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ABSTRACT

Considering vital ship systems or distributed ship service systems at the early stage of complex 

vessels is a challenging task. The recent UCL Network Block Approach aimed to enable ship 

designer to address ship systems design synthesis simultaneously as a logical network using 

MATLAB with a CPLEX Toolbox in MATLAB and representative piping, cabling, and trunking 

routings on the physical description of the ship using a proven CASD tool PARAMARINE-

SURFCON. This was possible due to adopting a set of frameworks, as part of this 

comprehensive approach. The paper presents one of the frameworks: the Operational Matrix, 

to formulate distributed ship service systems network in the early stage design of complex 

vessels. The application of the framework could take on many forms and can be manipulated to 

suit a specific distributed ship service system’s design. In this paper, a tutorial is given, leading 

from the simplest application of the Operational Matrix Framework to an example of a complex 

Operational Matrix application for the 3D multiplex submarine systems problem. The use of the 

proposed Operational Matrix Framework is shown to reveal the relationship between objective 

functions, constraints, bounds, and solutions of that linear programming formulation. The 

Operational Matrix Framework can enable the solvers (CPLEX Toolbox in MATLAB) to be 

very efficient in advancing early stage ship design applications. The Framework could be 

developed further for investigating the analysis of energy balances for new systems to achieve 

net zero energy demands for future naval vessels. 
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NOMENCLATURE 

Symbol Description 

𝛼 Coefficient of the objective function for a cable type A 

𝑎 The set of all arcs 

𝛽 Coefficient of the objective function for a cable type B 

𝑏𝑖 Specific amount of commodity at a node 𝑖 
𝑐𝑖,𝑗 Generic “cost” coefficient in an objective function 

δ𝑖,𝑗 Binary variable of an arc 𝑖, 𝑗 
𝑒 Energy coefficient 

𝛾ℎ Power flow produced by a hub/path/intermediate node 

𝛾𝑠 Power flow produced by a source node 

𝛾𝑡 Power flow produced by a sink/target node 

𝐻𝑠𝑢𝑏 Hotel load submerged for a submerged submarine 

𝑖 ∈ 𝑛 A node 𝑖 as a subset of a set of nodes 𝑛 

(𝑖, 𝑗) ∈ 𝑎 An arc 𝑖, 𝑗 as a subset of a set of arcs 𝑎 

𝑗 ∈ 𝑛 A node 𝑛 as a subset of a set of nodes 𝑛 

𝑘 ∈ 𝐾 An operating scenario index k as a subset of scenarios K 

𝜆𝑖,𝑗 Power to volume ratio of an arc 𝑖, 𝑗 
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Symbol Description 

𝐿(𝑖, 𝑗) Distance between nodes 𝑖 and 𝑗 
𝜇𝑖,𝑗 Coefficient of the objective function of an arc i,j 

𝑚 ∈ 𝑀 Indexed damage scenario 𝑚 as a subset of scenarios 𝑀 

𝑘 ∈ 𝐾 Indexed operating condition 𝑘 as a subset of scenarios 𝐾 

𝑛 The set of all nodes 

𝑂𝐹𝑖,𝑗 Objective function value of an arc i,j 

𝑃𝑖,𝑗 Power of an arc 𝑖, 𝑗 

𝑢𝑖,𝑗 Flow capacity/variable of an arc 𝑖, 𝑗 
𝑈𝑖,𝑗 Flow capacity of an arc 𝑖, 𝑗 

𝑥𝑖,𝑗/𝑥𝑗,𝑖 Flowpath or flow variable of an arc 𝑖, 𝑗 or arc 𝑗, 𝑖 
𝑥𝑖,𝑛 Flow variable from a node i to node n 

𝑥𝑛,𝑗 Flow variable from a node n to node j 

𝑌𝑠 Power flow capacity of a source node 

𝑌𝑡 Power flow capacity of a target node 
 

1.  INTRODUCTION 

 
In the initial sizing of complex vessels, where recourse to type ship design can be overly restrictive, the estimation 

of the weight and space demands of vital distributed ship service systems has traditionally been poorly addressed 

