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ABSTRACT

This paper proposes a data-driven approach to reduce emissions in international shipping, aligning with
the IMO's goal of achieving net-zero greenhouse gas emissions by around 2050. Digital twins (D15) offer
promise for maritime decarbonization due to their simulation and big data handling capabilities. However,
fully realizing DTs for new-build is by definition challenging as it requires a real-time data connection.
Thus, the research begins with retrofitting existing ships using operational data collected through Bunker
Delivery Notes (BDNs), a mandatory method for larger ships since January 2019. The proposed framework
constructs digital models to support the retrofit DT, that are tested on a 300m bulk carrier. A fuel consump-
tion model is built using a gray box approach, while various wind-assisted ship propulsion systems are
modeled using a white box approach. The study evaluates the design implications and emissions reduction
potential of implementing these systems.
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INTRODUCTION

During the United Nations Climate Change Conference near Paris in 2015, the Paris Agreement was adopted by the 196
parties present which stated that global warming must be limited to below 2°C (EC, 2015). Unfortunately, international
shipping together with international aviation were not taken into account in this agreement. As a reaction, the International
Maritime Organization (IMO) adopted in 2018 an initial strategy in order to reduce greenhouse gas (GHG) emissions by
international shipping (IMQO, 2018).

The goal of this initial strategy is set on a reduction of GHG emissions by 50% in 2050 compared to emission levels of
2008. During their annual meeting in July 2023, the strategy was revised to net-zero GHG goal close to 2050, addressing
the IMO’s environmental ambitions (IMO, 2023). The maritime industry generates vast amounts of data concerning ves-
sel operations, route details, port activities, and more. Yet, much of this data remains underutilized due to factors such as
manual processing and limited application beyond specific purposes like incident assessment or environmental impact mea-
surement (Swider et all, 2018). This is due to the involvement of multiple stakeholders and the complexity of modern vessel
design and operation. To address this challenge, researchers recommend focusing on research and innovation in digitaliza-
tion and data usage within the shipping industry, exploring technologies such as artificial intelligence, augmented reality,
virtual reality, high-performance computing, and big data analytics (Mouzakitis et al., 2023; Swider et al), 2018). These
technologies hold potential for various maritime applications, including vessel traffic management, energy system design
and operation, autonomous shipping, fleet intelligence, and route optimization. Despite ongoing digitalization efforts in
other industries, such as aerospace and manufacturing, the maritime industry lags behind in embracing these advancements
due to its complex and heavily regulated nature (Mouzakitis et al, 2023). However, leveraging shipping data has the poten-
tial to drive beneficial developments in marine engineering and propel the industry toward more digitally driven processes.

As a result of the Paris Agreement, the European Commission delivered in 2021 their European Green Deal in which they
adopted a series of project proposals in order to achieve their own goal of reducing European GHG emissions by at least
55% by the year 2030, relative to 1990, and zero-net GHG emissions by 2050. By achieving this goal, the EC wants to be-
come the first climate-neutral continent in the world, hence zero emission for international shipping (EC, 2021a,b). One of
these projects is the Digital Twin for Green Shipping (DT4GS) project, funded by the European Union’s Horizon research
program. The goal of DT4GS is to eventually accomplish zero emissions by 2050 for the ship types of the collaborating
companies within the DT4GS project; represented by an oil tanker, a container ship, a bulk carrier, and a ROPAX vessel.
The collaborating vessels function as so-called ‘Living Labs’ (LLs), where operational data is collected to be used for im-
proving green ship design based on digital twin (DT) methods. This research supported the DT4GS project by investigating
the feasibility of a data-driven design method to reduce ship’s CO, emissions.

WIND-ASSISTED SHIP PROPULSION

One obvious strategy regarding green shipping is the use of renewable energy, especially wind power. Due to its history
with shipping and its availability at sea, the focus within renewable energy is shifting towards wind power (de Kat and
Mouawad, 2019). Wind-assisted ship propulsion (WASP) systems have proven to achieve significant power reductions
under favorable wind conditions: [Thies and Ringsberg (2023)) achieved a reduction between 10% and 14% by applying a
Flettner rotor during the retrofitting of a ROPAX vessel, providing new-build design parameters for future ships with this
WASP system. Bentin et al! (2018) investigated the energy-saving potential of using a towing kite, DynaRig sail, and Flet-
tner rotor for a multi-purpose carrier, bulk carrier, and tanker. A saving potential of up to 35% was found when incorporat-
ing route optimization regarding favorable wind conditions. The investigated ship types were selected because they iden-
tified them to be suitable for WASP installation without changing the ship’s capacity and the cargo loading and unloading
function of the ship (Bentin et al., 2018). This is also addressed by Reche-Vilanova et all (2021)), where tankers and bulk
carriers are identified to be especially suitable for WASP system installation due to their available deck space.



