
drift in power increase during operation can be dis-
cerned, as illustrated in Fig 3. Moreover, after clean-
ing periods in early 2020, we observe a decrement in
power, reverting back to lower values. This obser-
vation substantiates the presumption that the visible
power increase is attributable to marine biofouling,
rather than, for instance, the loss of performces of
other propulsion system components.

Figure 3: Power usage over time for 13.5 knots.

The white-box model’s predictions showcased
an accuracy of 85%, as shown in Figure 4. This
model, grounded in established physical laws and
principles, possesses the advantage of being inter-
pretable and reliable under conditions akin to the
ones it was formulated for. However, our analysis
revealed a consistent trend of underestimation. Even
in scenarios shortly following cleaning procedures,
the white-box model’s predictions fell short of the
actual measurements. This systematic bias suggests
that certain aspects of the resistance are not being
fully accounted for within this model. The degree of
this bias is expected to vary across different vessels,
underscoring the inherent challenge in formulating
a general model suitable for all ship types. There-
fore, a pertinent line of inquiry is to determine the
extent to which the white-box method can capture
the intricacies of ship power prediction. In addition,
it’s worth investigating whether the introduction of
additional parameters or refinement of existing ones



can address this model’s underestimation bias.
Moving onto the black-box model, this approach

exhibited an accuracy of 90%, as shown in Fig 5.
This model has a similar input as the grey-box model
as illustrated in Table 1, except for the white-box pre-
diction as an input parameter. Black-box models,
being purely data-driven, tend to be highly flexi-
ble and can potentially model complex, nonlinear
relationships that the white-box models may not
adequately capture. However, they are suscepti-
ble to high variance error, a problem often asso-
ciated with overfitting. Thus, although it delivers
a marginally improved accuracy compared to the
white-box model, it’s crucial to evaluate its perfor-
mance over a wide range of operational conditions
and for different ship types to ensure robustness.

Lastly, the grey-box model, a fusion of the
principles-based approach of the white-box model
and the empirical learning of the black-box model,
accomplished the highest prediction accuracy of al-
most 92%, as shown in Figure 6. By integrating
known physical relationships and data-driven ele-
ments, the grey-box model can effectively strike a
balance between bias and variance, consequently
leading to a superior predictive performance. No-
tably, another crucial advantage of the grey-box
model lies in its efficiency with respect to data
requirements. While data-driven models, like the
black-box model, typically necessitate large quanti-
ties of data to attain high accuracy, the incorpora-
tion of known physical laws in the grey-box model
allows it to achieve comparable, if not superior, per-
formance levels with significantly less data, as it
has prior knowledge/assumptions about the prob-
lem domain. This trait makes the grey-box model
particularly attractive in scenarios where data col-
lection may be expensive, time-consuming, or oth-
erwise challenging. However, caution is advised to
avoid over-dependence on the data-driven compo-
nent in the grey-box model, as this could veer the
model towards overfitting. Thus, while leveraging
the flexibility offered by the data-driven component,
it is critical to continually reference and respect the
governing physical principles to maintain the ro-
bustness and generalizability of the model.

A comparative analysis of the models, as sum-
marized in Table 2, clearly indicates a hierarchy
in performance over the test dataset: Grey-Box >
Black-Box > White-Box. Yet, it’s important to note
that each model’s performance should not be evalu-
ated merely on accuracy, but also on bias-variance
tradeoff, interpretability, and applicability to diverse
ship types and operational conditions.

Table 2: Performance comparison

Model MAPE
White-Box 14.7% ± 0.3%
Black-Box 10.2% ± 0.2%
Grey-Box 8.6% ± 0.2%

Figure 4: Physics-based model predicted and mea-
sured power.

Figure 5: Black-box predicted and measured power.

Figure 6: Grey-box predicted and measured power.