(Andrews, 2018). The UCL Network Block Approach (Mukti, 2022) can help the concept designer to consider 

the impact of different configurations for the distributed ship systems in concept design with more inputs than a 

parametric approach but fewer assumptions than detailed systems design. This is possible because the UCL 

Network Block approach combines the use of an architecturally driven ship synthesis approach (Andrews, 2018), 

and the use of network tool called SUB/RFLOW: SUBFLOW for submarine (Mukti et al., 2021) or SURFLOW 

for surface ships (Mukti et al., 2024). 

 

SUB/RFLOW was originally derived from the Architecture Flow Optimisation (AFO) (Brown, 2020) and Non-

Simultaneous Multi Commodity Flow (NSMCF) (Trapp, 2015). Compared to this previous research, the 

SUB/RFLOW process is integrated with a 3D CASD tool (Paramarine (Qinetiq, 2019)) for designing ship systems 

both in terms of the network (logical representation) and the physical representation of piping, cabling, or trunking 

routings incorporated in the ship. The SUB/RFLOW tool uses network theory and linear programming, with nodes 

and arcs modelled as a set of linear programming optimisation formulations. These formulations mainly consist 

of constraints that define the physics of the problem and the objective function to focus the solver to maximise or 

minimise the solution of the problem (e.g., the multiplication between “cost” and the commodity flow) (Trapp, 

2015).  

 

The tools to solve the optimisation can use the standalone CPLEX software (IBM, 2014) or CPLEX toolbox in 

MATLAB (2019). The use of CPLEX toolbox in MATLAB streamlines the network analysis to be done fully in 

MATLAB, which allows the use of matrices for defining network properties to be read sequentially and visualised 

instantaneously in MATLAB. Most importantly, the use of the CPLEX toolbox in MATLAB enables the naval 

architect to intervene in the network formulation code for CPLEX using a MATLAB programming language (i.e., 

use of matrix-based computation). This, in turn, can minimise any black-box tendencies in a linear programming 

formulation as it reveals the interaction between the objective function, constraints, and bounds in the form of 

several matrices which can be themselves a single matrix, depending on the size of the network problem. Such a 

matrix is referred to as the Operational Matrix framework in the UCL Network Block Approach (Mukti, 2022). 

That framework is the focus of this paper and has been proposed to assist the designer by formulating a linear 

programming description, able to reflect simplified steady state temporal relationship of ship systems and the 

operating conditions, which has been described as the operational architecture of the ship (Brefort et al., 2018). 

Also, the Operational Matrix framework could be seen as a subset of the logical architecture, which interacts with 

a specific operating condition (e.g., loads during sprint submerged and snorting) and a discrete system’s response 

(i.e., the simplified steady state response of specific distributed ship service systems during those particular 

operating conditions).  

 

The next section of the paper provides an introduction to the proposed Operational Matrix Framework drawing 

on network theory. This is followed by design examples and applications of the framework to different Network 

Flow Optimisation setups. The Operational Matrix for the UCL Network Block Approach is then outlined. Lastly, 

the paper presents the advantages and limitation of the proposed framework approach and summaries what is 

novel in the approach through a high level comparison with previous research in the field of ship systems design.  



 

 

2. THE BASIC FORM OF THE OPERATIONAL MATRIX FRAMEWORK 
 

A network description is a set of points called nodes that are connected by lines called arcs or edges (Newman, 

2010) while Network Flow Optimisation (NFO), in its basic form, is a method using linear programming that 

finds the lowest cost of the flow of a specific distributed  commodity from a set of sources to a set of sinks (loads) 

through a network containing various flows (Trapp, 2015). In the case of the distributed ship service systems, the 

commodity can be anything that can be modelled in terms of flows, such as electrical power (energy) and data 

(Brown, 2020), or fluid (gas or liquid) (Trapp, 2015).  

