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Abstract
Accurately forecasting vessel motions is a critical step towards achieving fast and accurate intelligent vessel control systems.
Intelligent vessel control relies on accurate predictions of vessel motion to make informed decisions regarding control,
maneuvering, and positioning, particularly during times of exogenous loading caused by adverse weather conditions.
Hence, by accurately forecasting vessel motion accurately, the control system can anticipate potential issues (i.e., excessive
trim or roll) and prescribe corrective actions before they become problematic. In this study, the authors propose two
approaches to address the problem of vessel motion forecasting. The first approach relies on classical shallow learning
models, whereas the second approach involves the use of state-of-the-art deep learning models for improved accuracy at
further forecast horizons. Unlike shallow models, deep models can learn the required features directly from the data and
therefore do not require a priori knowledge or additional features engineering. By leveraging deep learning models, the
authors show that vessel motions can be forecasted further into the future without a significant loss in accuracy, thereby
improving the overall effectiveness of the intelligent vessel control system. To support their statements, the authors use
real operational data and compare the performance of the shallow and deep learning models. The results show that deep
learning outperforms shallow learning models in terms of accuracy without a significant increase in the computational
demand. Additionally, the authors demonstrate that their models remain accurate even under adverse weather conditions,
indicating that they have practical applicability for vessel motions forecasting and can potentially improve the overall
effectiveness of intelligent vessel control systems.

Keywords: Autonomous Vessels; Intelligent Control; State Prediction; Time-Series Forecasting, Signal Processing,
Supervised Learning, Shallow Models, Deep Models.

1 INTRODUCTION

Intelligent and autonomous vessels have been
proposed as an important step towards mitigating
emissions from shipping, alleviating seafarers’ fa-
tigue, and enhancing safety measures at sea [1].
Nonetheless, the deployment of fully autonomous
vessels across intricate mission scenarios remains
a formidable challenge [2], [3]. According to the
International Maritime Organization (IMO), achiev-
ing full autonomy for a vessel requires a control sys-
tem capable of independently determining the most
optimal course of action [4]. Therefore, prior to the
deployment of fully functional autonomous vessels,
concerted efforts must be directed towards develop-
ing intelligent control systems. Although numerous
motion control systems have been documented in
the literature [5], substantial work remains to bridge
the gap between the predicted behavior and the ac-
tual responses of vessels to their surroundings [6].

To consider the behavior and dynamics of a ves-

sel in six Degrees of Freedom (DoF), contemporary
physics-based models can be leveraged [7], which
account for three translational motions (surge, sway,
and heave) as well as three rotational motions (roll,
pitch, and yaw) and are often characterized by a
high accuracy and interoperability. Real-time solu-
tions provided by numerical models such as [7] are
a necessary step towards intelligent control systems
and can accurately describe the state of the ves-
sel while incorporating external disturbances, and
determine the optimal force distributions needed
to meet mission criteria. However, vessel control
systems frequently operate under challenging con-
ditions and intricate mission environments such as
close proximity situations, densely populated areas,
station keeping, mooring, automatic docking, and
helicopter operations.

Irrespective of the application, for fully au-
tonomous vessels to operate independently and pre-
scribe the optimal course of action even in situa-
tions of high exogenous loading (e.g., high wind
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speeds and sea swells). It is essential for intelligent
control to accurately predict the short-term future
state of the vessel (i.e., forecast) and not just at the
present moment (i.e., nowcast) during these condi-
tions. In the context of intelligent vessel control
systems, state prediction facilitates protocols such
as model predictive control where the horizon pre-
diction is coupled with the real-time solution of a
multiobjective optimization problem [6]. Hence,
within the intelligent vessel control framework, the
control system can anticipate potential issues (i.e.,
excessive trim or roll) due to short-term motions
forecasting over a sufficiently large horizon and pre-
scribe corrective actions (i.e., optimal force distri-
butions) before they become problematic.