DEFINITION DIGITAL TWIN

In order to provide a clear explanation of the conducted research, a definition of a DT is chosen that is strictly followed dur-
ing this study. Mauro and Kana (2023) identified that the term ‘digital twin’ is often falsely used throughout scientific re-
search. In order to not contribute to this error in nomenclature, the model distinction adopted by Kritzinger et al} (2018) will
be used throughout this research:

* A digital model (DM) which is a virtual representation of the physical product, but without any form of exchange of
automated data between both. Data exchange could occur but only be performed manually. The DM is mostly used
for simulation and planning-based operations which does not require automatic data integration.

* A digital shadow (DS) which is an extended version of a DM including only an automated data flow from the physi-
cal product towards the virtual product by which it is actively updated.

* And lastly a digital twin (DT) is, composed of a physical and virtual product including an automated data flow be-
tween both entities.

DT-SUPPORTED RETROFIT DESIGN

In order to investigate the state-of-the-art DT applications for maritime design, Mauro and Kana (2023) conducted a sys-
tematic literature review regarding maritime DT applications. Additionally, Hermang (2024) conducted a literature survey
up to October 2023 for DT ship design. In these investigations, no publications are found on concrete DT applications for
both new-build vessels and retrofits considering a whole vessel. Only theoretical frameworks and concepts are presented.
In this research, a DT for retrofit design is investigated. First, the objective of the DT needs to be determined before starting
with the actual modeling process for a DT-supported design. The objective covers the DT composition by indicating the re-
quired virtual models, and this composition consequently depends on the available data used by the final DT for performing
simulations. The available operational data thus drives the modeling process of the DT (Giering and Dyck|, 2021)). The vir-
tual models that are feasible to construct are identified by investigating this data. Finding the overlap between the required
models (derived from the DT objective) and the feasible models (derived from the available data) provides the model selec-
tion for the final DT (see Figure [I).
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Figure 1: Selection process for DT models (Hermans, 2024)

After establishing the DT’s objective and the model selection process, the modeling phase involves the following general
steps, where the details can be found in Hermans (2024) and Papanikolaou et al! (2024):

1. Set-up the data acquisition
2. Choose modeling approaches for virtual models
3. Perform model training in case of statistical-based models

4. Integrate the virtual part with the physical part



Figure B shows a schematic representation of the transition towards a DT for retrofitting, where a detailed description can
be found in Hermang (2024) and Papanikolaou et al. (2024)).
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Figure 2: The development of the digital twin for retrofitting, based on the adopted DT definition (Hermans, 2024)

CONDUCTED RESEARCH

A DT with a retrofit design purpose starts as a digital model which becomes a DT after the retrofitting is completed. This
research focuses on the modeling of the virtual part within the DT environment which will lay the basis for a green ship DT
using this operational ship’s data. Thus, using the definition by Kritzinger et al| (2018), this research will work on a green
ship DM, supporting the process of constructing the DT (Figure [3).
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Figure 3: Focus of this research: representation of the green ship digital model (gray) within final digital twin

For the modeling construction, a model that represents the ship and a model that represents the green ship technologies

are developed, which ultimately are integrated into one green ship DM. Within the DT4GS project, bunker delivery notes
(BDNs) of a 300m bulk carrier are available as the data source. The main DT objective is set to reduce CO; emission through
ship design, for which the Energy Efficiency Existing Ship Index (EEXI) and the Carbon Intensity Indicator (CII) are used



to evaluate this objective. The EEXI and CII are both IMO’s environmental measurement tools which have been manda-
tory for most transport vessels since January 2018. Using these principles, the model selection (Figure [[)) resulted in a fuel
consumption model (FCM) which represents the ship, and three WASP models (towing kite, DynaRig sail, Flettner rotor),
which represent the green ship technologies. The FCM will be composed of a resistance model and an artificial neural net-
work (ANN). The resistance model will be modeled as a white box model (WBM), and the ANN as a black box model
(BBM). Both are connected in a serial coupled fashion which results in an FCM constructed as a gray box model (GBM).
The WASP models are all three modeled as WBMs. By combining these models into one green ship DM a potential retrofit
design can be examined (Figure H).
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Figure 4: Overview of chosen method for constructing green ship DM. Combination of part representing the ship (red oil
barrel) and part representing green ship technologies (green wind sail) resulting in one green ship DM for retrofit design
(green bulk carrier)

A 300-meter bulk carrier is used as the case-study to investigate the proposed data-driven design approach. Besides evalu-
ating the environmental impact of the EEXI and CII, a financial and feasibility assessment will be performed to investigate
if the proposed retrofit of the respective vessel can be achieved. The payback period functions as the financial assessment.
During the selection of WASP system configurations, the spatial feasibility per configuration is evaluated.