 

In the formulation of the linear programming of the NFO, a prescribed objective function (also called the “cost” 

function, which is not always the actual currency) is minimised (or maximised) by the solver, subject to 

constraints. The constraints define the physics of the distributed ship service systems problem in the form of 

equality and inequality constraints which mathematically define supply and demand limits considerations relevant 

to the appropriate distributed ship service systems. Thus, the units of the flow are determined and the equations 

describing the continuity at various supply, demand and distribution or hub nodes are derived to achieve a feasible 

NFO solution. 

 

Consider a simplistic example of a NFO problem in Figure 1. This system consists of a source node, two 

distribution (or hub/intermediate) nodes, and a target (or sink/user) node. Described generally, an arc or edge 

which allows one-way flow from node 𝑖 to node 𝑗 is described by (𝑖, 𝑗). Let 𝑎 be the set of all arcs. Each arc (𝑖, 𝑗) 

is limited to  𝑢𝑖,𝑗 units of flow. There is a “cost” 𝑐𝑖,𝑗  (not always currency) associated with the rate of flow in each 

arc of the network. Let 𝑛 be the set of all nodes. Each node provides a supply or a demand of 𝑏𝑖 units of flow. For 

distribution nodes, 𝑏𝑖 = 0. For a supply node, 𝑏𝑖 > 0 and for a demand node 𝑏𝑖 < 0. The task of the solver is to 

find the minimum cost flow for the network such that (all) required demand is met. To do this, the solver must 

minimise total cost of transport over the arcs while accounting for the variation in cost for each arc (see the linear 

programming formulations in Table 1). To formulate as a linear programming problem, flow variables 𝑥𝑖,𝑗 are 

used, where the annotated flow is in arc (𝑖, 𝑗). Before there is no flow in the network, the arcs in Figure 1 are 

shown as thin lines. Lastly, the equation under each node represents the continuity of each node in the system as 

the set of constraints for the formulation.  

 

 

 
 

 

Figure 1: Simple network flow problem 

  



 

 

Table 1: Linear programming formulations of Figure 1 

 

Linear 

Programming 

Formulation 

Mathematical Notation Realisation 

Objective 

Function 
𝑚𝑖𝑛. ∑ 𝑐𝑖,𝑗𝑥𝑖,𝑗

(𝑖,𝑗)∈𝑎

 𝑐𝑆,𝐻1𝑥𝑆,𝐻1 + 𝑐𝐻1,𝑇𝑥𝐻1,𝑇 + 𝑐𝑆,𝐻2𝑥𝑆,𝐻2 + 𝑐𝐻2,𝑇𝑥𝐻2,𝑇 

Subject To: 

Continuity ∑ 𝑥𝑖,𝑗 − ∑ 𝑥𝑗,𝑖 = 𝑏𝑖

(𝑖,𝑗)∈𝑎(𝑖,𝑗)∈𝑎

 𝑥𝑆,𝐻1 + 𝑥𝑆,𝐻2 = 𝑏𝑆            𝑥𝐻1,𝑇 − 𝑥𝑆,𝐻1 = 𝑏𝐻1 

−𝑥𝐻1,𝑇 − 𝑥𝐻2,𝑇 = 𝑏𝑇            𝑥𝐻2,𝑇 − 𝑥𝑆,𝐻2 = 𝑏𝐻2 

Bounds 0 < 𝑥𝑖,𝑗 ≤ 𝑢𝑖,𝑗 
0 < 𝑥𝑆,𝐻1 ≤ 𝑢𝑆,𝐻1              0 < 𝑥𝐻1,𝑇 ≤ 𝑢𝐻1,𝑇 

0 < 𝑥𝑆,𝐻2 ≤ 𝑢𝑆,𝐻2              0 < 𝑥𝐻2,𝑇 ≤ 𝑢𝐻2,𝑇 

Operating 

Scenario 
𝑏𝑖 𝑏𝑆 ≥ 0        𝑏𝐻1 = 0        𝑏𝐻2 = 0       𝑏𝑇 ≤ 0 

Indices 
(𝑖, 𝑗) ∈ 𝑎 (𝑆, 𝐻1) ∈ 𝑎 …. (𝐻2, 𝑇) ∈ 𝑎 

𝑖 ∈ 𝑛 𝑆, … , 𝑇 ∈ 𝑛 

 