Existing control systems often rely on ob-
servers and state predictors such as the Kalman
Filter [8]. However, real-time implementation is-
sues frequently arise because of disparities between
actual and forecasted motion attributed to simpli-
fied vessel or environment models. To address this
disparity, contemporary sensor technology data can
be combined with automatic control systems to en-
hance autonomous operations, assess mission fea-
sibility, and determine optimal control strategies to
ensure mission success.

Additionally, the complexity of the optimization
problem increases with the forecast horizon (i.e.,
extending further into the future), which results
in the computational complexity of physics-based
solutions increasing significantly. Therefore, state
prediction will benefit from a fast, novel, and accu-
rate solution that leverages state-of-the-art machine
learning models. For these reasons, this paper cen-
ters its focus on Shallow and Deep Learning models
for vessel motions forecasting, which is a pivotal el-
ement for formulating intelligent control strategies
and realizing the potential of fully autonomous in-
telligent vessel control systems. Additionally, this
study demonstrates how these models can be devel-
oped to remain reliable even during adverse weather
conditions characterized by periods of high exoge-
nous loading.

The rest of this paper is organized as follows:
Section 2 presents an overview of related work on
machine learning models for vessel motions fore-
casting, Section 3 describes the problem at hand
and the available data, Section 4 presents the pro-
posed methodology, Section 5 outlines the results,
and finally, Section 6 concludes the work.

2 RELATED WORK

For the sake of completeness, the authors have
reported the current state-of-the-art approaches to
vessel motion prediction using machine learning in
this section with a tabulated summary of the related
works found in Table 1.

In [8], the authors developed a model that yielded
satisfactory performance in forecasting heave mo-
tion, with a forecast horizon of 15-30 [s] and a Root
Mean Square Error (RMSE) between ∼ 0.05− 0.2
[m]. Additionally, the prediction of pitch and roll
motion up to a 50s horizon was executed using a
hybrid Nonlinear AutoRegressive (NAR) wavelet
framework. The models displayed an accuracy of
RMSE ∼ 0.05 [◦] for pitch and RMSE ∼ 0.13 [◦]
for roll. Despite the promising results, they were
derived from a rather limited dataset (650 samples),
providing only a single day’s motion description for
an inertial platform.

In [9], the authors predicted the roll motion of
a floating production unit using an Autoregressive
Integrated Moving Average (ARIMA) deep learn-
ing model. They used of synthetic data captured at
an extremely high frequency (15 Hz), and a hybrid
model with a forecast range of 3-16 [s] resulted in
an RMSE of ∼ 0.04 [◦].

In [10], the authors conducted a study where
they forecasted the heading angle with a horizon
of 1s, resulting in an RMSE of ∼ 0.2 [◦]. The
authors leveraged a time-delay wavelet Neural Net-
work (NN). When the horizon was extended to 3
[s], the RMSE increased to ∼ 0.37 [◦].

In [11], the authors formulated a state predic-
tion algorithm for an Autonomous Underwater Ve-
hicle (AUV) by leveraging Extreme Learning Ma-
chines (ELMs). They conducted tests on models of
the pitch (θ), pitch rate (θ̇), heave (Z), and heave
velocity (w) of an underwater vehicle. They em-
ployed a Nonlinear AutoRegressive Moving Aver-
age with eXogenous input (NARMAX) framework,
which proved effective in forecasting selected Key
Performance Indicators (KPIs) over brief periods.
The selected data sample period was 0.56 [s], and
the study’s findings demonstrated acceptable per-
formance with a time delay of less than 1s.

In [12], the authors presented a Deep Neural Net-
work (DNN) method for the prediction of 6-DoF
ship motions under real conditions. This method
uses a transformer neural network to learn the re-
lationship between ship motions and environmental
conditions. The model was trained on a dataset
of AIS data records with a period of 1 [s] and
bathymetry data, and it was validated by predicting



the motions of a Ro-Pax Passenger ship between
two ports in the Gulf of Finland. The results show
that the proposed method can predict the rate of
ship motions (surge, sway, heave, roll, pitch, yaw)
in real conditions with a Mean Absolute Error of
0.49 [m/s], 0.10 [m/s], 0.001 [m/s], 0.005 [◦/s],
0.0005 [◦/s], and 0.01 [◦/s] respectively. The pro-
posed model is suggested for use in collision avoid-
ance and automatic ship control applications.