DATA PREPROCESSING

The available BDNs of the bulk carrier contain over 129,000 data points, with a time interval of 5 minutes during the fol-
lowing periods:

* Q22022: 02/06/°22 - 30/06/°22 * Q12023: 01/01/°23 - 24/02/°23
* Q32022: 01/07/°22 - 30/09/°22 * Q22023: 01/04/°23 - 30/06/°23
* Q42022: 01/10/°22 - 31/12/°22 * Q32023: 01/07/°23 - 30/09/°23

The abundance of operational data from the BDNs does not necessarily imply that all these data are of good quality and

in the right format to be utilized. In order to be of use for the case-study, the data is first preprocessed. Figure [§ shows the
steps performed within the adopted data preprocessing framework of this research. These preprocessing steps are based on
the techniques described by Garcia et al! (2016).

For the case study, only data points corresponding to sailing conditions of the ship are considered, with a minimum ship
speed of 6 knots through water selected to filter out non-sailing data points during the data selection process (step 2). Dur-
ing the noise identification (step 3), outliers within the dataset are identified, as they can negatively impact the accuracy of
the models if left untreated. To address this issue, outliers are either replaced through interpolation around the respective
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Figure 5: Adopted preprocessing data framework, based on techniques by Garcia et al| (2016) (Hermans, 2024)

data points or entirely disregarded. In this research, identified outliers are simply disregarded. The following criteria are
used during the noise identification process:

 Brake power is negative or zero

* The instant specific fuel consumption of the main engine is negative or zero (a result of a calculation)

+ Sampling time is not 5 minutes

* Speed through water difference between 2 data points (= 5 min) is more than 3 knots, the second point is then disre-

garded

The other preprocessing steps within the adopted framework are discussed more thoroughly in Hermans (2024). The result-
ing amount of data points reduced per preprocessing step is provided in table [Il. After performing the adopted data prepro-
cessing steps, 5,687 data points remained. However, inspecting the resulting data points per period, significant anomalies
were observed in Q2 2022, resulting in only 9 useful sailing hours. These 9 hours are just a tiny fraction of the resulting
5,687 hours (0.2%) and are therefore disregarded. This results in 5,678 data points, representing ‘pure’ sailing conditions,
to be used for model construction.

Table 1: Data preprocessing results of BDNs data

| Data integration | Data selection |

Noise identification

| Data transformation

Period ‘ Raw Vs > 6 kts ‘ sfeye <0 ‘ P <0 ‘ Ts # 5 min ‘ AVy > 3 kts ‘ Hour conversion
Q22022 8,267 3,165 (-5,102) | 2,769 (-396) | 148 (-2,621) 148 (0) 147 (-1) 9 (-39)
Q32022 26,488 15,582 (-10,906) | 15,579 (-3) 15,572 (-7) 15,572 (0) 15,570 (-2) 1,284 (-162)
Q42022 26,493 18,281 (-8,212) 18,280 (-1) 18,280 (0) 18,279 (-1) 18,276 (-3) 1,514 (-108)
Q12023 15,697 9,756 (-5,941) 9,756 (0) 9,756 (0) 9,756 (0) 9,755 (-1) 802 (-131)
Q22023 26,207 12,586 (-13,621) | 12,586 (0) 12,586 (0) 12,586 (0) 12,586 (0) 1,047 (-22)
Q32023 26,022 13,404 (-12,618) | 13,353 (-51) | 12,647 (-706) | 12,645 (-2) 12,641 (-4) 1,031 (-269)

% 129,174 72,774 (-43.7%) 68,975 (-5.2%) 5,687 (-1.1%)




MODEL CONSTRUCTION

Fuel consumption model - GBM

Resistance model - WBM

The resistance model calculates the sum of the ship’s calm water resistance (R.,,), according to the Holtrop and Mennen
(1982), and the wind resistance (R 4.4) using the method of Andersen (2013). The available sea trial report provides 6 runs
with which the output of the resistance model can be verified. The R.,, and R 44 for each of these runs is calculated and
compared with the measured value during the run. The mean errors from this comparison are listed in Table P. The ship had
a course direction of 60° during runs 1 to 3, and a course direction of 240° during runs 4 to 6.

Table 2: Mean percentage error resistance. Run 1 to 3 with course direction ¥ = 60°, run 4 to 5 with course direction ¥ =

240°
Resistance \ Run 1 \ Run 2 \ Run 3 \ Run 4 \ Run 5 \ Run 6
Y(Rew + Raa) | +10.0% [ +12.1% | +20.5% [ -7.2% | -0.0% [ +7.5%
Re.w +12.9% | +14.4% | +24.2% | -7.1% | -0.0% | +7.6%
Raa -0.4% -0.0% -0.4% -1.8% | -0.4% | +0.7%

As it can be noticed, the resistance prediction with a course direction of 240° is more accurate than the 60°. Moreover, the
prediction of the additional wind resistance has a maximum error of 1.8%. The prediction of the calm water resistance fluc-
tuates the most but within a 15% error when indicating run 3 as an outlier. There is no explanation found for the resistance
difference between the two course directions and the relatively high error of run 3. The overall mean absolute percentage
error is 9.6% which is deemed acceptable.