In order to assess the models’ predictive perfor-
mance beyond the confines of the data used for train-
ing, validation, and test, a preliminary evaluation
was conducted. Fig 7 presents an application of the
model over an extended period. To facilitate this, all
parameters, with the exception of anchorage days,
sailing days, and the predictions from the white-
box model, were assumed to be at their mean value.
The yacht’s activity, characterized by sailing 16%
of the time, was used to establish the correlation be-
tween anchorage and sailing days. Fig 7 illustrates
the mean predictions for the black-box and grey-box
models with a line, while the prediction area repre-
sents the interval of confidence of the results over
30 repetitions. These repetitions are performed, as
deep learning models are stochastic models, mak-
ing use of randomness while being fit on the data.
Employing this approach provides insights into the
areas where the predictions are mostly congruent
and the regions that exhibit significant inter-model
variance in predictions. It highlights models abil-
ity to capture the inherent uncertainties associated
with real-world conditions, thereby lending confi-
dence to their utility in practical scenarios. Last,
the trained anchorage days range is also highlighted
in the figure, as it shows a more clear division be-
tween the interpolation and extrapolation capacities
of the models employed.

Figure 7: Comparison between white-, black-, and
grey-box prediction for longer period of time.

Fig 7 illustrates that the black-box and grey-
box models display comparable trends within the
range of trained data, whereas the white-box model
consistently generates lower predictions. However,
upon extrapolating the data-driven models, a sig-

nificant degree of variance and potential inaccuracy
in their results becomes evident. Such observa-
tions align with the common understanding that
data-driven models often grapple with challenges
in the context of extrapolation. The exhibited large
variance and outcomes underscore the limitations
of such models when applied beyond the bounds of
their training data. This highlights the limitations
for application of the proposed models, particularly
in scenarios when extreme extrapolation is neces-
sary.

Marine fouling growth encompasses various
stages, such as the formation of slime, the growth
of non-shell organisms, and the occurrence of cal-
careous fouling. However, given that our model
was solely trained on data from the initial year
of fouling growth, it remains unfamiliar with the
settlement of barnacles and the onset of calcare-
ous fouling. This unfamiliarity becomes evident
when the white-box model indicates a significant
power increase at more advanced stages of fouling.
While the grey-box model attempts to harness the
strengths of both white- and black-box models, its
effectiveness seems to primarily lie in improving
upon the black-box model predictions. Conversely,
the white-box model still appears to have the upper
hand in extrapolation and in providing transparent
and interpretable insights into the fouling process.
This underscores the need for a more comprehensive
training dataset that spans across the various stages
of marine fouling, thereby improving the predictive
capacity of the model for long-term and advanced
fouling situations.

The white-box model, as employed in this study,
is indeed a practical solution that assimilates some
of the most relevant research pertinent to this field of
application. However, it’s critical to underline that
this model, despite its theoretical robustness, man-
ifests certain limitations in terms of accuracy. Its
predictive performance is low, and the model also
demonstrates a higher level of variance, introducing
a degree of uncertainty into the predictions. This
model also exhibits substantial bias error, which
may significantly skew the predictions and result in
systematic deviations from the actual data. These
aspects, coupled with the limitations in addressing
complex, multi-staged fouling processes, call for re-
finement and enhancement of the white-box model
to ensure it’s aptly equipped to handle the intricacies
of this application.

This observed scatter can be attributed primar-
ily to the inconsistencies between the ship’s power,
which tends to remain stable, and the ship’s speed,



which fluctuates. This disparity introduces inaccu-
racies across the dataset, despite the overall trend
displaying promising prediction potential. Another
contributing factor to the data scatter is the deriva-
tion process for the ship’s speed. Initially extracted
from the Automatic Identification System (AIS),
the speed was then computed over water using pre-
dicted currents. However, it’s important to acknowl-
edge that directly measuring the speed over wa-
ter could potentially improve prediction accuracy.
Even slight variations in speed can significantly im-
pact the predicted calm water resistance and the
power required, underscoring the need for precise
speed measurements in enhancing the predictive ac-
curacy of these models.