Table 1: Summary of related work according to
reference, forecasted motions, machine learning al-
gorithms, and resulting accuracy.

Reference Motions Algorithm RMSE

[8] θ, φ, Z NAR 0.1, 0.05, 0.05
[9] φ ARIMA 0.04

[10] ψ NN 0.2

[11] θ, θ̇, Z, w ELM [-]

[12] θ, φ, ϕ, X , Y , Z DNN 0.0161, 0.005, 0.00055,
0.4959, 0.1173, 0.001

3 PROBLEM DESCRIPTION AND AVAIL-
ABLE DATA

In this study, the authors investigate the problem
of short-term motions forecasting for vessel roll (φ)
and trim (ψ). To this end, the authors leverage
real-world operational data gathered over a period
of one year for a twin diesel engine commercial ves-
sel. The features in the data set can be grouped into
two categories: (i) exogenous data, which describes
the weather conditions through a number of climate
and metocean features; and, (ii) endogenous data,
which describes the on-board behaviors, such as the
state of the propulsive system, the current position,
and the trajectory of the ship. The vessel motions,
that is, the roll (φ) and trim (ψ), are a subset of
the endogenous data. The dataset is summarized
according to source, category, feature, and unit in
Table 2, but there are 49 time series features in total
(because some features have more than one data-
stream).

Additionally, the data are non-continuous, and
characterized by 175 portions of varying lengths.
There are approximately 500, 000 examples sam-
pled over a period of 3 [s]. In fact, for each of the
175 portions, we can determine the weather con-
ditions in which the vessel operates by comparing
two common metrics: (i) the wind speed (e.g., ac-
cording to the Beauford wind scale [13]) and (ii)
the sea swell (e.g., according to the Douglas sea
state [14]). This allows us to characterize the op-
erating conditions into a number of classes based

on quantitative metrics. Figure 1 summarizes this
approach by showing the average wind speed and av-
erage sea swell across the 175 time series portions,
which can be categorized into 10 classes of weather
conditions. Additionally, qualitative descriptions
for the Beauford wind scale and the Douglas sea
state are included in the figure legend.

Table 2: Dataset summary according to the source,
category, feature, and unit. Note that: there are 49
time series features in total (due to some features
having more than one data-stream).

Source Category Feature Unit

Ex
og

en
ou

s

Climate

Air Temperature [◦C]
Relative Air Humidity [−]
Relative Wind Speed [m/s]
True Wind Speed [m/s]
Relative Wind Angle [◦]
Mean Wind Angle [◦]

Metocean

Mean Wave Period [s]
Mean Swell Period [s]
Swell + Wave Height [m]
Mean Wave Angle [◦]
Mean Swell Angle [◦]

En
do

ge
no

us

Main Engine Speed [rpm]
Fuel Consumption [m3/s]

Diesel Generators
Fuel Consumption [m3/s]
Load [%]
Power [kW ]

Thrusters Absorbed Power [kW ]

Propeller
Pitch Ratio [−]
Speed [m/s]
Torque [Nm]

Rudder Angle [◦]

Speed
Speed Over Water [m/s]
Speed Over Ground [m/s]

Position
Drift Angle [◦]
Draft at Bow [m]
Draft at Stern [m]

Motion Roll Angle [◦]
Trim Angle [◦]

Figure 1: Average wind speed and average sea swell
across the 175 time series portions which can be cat-
egorized into 10 classes of weather conditions.



4 METHODOLOGY

The approach in this study begins by mapping the
problem of vessel motion prediction into a regres-
sion framework using Machine Learning. We begin
with the conventional framework represented by an
input space X ⊆ Rd, output space Y ⊆ Rb, and a
target phenomenon µ : X → Y to be learned [15],
[16]. For pointwise motion prediction, X includes
exogenous and endogenous vessel data, excluding
motions, whereas Y pertains solely to the vessel
motions (φ and ψ).