Fundamentally, the operational matrix is used to compile all variables in the linear programming formulations 

into a set of rows and columns of a matrix. The matrix is called “operational” when it is specifically applied to 

distributed ship service systems subject to appropriate operating conditions, i.e., temporal relationships (as is 

demonstrated later in this paper). Thus, the operational matrix for the example in Figure 1 is shown in Table 2. 

The number of columns in Table 2 is given by the quantity of arcs and nodes in the network. Each row provides 

the “coefficients” in the linear programming formulation. In this example, it consists of the objective function or 

the cost function (to be minimised), the equality constraint for the continuity (i.e., all flow into and out of the node 

must equal the supply or demand 𝑏𝑖 unit flow at each node), and the bounds limiting the flow to given arc 

capacities 𝑢𝑖,𝑗 and ensuring that the flow is unidirectional. The flowpaths or flow variables 𝑥𝑖,𝑗 are referred to as 

the set of decision variables. The solver then determines what value each of the variables in 𝑥𝑖,𝑗 should take in 

order to minimise (or maximise, whichever is specified) the cost function. The variables in brackets for the 

equality constraints are not in the actual Operational Matrix. They are there to aid the ship designer’s 

understanding of the framework. 

 

Table 2: A simplistic example of an Operational Matrix Framework 

 

Formulation Arc 1 Arc 2 Arc 3 Arc 4 Source Hub 1 Hub 2 Target 

Objective 

function 
𝑐𝑆,𝐻1 𝑐𝐻1,𝑇 𝑐𝑆,𝐻2 𝑐𝐻2,𝑇 0 0 0 0 

Constraints 

(Equality) 

1(𝑥𝑆,𝐻1) 0 1(𝑥𝑆,𝐻2) 0 −1(𝑏𝑆) 0 0 0 

−1(𝑥𝑆,𝐻1) 1(𝑥𝐻1,𝑇) 0 0 0 −1(𝑏𝐻1) 0 0 

0 0 −1(𝑥𝑆,𝐻2) 1(𝑥𝐻2,𝑇) 0 0 −1(𝑏𝐻2) 0 

0 −1(𝑥𝐻1,𝑇) 0 −1(𝑥𝐻2,𝑇) 0 0 0 −1(𝑏𝑇) 

Lower bound 0 0 0 0 0 0 0 0 

Upper bound 𝑢𝑆,𝐻1 𝑢𝐻1,𝑇 𝑢𝑆,𝐻2 𝑢𝐻2,𝑇 ∞ 0 0 −∞ 

 

  



 

 

As an example, let the node and arc properties are known as summarised in Table 3 and Table 4. The network 

demands a 10-unit flow at the target node, so each arc is limited to 10-unit flow. For a minimisation problem, 

flowing through Hub 2 would be more “costly” than Hub1.  

 

Table 3: Node properties of Figure 1 

 

Node Unit Flow Supply/Hub/Demand 𝒃𝒊 𝒃𝒊 value/bounds 

Source 𝑏𝑆 ≥ 0 

Hub 1 𝑏𝐻1 0 

Hub 2 𝑏𝐻2 0 

Target 𝑏𝑇 -10 

  

Table 4: Arc properties of Figure 1 

 

Arc (𝒊, 𝒋) Cost 𝒄𝒊,𝒋 Cost 𝒄𝒊,𝒋 Value Capacity 𝒖𝒊,𝒋 Capacity 𝒖𝒊,𝒋 Value 

(𝑆, 𝐻1) 𝑐𝑆,𝐻1 1 𝑢𝑆,𝐻1 10 

(𝐻1, 𝑇) 𝑐𝐻1,𝑇 1 𝑢𝐻1,𝑇 10 

(𝑆, 𝐻2) 𝑐𝑆,𝐻2 2 𝑢𝑆,𝐻2 10 

(𝐻2, 𝑇) 𝑐𝐻2,𝑇 2 𝑢𝐻2,𝑇 10 

 

To solve the problem above, the following steps need to be undertaken:  

 

• Generate a network matrix using an adjacency matrix or an adjacency list in MATLAB (see Table 5).  