5 CONCLUSIONS

The research outlined in this paper introduces a
grey-box modeling strategy aimed at predicting ma-
rine biofouling growth and its subsequent impact
on ship performance. This approach synergistically
integrates the empirical insights of white-box mod-
els and the data-intensive capabilities of black-box
models. Initially, a white-box model is presented to
predict ship resistance, considering variables such
as calm water resistance, wind, waves, and tem-
perature discrepancies. The prediction of marine
biofouling growth is subsequently managed via an
experimental model designed to estimate the rough-
ness level of the ship hull. Lastly, a Deep Extreme
Learning Machine is utilized as a black-box model,
which incorporates a feedforward neural network
technique.

With the proposed approach certain limitations
inherent in the white-box model can be partially
mitigated through the application of trained data-
driven models. These models possess the capacity
to understand how available input can be utilized
to enhance the predictive accuracy of the white-box
models.

Moreover, in situations where a fleet of simi-
lar ships is available, the correlations discerned by
the grey-box model can be leveraged to refine the
predictions of full white-box models for other ships.
This can be achieved even in the absence of trainable
data. This highlights the potential of the grey-box
model as a powerful predictive tool that can effi-
ciently use available information to enhance predic-
tion accuracy, thus providing a robust method that
can be applied across multiple ships, irrespective of
the available data for each vessel.

To validate the proposed approach, a superyacht

case study was chosen as the testing ground due to
the category’s high susceptibility to fouling. This
involved the analysis of a 2-year dataset acquired
through a partnership with Feadship.

The results presented highlighted that while the
black-box model displayed superior predictive ca-
pabilities compared to its white-box counterpart, it
was the grey-box model that exhibited the best per-
formance. By incorporating the knowledge encap-
sulated within the white-box model, the grey-box
model displayed the highest prediction accuracy
whilst requiring less historical data. These find-
ings underline the potential of the grey-box model
as a tool for accurately predicting marine biofoul-
ing growth and its impact on ship performance. The
practical implications of this research extend to ship
operators and designers, who could leverage these
insights to enhance operational efficiency and min-
imize maintenance costs.

The results also suggest for a more nuanced un-
derstanding of model selection and design in predic-
tive tasks. While black-box models may often de-
liver higher prediction accuracy in situations where
ample historical data is available, the incorporation
of domain knowledge via grey-box models can help
achieve similar, if not better, performance with less
data. This highlights the importance of continued
research in hybrid modelling techniques, especially
in domains where data may be costly or difficult to
acquire. While the data-driven models, and espe-
cially the grey-box model showed the highest poten-
tial for the capture of the biofouling modeling and
ship power prediction within the researched period,
its lacking extrapolation capacity was also identi-
fied. Enabling the dataset with more vessels, a wider
range of operational profiles, and later biofouling
growth stages such as barnacle growth, would im-
prove model performance.

From the perspective of ship design, the current
approaches towards predicting fouling are either ab-
sent or rely heavily on rudimentary approximations.
The primary assessments for powering calculations
and ship speed are generally conducted for clean
hulls, given that the biofouling issue is predom-
inantly addressed during maintenance and opera-
tional phases rather than the design stage. Nonethe-
less, pertinent information that could allow for pre-
liminary predictions on biofouling development is
often available even at the early stages of ship de-
sign. The present research was initiated with the
intention to incorporate and utilize this information
effectively. Utilizing the proposed model, it is pos-
sible to craft ship-specific predictions grounded on



the prospective operational profile and forecasted
environmental conditions. This, in turn, facilitates
more informed decisions regarding the selection of
antifouling systems and the determination of neces-
sary engine margins or propulsion layouts. When
these predictions are coupled with the operational
profile of a yacht, it is possible to calculate the fuel
penalty in conjunction with the costs of antifouling,
docking, and cleaning.
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