Furthermore, short-term motions forecasting re-
quires expanding the regression framework by in-
corporating two temporal model hyperparameters.
First, ∆−, incorporates historical data, extending
the input space to encompass past data from the in-
terval [t−∆−, t] (i.e., [X ,Y] ⊆ Rd+b). The second,
∆+, defines the forecast horizon (i.e., the vessel mo-
tions at time t + ∆+). In addition, reliable feature
estimations can be used to further enrich the input
space within (t, t+∆+].

Attention towards the correct choice of ∆− is
required to balance the dimensionality of the prob-
lem with capturing the dynamic effects [15]–[17].
Conversely, the ideal ∆+ depends on the specific
application [15]–[17]. For short-term vessel mo-
tions forecasting, ∆+ should be in the order of a
few seconds to ensure an adequate thrust allocation
time for the vessel control system.

When selecting a machine learning algorithm for
this application, the no-free-lunch theorem [18] re-
quires testing multiple algorithms to find the best
one. For the problem at hand, we test three shal-
low state-of-the-art algorithms from two different
families [19], [20]. From the family of Kernel
Methods [21], the authors selected to test Kernel
Ridge Regression (KRR) using the Gaussian Ker-
nel for the reason described in [22]. While from the
family of Ensemble Methods [23], [24] the authors
selected to test Random Forests (RF) and XGBoost
(XGB) [25].

KRR requires tuning both the regularisation hy-
perparameter C and the kernel coefficient γ.

RF requires tuning the number of features to be
randomly sampled from the entire set of features at
each nodenf and the maximum number of elements
in each leaf nl. Since the performance of the RF
improves with the number of trees nt, we fixed it to
1000 to keep it computationally tractable.

XGB requires tuning the gradient learning rate
lr, the maximum depth of each tree nd, the min-
imum loss reduction ml, the number of points to
randomly sample from the entire training set for

each tree creation nb, and the number of features to
randomly sample from the entire set of features at
each node nf .

Additionally, in line with the current state-of-
the-art approaches [26], the authors selected to test
a deep learning approach: Temporal Convolutional
Network (TCN) [26], [27]. While other deep learn-
ing architectures (e.g., the classical and Bidirec-
tional Long Short-Term Memory network [28]) are
also suitable candidate architectures for the prob-
lem at hand, previous studies have shown that the
TCN generally outperforms the other deep learn-
ing models while also addressing several of their
weaknesses [26], [27]. The TCN architecture illus-
trated in Figure 2 shows the proposed deep learning
model architecture based on the TCN. The general
architecture outlined in Figure 2(a), shows the 8
layer TCN block. The first TCN block serves as
the input for the original time series signals and, as
shown in Figure 2(b), the output of the network was
the targets (i.e., the vessel motions) at the desired
forecast horizons. For TCN, there are a number of
hyperparameters to consider: the learning rate lr,
the dropout rate dr,0 of each TCN layer and the last
layer, the regularization coefficient C, the number
of TCN blocks hl, the number of filters on each
block ni, and the kernel size for each series and
block ks,i. For each algorithm, a summary of the
hyperparameters with the associated search space is
reported in Table 3.

Regarding the implementation of the algorithms
for KRR and RF, the models were developed using
an in-house custom Python toolbox, for XGB the
models relied on the implementation found at [29].

Table 3: Hyperparameters and associated hyperpa-
rameter space for each algorithm tested in this work.