• Plug the numbers outlined in Table 3 and Table 4 into that network matrix (i.e., as network properties in 

MATLAB), following the format of the Operational Matrix Framework outlined in Table 2.  

• The Operational Matrix can then be fed into a solver in MATLAB.  

• Once the solver produces a set of flow solutions, this can be stored back in the Operational Matrix in 

MATLAB (see Table 6). 

• Using that Operational Matrix, the system network with the network flow solution can be visualised 

using MATLAB. 

 

Table 5: The adjacency matrix (left) and the adjacency list (right) of Figure 1 

 

[
 
 
 
 
𝑁𝑜𝑑𝑒 𝑆 𝐻1 𝐻2 𝑇

𝑆 0 1 1 0
𝐻1 0 0 0 1
𝐻2 0 0 0 1
𝑇 0 0 0 0]

 
 
 
 

  

(

 
 

𝑖 𝑗
𝑆𝑜𝑢𝑟𝑐𝑒 𝐻𝑢𝑏1
𝑆𝑜𝑢𝑟𝑐𝑒 𝐻𝑢𝑏2
𝐻𝑢𝑏1 𝑇𝑎𝑟𝑔𝑒𝑡
𝐻𝑢𝑏2 𝑇𝑎𝑟𝑔𝑒𝑡)

 
 

 

 

 

The network flow solution for the problem above is shown in Figure 2. 

 

 
Figure 2: Simple network flow problem solution 

  



 

 

As expected, the solver chose Hub 1 since it gives the lowest objective function value. This is 20, rather than 40, 

which would be the case for flowing through Hub 2. At the Source node, 10 unit flow is produced and leaving the 

node via arc (𝑆, 𝐻1). The continuity can be seen at the Hub 1, where 10 unit flow is entering from (𝑆, 𝐻1) and 

leaving the node to arc (𝐻1, 𝑇). Finally, the 10 unit flow commodity is received by the Target node from arc 

(𝐻1, 𝑇). The solutions satisfied the objective function (the lowest value), constraints, and the bounds. This is 

summarised in Table 6 using the Operational Matrix Framework (see Appendix A for the MATLAB code for this 

example). 

 

Table 6: Operational Matrix Framework solution of Figure 2 

 

Formulation Arc 1 Arc 2 Arc 3 Arc 4 Source Hub 1 Hub 2 Target = 

Objective 

function 
1(10) 1(10) 2(0) 2(0) 0 0 0 0 20 

Constraints 

(Equality) 

1(10) 0 1(0) 0 −1(10) 0 0 0 0 

−1(10) 1(10) 0 0 0 −1(0) 0 0 0 

0 0 −1(0) 1(0) 0 0 −1(0) 0 0 

0 −1(10) 0 −1(0) 0 0 0 −1(−10) 0 

Lower bound 0 0 0 0 0 0 0 −10 0 

Upper bound 10 10 10 10 ∞ 0 0 −10 0 

 

 

From the simple example above, the general template of the Operational Matrix Framework is given in Table 7. 

By using the Operational Matrix Framework, the formulation of the Network Flow Optimisation can be 

manipulated easily by changing the coefficients in the matrix. Understanding the use of the Operational Matrix 

Framework is essential before modelling, formulating, and dealing with a much larger network that could 

represent a large number of distributed ship service systems equipment on a vessel (Mukti, 2022). Thus, the next 

section provides more comprehensive examples and applications of the Operational Matrix Framework. 