Artificial neural network - BBM

The ANN is constructed with Keras, which is an open-source neural network API written in Python (v3.11.5) that runs on
top of the TensorFlow library (Keras, 2023). Before determining the architecture of the ANN, model inputs are chosen from
the available data in the BDNs. The BDNs contain over 100 different data types. To ensure the accuracy and representative-
ness of fuel consumption predictions for future scenarios, an initial selection is made of potential model input parameters.
This selection is based on the following assumptions:

* The goal is to predict fuel consumption with an operating WASP system, which will influence engine characteristics
in a way that is currently unknown. Thus, parameters strongly related to the operating engine are left out of consider-
ation

» Environmental parameters can be predicted for future situations by means of weather models, and are therefore taken
into account

» Voyage characteristics such as ship speed and rudder position are route-dependent and can be chosen for future voy-
ages

Following this filtering process, 12 potential model input parameters are identified. To refine the selection further, a Spear-
man correlation analysis is conducted for these parameters, specifically focusing on their correlation with the fuel consump-
tion of the main engine. The analysis results, presented in Table B, guide the final input selection process. Notably, in terms
of engine output, engine torque is disregarded in favor of selecting brake power, as both parameters exhibit similar correla-
tion factors, and power is deemed more suitable for WASP implementation.



Table 3: Spearman correlation for determination ANN inputs

Correlation with fuel .
Data types . . . Selection
consumption main engine

Brake power output 0.787

Engine torque output 0.789 X

Ship’s heading -0.082 X
Rudder angle -0.241

Rudder rate of turn 0.002 X
Relative wind direction 0.131
Relative wind speed 0.226

Speed over ground -0.068 X
Speed through water 0.142
Speed difference -0.170

Total power diesel generators 0.041 X
Sea water temperature -0.174

Fuel consumption main engine 1.000 —

From the Spearman correlation analysis, 7 parameters from the BDNs are chosen as model inputs. Additionally, the output
of the resistance model, ¥(R.,, + Ra4), is incorporated as an additional input, which results in a total 8 model inputs for
the ANN. This inclusion of the resistance as ANN input gives the model its gray box characteristic, and in this case, serially
coupled. The 8 model inputs are:

* Brake power output * Speed through water (ship speed)

* Rudder angle * Speed difference

* Relative wind direction » Sea water temperature

* Relative wind speed * Sum of calm water and air resistance (result WBM)

The resulting 5,678 data points from the preprocessing are used for constructing the ANN. Initially, 500 data points are
randomly selected for later cross-validation (referred to as the test set), leaving 5,178 points for training and intermediate
validation to determine the optimal ANN architecture. These remaining data points are divided into a training set and a val-
idation set at a ratio of 90% - 10%. The division is made using a specified random state (rs) parameter. During training, the
weights of neurons are adjusted using the training set, while the validation set is used to monitor the ANN’s loss.

The majority of research on ANNs for fuel consumption prediction suggests using a single hidden layer to balance com-
plexity and accuracy (Hu et alf, 2019; Bal Besikgi et al!, 2016). However, some studies propose the use of multiple hidden
layers for improved prediction accuracy (Parkes et al}, 2018; Fam et al}, 2022). The accuracy of the ANN is closely tied

to the number of hidden layers and neurons, with more units allowing for the modeling of complex relationships (Parkes

et al), 2018). Nevertheless, networks with too few layers and neurons may struggle to capture all necessary relationships ef-
fectively. To address this, both one and two hidden layer configurations are explored, using the Fletcher-Gloss method de-
scribed in da Silva et al) (2017) to determine the number of neurons. This resulted in 209 potential configurations of which
the resulting configuration was chosen (Figure f). The final ANN characteristics and training parameters are listed in Table
H. The choice and background of the training parameters are discussed more thoroughly in Hermans (2024).

The resultant ANN configuration with the highest accuracy is a network with 1 hidden layer containing 16 neurons. Three
additional networks with the same configuration (1 hidden layer of 16 neurons) are constructed for cross-validation, each
using a different rs value during training to yield networks with different weights per neuron. These networks are cross-
validated using a test set of 500 data points that were set aside, ensuring that the achieved accuracy is independent of the
specific data split used for training. The mean absolute percentage error (MAPE) for each network is listed in Table H,
along with the overall MAPE and corresponding standard deviation.
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Figure 6: Investigated ANN configurations with 1 input layer (yellow), 1 or 2 hidden layers (green), and 1 output layer
(red) (Hermans, 2024)

Table 4: ANN characteristics and training parameters

Characteristic - parameter \ Value
Training algorithm Adam
Activation function ReLU

Number of inputs 8
Number of outputs 1
Number of hidden layers 1
Neurons in hidden layer 16
Dropout 0.2
Test set 500 data points
Training - validation set 90% - 10%
Batch size 16 data points
Max number of epochs 500
Learning rate 0.001
Patience 35 epochs
Monitor loss function MSE

Table S: Cross-validation using test data set between 4 models with equal configuration

Random state | MAPE
49 1.8%
59 2.1%
61 1.9%
80 1.9%
Overall 1.9%
Standard deviation | +/- 0.1%

The confidence interval is a common practice in statistics to indicate if the adopted method is within a desired accuracy
(Carney et al., 1999). The minimum desired confidence interval for machine learning, and especially ANNSs, is generally
90% (Carney et all, 1999). The constructed ANN is well within this interval, with an overall MAPE of 1.9% indicating the
high accuracy of the network.