Algorithm Hyperparameters

Sh
al

lo
w

KRR
γ: {0.1, 0.01, 0.001, 0.0001}
C : {0.001, 0.01, 0.1, 1, 10, 100}

RF

nf : {d1/3, d1/2, d3/4}
nl : {1, 3, 5, 10}
nt : {1000}

XGB

lr : {0.01, 0.02, 0.03, 0.04, 0.05}
nd : {3, 5, 10}
ml : {0, 0.1, 0.2}
nb : {0.6n, 0.8n, 1n}
nf : {0.5d, 0.8d, 1d}

D
ee

p

TCN

lr : {0.0001, 0.0005, 0.001, 0.005, 0.01}
dr,0 : {0.1, 0.15, . . . , 0.5}
C : {0.00001, 0.00005, 0.000001}
hl : {1, 2, 3, 4}
ni : {16, 32, 64, 128, 256}
ks,i : {3, 5, 7, 9, 11}



(a) TCN block layers.

(b) Model architecture using the TCN.

Figure 2: TCN block and model architecture.

To implementat the TCN, the models were de-
veloped using custom software relying on the Ten-
sorFlow [30] Python module.

To tune the models’ hyperparameters and assess
the performance of the algorithms, the following
Model Selection (MS) and Error Estimation (EE)
procedures were employed [17].

For EE, based on the fact that the desired model
should be able to extrapolate over unseen weather
conditions, the data were divided into Training Dn

and Test Tt sets using the Leave One Out (LOO)
principle applied to different classes of weather con-
ditions (see Section 3). For example, all the data cor-

responding to a single class of weather conditions
were allocated into Tt while the remaining ones are
kept in the Dn.

It is then possible to use Dn to train the model
and select the associated best hyperparameters, and
use Tt to assess the performance of the final model.
Repeating this procedure multiple times gives us
the average performance in different scenarios (i.e.,
LOO). Furthermore, because the complexity of this
problem increases with the adversity of the weather
conditions, we reserved the most complex scenario
(class 10) from the learning procedure for the fi-
nal performance testing to present an unbiased and
realistic test of the proposed approach.

Instead, for the MS, namely tuning the hyperpa-
rameters of the different algorithms, the following
procedure was applied. First, Dn was split into
Learning Ll and Validation Vv sets using the same
LOO principle as previously described for the EE.
Then, for all of the possible hyperparameter config-
urations (see Table 3), a model was trained on Ll
and its performance was assessed on Vv according
to the Mean Absolute Error (MAE). This proce-
dure was then repeated for each LOO scenario, and
the chosen hyperparameter configuration is the one
with the lowest MAE when the performance was
averaged across all the validation sets. Finally, just
before the EE, the model is retrained using the entire
Dn and the best hyperparameter configuration.

This approach is summarized in Figure 3.

Figure 3: Leave One Out (LOO) methodology
for algorithm and hyperparameter selection (on
weather classes 1–9) and final performance testing
(on weather class 10).

5 RESULTS

This section presents the results obtained by fol-
lowing the methodology proposed in Section 4 using
the data described in Section 3.

For the first part, the LOO resampling proce-
dure was carried out with weather condition classes
1 − 9 to determine how each algorithm (KRR,
RF, XGB, TCN) performs when forecasting short-
term motions while extrapolating over weather
conditions. The experiments considered ∆− ∈
{3, 12, 48, 64, 128} [s] and ∆+ ∈ {3, 6, 12, 24, 48}



[s]. The results of this experiment are presented
in Tables 4 and 5 for the Trim (ψ) and Roll (φ)
motions, respectively. The tables report the MAE
for different forecast horizons (∆+) with the op-
timal model and temporal (∆−) hyperparameters
for each of the algorithms, along with the interval
of confidence evaluated according to the t-student’s
distribution with 95% confidence and n−1 degrees
of freedom (where n = 9 because of the number of
classes in the LOO scenario). Note that a factor of
1 × 10−2 was removed from the results to ensure
readability.

Table 4: Trim motion (ψ): MAE [×10−2◦] in LOO
conditions for weather condition classes 1 − 9 for
different forecast horizons (∆+) with the optimal
model and temporal (∆−) hyperparameters for each
of the algorithms (KRR, RF, XGB, TCN).