 

Table 7: The general template of the Operational Matrix framework 

 

Formulation Number of Arcs Number of Nodes 

Objective function 

Coefficients associated with the LP formulation 
Constraints, such as 

equality, inequality, and 

bounds 

 

 

3. APPLICATIONS OF THE OPERATIONAL MATRIX FRAMEWORK 
 

To better understand the proposed Operational Matrix Framework, this section presents three examples: the 

application of the Operational Matrix Framework to a simple “transportation” Non-Simultaneous Multi 

Commodity Flow (NSMCF) problem (Trapp, 2015); the application of the Operational Matrix Framework to a 

simplified Power and Propulsion Systems (PPS) submarine (SSK) problem (Mukti et al., 2021); and lastly, the 

application of the Operational Matrix Framework for a high-level SSK problem (Mukti, 2022). 

 

3.1  Operational Matrix for a simple NSMCF problem 
 

In this section, the use of an operational matrix framework for a simple NSMCF problem is presented. This is 

given in Figure 3 and the properties of the nodes and arcs in Table 8 and Table 9, respectively. In this example, 

there are two source nodes (A and E in green); two hub or intermediate nodes (C and D in black); and two user 

nodes (B and F in red). The top part of Figure 3 shows that the objective function result “OF” is equal to zero, as 

there is no flow yet in the network. Each arc has objective function “cost” 𝑐𝑖,𝑗 and flow capacity 𝑢𝑖,𝑗 in a form of 

𝑐𝑖,𝑗 ∗  𝑢𝑖,𝑗 = 𝑂𝐹𝑖,𝑗. Thus, Figure 3 shows the value of 𝑢𝑖,𝑗 at each arc is zero before the solver is used.   



 

 

 
 

Figure 3: A simple NSMCF network problem(Trapp, 2015) coloured and revisited using the Operational 

Matrix framework before the NFO solver has been applied in this network 

 

Table 8: Node properties of a simple NSCMF problem in Figure 3 so derived from Trapp (2015) node 

labelling, node type, and data type were added 

 

Node 𝒏 Type Data Notation 𝒃𝒊 value/bounds 

A or 1 Source Output 𝑏𝐴 ≥ 0 

B or 2 Target Input 𝑏𝐵 10 

C or 3 Hub Input 𝑏𝐶  0 

D or 4 Hub Input 𝑏𝐷 0 

E or 5 Source Output 𝑏𝐸 ≥ 0 

F or 6 Target Input 𝑏𝐹 5 

 

 

Table 9: Arc properties of the NSCMF network problem in Figure 3 connecting node 𝒊 to node 𝒋 outlined 

in Table 8 so derived from Trapp (2015) 

 

Arc (𝒊, 𝒋) Cost 𝒄𝒊,𝒋 Cost 𝒄𝒊,𝒋 Value Capacity 𝒖𝒊,𝒋 Capacity 𝒖𝒊,𝒋 Value 

(𝑨, 𝑩) 𝒄𝑨,𝑩 5 𝒖𝑨,𝑩 15 

(𝑨, 𝑪) 𝒄𝑨,𝑪 2 𝒖𝑨,𝑪 10 

(𝑩,𝑫) 𝒄𝑩,𝑫 2 𝒖𝑩,𝑫 10 

(𝑪, 𝑫) 𝒄𝑪,𝑫 10 𝒖𝑪,𝑫 10 

(𝑪, 𝑬) 𝒄𝑪,𝑬 1 𝒖𝑪,𝑬 10 

(𝑫, 𝑭) 𝒄𝑫,𝑭 1 𝒖𝑫,𝑭 10 

(𝑬, 𝑭) 𝒄𝑬,𝑭 1 𝒖𝑬,𝑭 15 

  

 

The objective function of this linear programming was to minimise the total value of the multiplication between 

the objective function coefficient 𝑐𝑖,𝑗  and arc flow capacity 𝑢𝑖,𝑗. Compared to the simple Network Flow 

Optimisation in Figure 1, the flowpath in this problem can be bidirectional, i.e., it can change direction (but only 

one direction/ non-simultaneous) in an operating condition. This means the flow variable 𝑥𝑖,𝑗 can be positive or 

negative. Thus, inequality constraints, known as the ‘capacity roll-up' (Trapp, 2015), were required to ensure the 

flow capacity 𝑢𝑖,𝑗 is always positive as does the multiplication between the objective function coefficient 𝑐𝑖,𝑗 and 

arc flow capacity 𝑢𝑖,𝑗 regardless the sign (direction) of the flow variable 𝑥𝑖,𝑗. Such a formulation is summarised 

in Table 10.  