WASP models

In this research three distinctive WASP system models are constructed: a towing kite, a DynaRig sail, and a Flettner ro-
tor. The selection for the towing kite and DynaRig sail is based on available literature (Bentin et al/, 2018; Reche-Vilanova
et al), 2021)) on these models that use wind data that corresponds with the available data in the BDNs. Within the DT4GS
project, a digital model of a Flettner rotor is constructed by Witzgall (2023) which is used in this research.



Wind conversion

The wind sensor which measures the wind speed and direction found in the BDNs is mounted on the mast on the bridge
deck. As the wind profile is not constant over the height, the wind speed needs to be converted to the corresponding effec-
tive height of the respective WASP system. This conversion is calculated with Equation [I, which represents the power-law
of the wind profile (Hsu et all, 1994).

P
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The power-law exponent (P) is a spatial parameter depending on the surroundings of the specific situation (e.g., at sea,
open or undulating terrain). Hsu et al} (1994) concluded from their experiments that an exponent of P = 0.11 is an accu-
rate approximation for the wind profile over the sea. This is also in line with the recommended procedures and guidelines
provided by the [TTC (2021) concerning this wind speed conversion.

Towing kite - WBM

The constructed model is based on the research of Bentin et al| (2018). The resultant propulsion force by the towing kite is
approximated with Equation 2.
Fkite = 0'56pava25wiFnorm,kite (2)

The relative wind speed (V,,) acts on the effective wind surface of the kite (Sy;). Here Fi,orm, kite 1s the normalized propul-
sion force of the towing kite as a function of only the relative wind direction and elevation angle (¢), and can be calculated
with Equation .

180° — a,re 2
Fnor’m,kite = (COS (802<pl>) ' (COS((S))Q (3)

Four kite configurations were investigated during the case-study, referred to as: Kite300, Kite800, Kitel1280 and Kite2500.
These configurations vary in kite sail area, which are respectively: 300 m?, 800 m?, 1,280 m? and 2,500 m”. The character-
istics per kite configuration are listed in Table H. It is assumed that the kite system is a fully autonomous system, including
kite deployment and retrieving. An electric motor, included in the kite system, controls the flight and logistics. Such a fully
autonomous system is also considered in the book chapter by Fritz (2013)). The power usage of the electric motor is esti-
mated at 2 kW with an electric efficiency of 0.95.

Table 6: Towing kite configurations

Kite characteristic \Kite300 Kite800 | Kite1280 | Kite2500

Kite sail area [m?] 300 800 1,280 2,500
Height [m] 77.6 150 250 400
Elevation angle [°] 15 30 30 30

DynaRig sail - WBM

As with the kite model, the DynaRig sail model is also based on the modeling methods described by Bentin et al! (2018), to-
gether with the research conducted by Reche-Vilanova et al) (2021)). The resultant propulsion force by the sail is calculated



with Equation B] Here, the sail surface is represented by Ag. The normalized propulsion force F,orm, sqa i derived from
the relative wind angle ¢, ,; and the lift and drag coefficients (Cr, and C'p). These coefficients characterize a specific sail.
Eorm,sail 18 calculated with Equation B.

Fsail - 0~5ASpaVa2Fnorm,sail (4)

FnOTm,sail =Cp Sin(‘;@a,rel) -Cp COS(‘P(J,T@Z) 5)

Bordogna (2020) conducted wind tunnel tests for 3 different DynaRig sail configurations and only investigated the lift and
drag coefficients of the respective sail without interaction effects. For this reason, the derived force coefficients by Bor
dogna (2020) are used for this DynaRig model. The sails were virtually trimmed during Bordogna’s experiments to opti-
mize for the maximum thrust per apparent wind angle. During the experiments 3 different sail configurations are investi-
gated: 1 sail, 2 sails with a gap distance ratio (GDR) of 2.5, and 2 sails with a GDR of 4. The GDR is defined as the ratio
of the distance between two sails and the chord length of a sail. These configurations will be referred to as DynaRig single,
DynaRig double 2.5, and DynaRig double 4. The resultant configurations are listed in Table [, where the dimensions are de-
termined based on the characteristics of the conducted experiments and the available spatial feasibility of the bulk carrier.