Algorithm ∆+ [s]
3 6 12 24 48

Sh
al

lo
w KRR 2.09 ± 0.30 2.51 ± 0.42 2.53 ± 0.55 2.54 ± 0.57 2.54 ± 0.53

RF 2.10 ± 0.41 2.49 ± 0.45 2.49 ± 0.52 2.54 ± 0.59 2.56 ± 0.56

XGB 2.07 ± 0.38 2.48 ± 0.41 2.49 ± 0.51 2.49 ± 0.54 2.54 ± 0.55

D
ee

p

TCN 2.01 ± 0.29 2.50 ± 0.44 2.52 ± 0.50 2.53 ± 0.55 2.53 ± 0.58

Table 5: Roll motion (φ): MAE [×10−2◦] in LOO
conditions for weather condition classes 1 − 9 for
different forecast horizons (∆+) with the optimal
model and temporal (∆−) hyperparameters for each
of the algorithms (KRR, RF, XGB, TCN).

Algorithm ∆+ [s]
3 6 12 24 48

Sh
al

lo
w KRR 1.32 ± 0.12 1.44 ± 0.15 1.47 ± 0.16 1.73 ± 0.22 1.90 ± 0.28

RF 1.41 ± 0.14 1.47 ± 0.16 1.51 ± 0.18 1.75 ± 0.25 2.02 ± 0.33

XGB 1.33 ± 0.11 1.43 ± 0.14 1.45 ± 0.15 1.72 ± 0.20 1.98 ± 0.27

D
ee

p

TCN 1.22 ± 0.09 1.31 ± 0.11 1.41 ± 0.13 1.63 ± 0.18 1.91 ± 0.24

Figures 4 and 5 show the varying MAE versus
∆+ for each of the possible ∆− combinations in the
LOO scenario applied to the weather classes 1–9.
From the results in Tables 4 and 5 and Figures 4
and 5, the best algorithm is defined as the one with
the lowest MAE at the ∆+ which is the furthest
in the future, but still exhibits a low error. There
are a few observations to make. First, as the fore-
cast horizon increases, the error increases; however,
for the trim motion, the error saturates at a fore-
cast horizon of up to 6 [s] which is the point where
the predictions are no longer reliable (i.e., MAE(ψ)
≈ 0.025[◦] using the TCN). Second, in general, as
the forecast horizon increases the amount of past
information included in the prediction (captured in
the window [t − ∆−, t]) should be increased; al-

though, as seen for the roll motion this saturates at
approximately ∆− = 64 [s]. Finally, it is possible
to infer that reasonable forecasts can be obtained for
the trim motion (ψ) within a ∆+ of 6 [s]; whereas
for the roll motion (φ) within a forecast horizon
(∆+) of up to 12 [s] (i.e., MAE(φ) ≈ 0.014[◦] using
the TCN).

Figure 4: Trim motion (ψ): MAE versus ∆+ for
each of the ∆− options for the best performing al-
gorithm.

Figure 5: Roll motion (φ): MAE versus ∆+ for
each of the ∆− options for the best performing al-
gorithm.

Finally, according to the methodology outlined
in Section 4, to obtain a more accurate represen-
tation of a real world test, the best models will be
applied to unseen data coming from the most chal-
lenging scenario (weather class 10).

This experiment, aimed at providing an unbi-
ased assessment of the proposed models in a real
test scenario, was performed by selecting the best
model and temporal hyperparameters for each mo-
tion according to Tables 4 and 5 and Figures 4 and 5
for the best possible ∆+ (i.e., the largest forecast
horizon that is still characterized by a low error).



Figure 6: Trim motion (ψ): Real versus Forecasted
with ∆+ = 6 [s] and ∆− = 48 [s].

Figure 7: Roll motion (φ): Real versus Forecasted
with ∆+ = 12 [s] and ∆− = 48 [s].

Table 6: Trim (ψ) and Roll (φ) motions: Best fore-
cast horizons (∆+) with the optimal model and tem-
poral (∆−) hyperparameters for the best algorithm
on weather class 10.