Table 7: DynaRig sail configurations

Sail characteristic | Single | Double 2.5 | Double 4

Gap distance ratio [-] - 2.5 4
Chord length [m] 20 20 12.5
Height sail [m] 37.1 37.1 23.2
Camber [%] 10 10 10

Flettner rotor - WBM

Unlike with the kite and DynaRig model, an already constructed model of a Flettner rotor adopted by Witzgall (2023) will
be used. In collaboration with the DT4GS project, Witzgall (2023) used a non-linear regression method to develop a surro-
gate rotor model based on 7 distinctive studies conducted in the field of Flettner rotor lift and drag coefficients. Two rotor
configurations are investigated: the installation of 1 rotor and 4 rotors. The configuration of 4 rotors consists of four times
the same rotor as used for the configuration of 1 rotor. The goal of this research is to reduce the CO, emissions (i.e., fuel
consumption), thus the largest feasible rotor available in the industry is selected to be investigated: a 35m high rotor with a
diameter of 5m and an endplate with a diameter of 10m. Both configurations are referred to as /x Rotor H35D5 and 4x Ro-
tor H35D35.

MODEL INTEGRATION

The goal of the green ship DM is to calculate the fuel consumption in case of an operating WASP. Comparing this with the
fuel consumption without a WASP results in potential fuel reduction which provides an insight into the WASP’s environ-
mental and financial benefits. The output of the WASP’s WBM s is propulsion force and possible power demand. One of
the inputs of the ANN in the FCM is the ship’s brake power. Thus, the ship’s brake power including WASP force needs to
be determined while maintaining the same ship speed and sailing time. The WASP’s propulsion force is implemented with
the propeller thrust demand in the ship’s force balance to overcome the experienced resistance. This force balance is rep-
resented by Equation f§. Using this force balance a new working point of the propeller is derived, which is also known as
the propeller-matching procedure. [Vigna and Figari (2023) have performed this matching procedure including an operating
Flettner rotor in order to derive the ship’s brake power. The adopted integration framework is based on this procedure. The



ship speed and sailing time are kept the same as only the influence on the ship’s brake power by the installed WASP system
is being considered.

Rr=(1—-t)-T = Rp=(1-1t)-T+ Fwasp (6)
| —
Without operating WASP Including operating WASP

Equation [ is rewritten to the forward equilibrium equation including the terms of the propeller characteristics and hull de-
mand resulting from the required ship speed, to derive the new working point of the propeller (Vigna and Figari, 2023),
resulting in Equation .

Kr Ry —0 Kr Ry — Fwasp —0 )
7 pew - (L- )1 —w)?-V2- D} 7 b (A=D1 —w)?-V2- D3
Without operating WASP Including operating WASP

The established model integration framework for this research is depicted in Figure f]. The output of the WASP WBMs is
firstly transformed into brake power, and next integrated into the FCM to predict the corresponding fuel consumption. The
required steps for this integration are depicted in orange and are discussed in (2024). This presented framework
is based on evaluating the known data from the BDNs. Necessary calculation adjustments in this framework for future data

sets are also presented in (2024).
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Figure 7: Schematic overview digital models including, the adopted model integration framework in orange (Hermans,
2024)



Step 3 in the integration framework (Figure [) consists of a correction factor (cf) calculation of the ship’s brake power. Be-
cause the current brake power is recorded in the BDNSs, this ¢f' can be calculated per data point to improve accuracy in the
power computation. This ¢f can be seen as a variable value for all the efficiencies used in the brake power calculation (i.e.,
ns,Nap,1r)- The ship’s forward equilibrium equation without operating WASP (in Equation [7), together with the deriva-
tion for the brake power (Equation [§) using the BDNGs is used to calculate the ship’s brake power. Because the bulk carrier
does not have a gearbox, the propeller rotation (n,) is assumed to be equal to the measured main engine rpm (n.) avail-
able in the BDNs. This calculated value is compared with the measured brake power (BDNs) to derive the ¢f per data point
(Equation P)). The correction factor is then multiplied by the ship’s brake power with operating WASP.

27 P DN K
pp = P @®)
NsNGBMR

Pp (calculated)

RESULTS

Overall savings Q3 2022 - Q3 2023

For each configuration of the WASP systems, the money, fuel, and CO, savings are calculated over the 5,678 sailing hours
(= 237 sailing days) using a fuel price of $618.50/mt-fuel. These results are presented in Table §. Percentage reductions
apply to all listed savings, as they are all directly linked to fuel consumption. The savings are computed as the difference
between the predicted fuel consumption by the green ship DM with and without the WASP system. The MAPE between the
actual fuel consumption (BDNs) and the predicted consumption (green ship DM), both without installed WASP, is 0.3%,
indicating high model accuracy and reliability. This supports the validity of using the model. Calculating the difference
between both predicted values by the green ship DM ensures consistency in accuracy.