Motion Algorithm ∆+ [s] ∆− [s] MAE [◦]

ψ TCN 6 48 0.0251

φ TCN 12 48 0.0145

Using Tables 4 and 5 and Figures 4 and 5, the
horizons are defined as 6 [s] for the roll and 12 [s]
for the trim because these forecasts correspond to an
error of less than 10% and 5% respectively, which
is an acceptable margin for the task at hand.

The results obtained by applying the proposed
method to the data left in weather class 10 are shown
in Figures 6 and 7, where the real versus forecasted
motions are presented for the trim and roll, respec-
tively. Note that, for readability only 500 samples
have been reported in the Figures; however, there
were approximately 2050 data samples correspond-
ing to weather class 10.

Finally, for a quantitative description of the mod-

els’ performance, the error metrics are reported in
Table 6 (over the entire portion of data belonging to
this class).

Figures 6 and 7, and Table 6 demonstrate the ef-
ficacy of the proposed TCN-based short-term mo-
tions forecasting. Importantly, and distinct from
the other approaches in the literature, the authors
demonstrate the TCN-based approach is robust to
changes in operating conditions and still performs
well during periods of high exogenous loading.

6 CONCLUSIONS

In the fast-paced and demanding landscape of
maritime technology, where accurate and precise
state prediction is of utmost importance to enable in-
telligent vessel control systems, the proposed mod-
els harness the capabilities of both shallow and
deep learning algorithms to deliver high accuracy in
short-term vessel motion forecasting. The authors
showed that the proposed models are robust, main-
taining their predictive accuracy even under chal-
lenging conditions characterized by high exogenous
loading, which is an important step toward develop-
ing fast and reliable short-term motions forecasting
algorithms. The demonstrated forecasting frame-
work has been subjected to empirical validation us-
ing a dataset collected from an operational vessel
over a year.

The results of this study are promising. They
show that for trim prediction, our models achieve a
forecast horizon of up to 6 seconds, accompanied
by a mean absolute error of 2.51[×10−2◦], which
translates to a mean absolute percentage error of
9.12%. However, for the roll prediction, the per-
formance is even more impressive, achieving a 12
seconds forecast horizon with a mean absolute error
of 1.45[×10−2◦] and a corresponding mean abso-
lute percentage error of 4.64%.

All models, whether based on shallow or deep
learning algorithms, exhibited comparable levels of
accuracy. There is a noticeable but acceptable de-
cline in accuracy when the prediction horizons are
extended to 24 and 48 seconds. For the roll mo-
tion, the mean absolute percentage errors at the
extended horizons are 9.19% and 12.63%, respec-
tively. Importantly, these errors remain within ac-
ceptable margins for making operational-related de-
cisions.

Given the increasing data stream availability
at higher sampling rates, the potential for ex-
tending these predictive horizons is increasingly
likely. While the models developed in this study



are promising, they are validated using data from
a single vessel, which poses questions about their
generalizability across different types of vessels and
operational conditions. Future research should ad-
dress this by further validating the effectiveness of
the deep learning-based approach using more di-
verse datasets and increased sampling rates for the
specific problem at hand.

The next step in this research is the seamless
integration of these advanced models into the ex-
isting vessel control systems. The successful inte-
gration of advanced predictive models into existing
vessel control systems offers a unique opportunity
to enhance the real-time decision-making processes
onboard. In traditional vessel control systems, op-
erators often rely on heuristic methods and past ex-
perience to make navigational and operational deci-
sions. The introduction of the proposed models can
transform this paradigm by providing data-driven
insights that are both fast and accurate. This is
particularly crucial in challenging maritime condi-
tions where swift decision making can differentiate
between safe navigation and operational hazards.

Moreover, the ability of the proposed models to
maintain high levels of accuracy even under condi-
tions of high exogenous loading adds an extra layer
of reliability and robustness to the control systems.
This is invaluable in scenarios such as heavy weather
sailing or navigating through congested waterways,
where the margin for error is minimal. Additionally,
the models’ scalability to longer prediction hori-
zons, while maintaining acceptable error margins,
indicates their potential for future applications that
require long-term planning, such as route optimiza-
tion and fuel efficiency calculations.
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