Table 8: Total WASP savings during 5,678 sailing hours

WASP configuration | Fuel savings [mt] \ $-savings [K$] \ CO; savings [mt] \ Percentage savings [%]

Kite300 1,031 637 3,240 -12.5
Kite800 1,048 648 3,293 -12.7
Kite1280 1,070 662 3,364 -13.0
Kite2500 1,129 698 3,549 -13.7
DynaRig single 1,145 708 3,599 -13.9
DynaRig double 2.5 1,148 710 3,610 -14.0
DynaRig double 4 1,068 660 3,357 -13.0
1x Rotor H35D5 1,197 740 3,762 -14.6
4x Rotor H35D5 1,598 989 5,025 -19.4

The overall results indicate a CO, reduction potential ranging from 12% to 19% across the investigated WASP configura-
tions. This finding aligns with a literature study conducted by Bouman et al) (2017) on CO, reduction through green ship
technologies, who found savings potentials between 7% and 22% of similar WASP technologies. When comparing individ-
ual configurations of each WASP system (1 kite, 1 sail, 1 rotor), it is observed that the rotor configuration offers the most
significant savings potential. Additionally, kite configurations demonstrate progressively increasing savings potential with
larger kite sail areas. Variations in the savings potential between the two double DynaRig configurations are attributed to
differences in sail sizes as discussed in the WASP model construction.



Environmental assessment

EEXT

The power reduction due to an operating WASP is calculated according to the procedure presented in [IMO (2021)). Exam-
ining the sailing route of the bulk carrier during the period Q3 2022 - Q3 2023 showed that the vessel had sailed approxi-
mately 90% on the same shipping routes on which the IMO’s wind probability matrix is based. This indicates that this wind
prediction method, used in the EEXI calculation, has sufficient accuracy regarding this ship’s operational area. The ship’s
current, required, and resulting EEXI values per investigated WASP configuration are provided in Table .

Table 9: New EEXI value per installed WASP configuration

WASP configuration | EEXI [g/(mt-nm)] | Reduction [%]

Required value (max) 2.370 -

No WASP (current) 2.120 -
Kite300 2.112 -0.4
Kite800 2.101 -0.9
Kite1280 2.085 -1.6
Kite2500 2.044 -3.6
DynaRig single 2.054 -3.1
DynaRig double 2.5 2.052 -3.2
DynaRig double 4 2.095 -1.2
1x Rotor H35D5 2.029 -4.3
4x Rotor H35D5 1.754 -17.2

All the investigated WASP configurations decrease the ship’s EEXI value as suspected and consequently comply with the
required EEXI value. Moreover, as noticed with the aforementioned overall savings, installing a rotor results in the highest
CO; reduction. The 4x Rotor H35D5 configuration is simply a factor 4 environmental beneficial in terms of design poten-
tial, as the result of the calculation by the IMO.

cnil

The evaluation of the ship’s operational aspect involves calculating the CII. However, there are data gaps and errors in the
data for March 2023 and in the period Q3 2023, rendering the CII calculation for those periods unreliable. As the CII calcu-
lation requires a complete calendar year, it cannot provide the official CII value. Nevertheless, the calculation is performed
with the data of 11 consecutive months (Q3 2022 - Q2 2023) which still offers a useful indication of the vessel’s operational
impact. The required CII values for the years 2023, 2024, and 2025 for the specific bulk carrier used are illustrated in Fig-
ure §.

For the calculations of the attained CII per installed WASP configuration, a fuel oil density of 0.8352 g/cm? is used. The
fuel consumption is predicted with the constructed green ship DM. The results are provided in Table [L0, including color
labeling per CII corresponding to its rating for the year 2023.

The bulk carrier is currently above the required CII, in the C-rating. All the WASP configurations bring the bulk carrier in
the B-rating regarding the year 2023, whereas both rotor configurations also comply with the B-rating regarding the year
2024 and 4x Rotor H35D5 extend B-compliance for the year 2025.
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Figure 8: Attained CII values of the investigated bulk carrier; required CII values for 2023, 2024, and 2025 are respectively
2.212,2.166,2.119

Table 10: CII approximation of 11 months during Q3 2022 - Q2 2023

WASP configuration ‘ Attained CII [g/(mt-nm)]

Required (2023) 2212

No WASP 2.248
Kite300 2.059 (-8.4%)
Kite800 2.056 (-8.6%)
Kite1280 2.051 (-8.8%)
Kite2500 2.039 (-9.3%)
DynaRig single 2.035 (-9.5%)
DynaRig double 2.5 2.035 (-9.5%)
DynaRig double 4 2.052 (-8.8%)
1x Rotor H35D5 2.020 (-10.2%)
4x Rotor H35D5 1.931 (-14.1%)

Financial assessment - payback period

Even though the main objective is directly related to the environmental assessment, the financial assessment is done to give
an idea of the feasibility in terms of time and money. The calculation of the payback period calculation per WASP config-
uration is performed with Equation [[(], which is based on the financial assessments by Kiran (2022); van der Kolk et al]

(2019).

1-D (10)

Where the financial parameters represent:

A: $-savings per sailing hour using WASP
B: Purchase & installation system
C: Out of service costs & dry docking

D: Hourly operational & maintenance costs WASP



The $-savings per hour is the driving parameter (A) of the payback period. This parameter for each of the investigated
WASP configurations (A) is derived by dividing its respective money savings in Table § by the total sailing hours (5,678
hrs). For the purchase and installation costs (B), the estimations provided by GIoMEEP (2019) are used. GloMEEP is an
international collaborating project established within the IMO aiming to support and provide insights into implementing
energy-efficient measures for global shipping. Costs ‘C’ are not considered as there is no evident information available
on these costs. This is mainly due to the fact shipping companies and maintenance docks only provide such information
through a direct offer. The costs associated with the operations and maintenance of WASP systems are typically provided
by the manufacturer. In this research, these costs are estimated to be annually equivalent to 2% of the WASP installation
costs. This estimation aligns with a study conducted by van der Kolk et al| (2019), which performed a technological and
economical assessment of WASP systems for transport vessels.

The payback period (P) for each WASP configuration can be calculated based on operational data, excluding costs ‘C’. The
results are presented in Table [L1], considering the vessel in operational condition (minimum ship speed of 6 knots). To de-
termine the total payback period accounting for all configurations, one must include the term % to the provided payback
period results, where ‘C’ represents the known value for costs and ‘A’ represents the annual savings.

Table 11: Payback period (P) of WASP configurations expressed in operating time, without costs ‘C’

WASP configuration \ P [hrs] \ P [days] \ P [years]
Kite300 4,091 170 0.5
Kite800 10,121 422 1.2
Kite1280 15,596 650 1.8
Kite2500 22,128 922 2.5

DynaRig single 1,368 ~ 2,419 57~101 | 0.2~0.3

DynaRig double 2.5 2,735 ~ 4,850 114 ~202 | 0.3~0.6
DynaRig double 4 2,943 ~ 5,220 123 ~ 218 | 0.3 ~ 0.6
Ix Rotor H35D5 5,437 ~ 7,411 227 ~309 | 0.6 ~0.8
4x Rotor H35D5 16,696 ~ 21,702 | 696 ~904 | 1.9 ~2.5

Analyzing the payback periods of the selected configurations indicates that the Kite2500 and 4x Rotor H35D5 configura-
tions require the longest time to become financially profitable. On the other hand, DynaRig configurations are generally the
most favorable option in terms of payback period, averaging better results compared to other configurations.

CONCLUSION

Incorporating operational data into ship design through a DT-supported method allows for the evaluation of environmen-
tally friendly ship designs, particularly focusing on reducing CO, emissions with WASP systems. The DT’s capacity to
handle vast amounts of data and conduct virtual simulations mitigates risks associated with such designs. Operational data
from the IMO’s mandatory BDNs serves as a valuable source for modeling construction, facilitating the development of
a green ship DM. This DM incorporates ship characteristics, route-dependent factors, and environmental data to predict
fuel consumption with and without a WASP system installed, thus estimating potential CO, emission reductions (environ-
mental) and payback periods (financial). Environmental assessments conducted through IMO’s EEXI and CII tools high-
light the 4x Rotor H35D5 configuration as yielding the highest CO, reduction, while also with the longest payback time.
Conversely, DynaRig configurations result as the most financially attractive on average, although dry-docking and out-of-
service costs are not taken into account. Ultimately, ship owners’ decisions will be guided by specific requirements and
considerations, informed by the presented results.



DISCUSSION

The research focuses on integrating operational data into retrofit design, using high-level WASP models. However, these
models are simplified, such as approximating acrodynamics in the towing kite model with a single value, the wind energy
transfer efficiency (¢). To enhance the accuracy of propulsion force predictions, more refined WASP models are recom-
mended. One key assumption is regarding fuel consumption prediction by the green ship DM with an operating WASP sys-
tem. The FCM is validated with high accuracy for known sailing conditions, with one input being the ship’s brake power.
During the case-study, only the brake power value is altered to investigate the effect of an installed WASP system, assuming
the resulting fuel consumption corresponds to that situation. To verify this assumption accurately, model or full-scale tests
including WASP system installation are necessary. These tests would close the verification loop of the proposed method.
The BDNss serve as a feasible data source for the modeling construction chosen in this research, providing ample data points
related to route-dependent and environmental information for fuel prediction. However, there is a lack of information re-
garding the method and quality of the sensors used for data collection, raising uncertainty about potential errors within these
values due to sensor sensitivity or recording methods. Additionally, despite the variety of recorded data types, important
parameters such as waves, trim, and draft are absent. Incorporating these data types into the constructed resistance model
could improve the estimation of the ship’s resistance and total resistance. Although water depth data, which can influence
speed loss due to shallow water effects, are present in the BDNSs, they are incomplete and contain significant anomalies,
leading to their exclusion from the research. Moreover, no interaction effects are considered regarding the WASP systems
and the vessel during this research. While the IMO’s calculations overlook these effects, deeming them significant only
during unsafe operations that need to be prevented, they must be considered when investigating WASP retrofitting. The
change in the center of gravity due to installing WASP systems can lead to differences in the power reduction prediction
(Thies and Ringsberg, 2023). Moreover, induced trimming moments and heel angles as a result of operation WASP systems
negatively influence the aero and hydrodynamic performance of the vessel’s propulsion system (Smith et al., 2013; Stark

et al), 2022).
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