 

 

Using the same procedure as outlined in Section 3.1, the linear programming formulation in Table 10 is then 

presented as a [23 × 21] Operational Matrix and outlined in Table 11. The network solution is also included in 

brackets to understand the relationship between the objective function and the constraints of the linear 

programming formulation.  

 

The network solution, which consists of values in brackets in the matrix, were divided into three groups based on 

the number of columns in Table 10. The first seven columns (black) give the flow capacity 𝑈𝑖,𝑗  values, whereas 

the second seven columns (blue) give the flow variable 𝑥𝑖,𝑗 values. The remainder values, which are in columns 

15 to 20 (green or red), give the amount of supply or demand of the commodity 𝑏𝑖. The supply values (green) are 

part of the output while the demand values are part of the predefined input as shown in Table 8. 

 

The first row of the matrix gives the objective function. The values, that are not in the bracket in the first seven 

columns in this row, provide coefficients 𝜇𝑖,𝑗 for the objective function, and the remaining columns (8 to 20) were 

set to zero because the flow capacity 𝑈𝑖,𝑗 (black) was the variable that was minimised, not the flow variable 𝑥𝑖,𝑗 

(blue), nor the commodity 𝑏𝑖 (green and red). 

 

Values at rows 2 to 7 and the first seven columns are zero because these rows were given by continuity constraints. 

Continuity is given by the equality constraints matrix, which consists of rows 2 to 7 and columns 8 to 21 to model 

six continuity constraints in Table 10. Values +1 and -1 in purple represent coefficients of continuity constraints. 

The realisation of ‘capacity roll-up’ (Trapp, 2015) that connects the flow variable 𝑥𝑖,𝑗 (blue) and the flow capacity 

𝑈𝑖,𝑗 was applied in the inequality constraints matrix located at rows 8 to 23 and columns 1 to 14 and 21. Values -

1 (dark orange) in this region indicate coefficients for the capacity roll-up (Trapp, 2015). As this formulation was 

applied to arcs instead of nodes, the remaining values were seen for the inequality constraints matrix, situated at 

rows 8 to 21 and columns 15 to 21.  

 

Rows 22 to 23 and columns 1 to 14 show the lower bounds and the upper bounds for the flow capacity 𝑈𝑖,𝑗  

(black) and the flow variable 𝑥𝑖,𝑗 (blue), respectively. The flow capacity 𝑈𝑖,𝑗 could be used to limit the possible 

maximum flow capacity at each arc. However, such a formulation was not used and thus the flow capacity 𝑈𝑖,𝑗 

could be any positive values. Lower bounds and upper bounds that define the supply or demand amount of 

commodity 𝑏𝑖 are located in the same row but in different columns, which are 15 to 20. 

 
Arrows were added to reveal the relationship between various values and coefficients of the linear programming 

formulation in the matrix. Although all elements (i.e., those without bracket) in the Operational Matrix provide 

the input of the linear programming formulation, bounds (situated at rows 22 to 23 and columns 15 to 20) are key 

inputs in this formulation. Therefore, the arrows are originated from this input, which directly constrains the 

commodity 𝑏𝑖, the flow variable 𝑥𝑖,𝑗, and then the flow capacity 𝑈𝑖,𝑗 solutions. The flow capacity 𝑈𝑖,𝑗  and the flow 

variable 𝑥𝑖,𝑗 solutions are also constrained by bounds located at rows 22 to 23 and columns 1 to 14. 

 

 





 

 

The Operational Matrix solution is visualised as a network. As shown in Figure 4, the multiplication between the 

“cost” coefficient 𝑐𝑖,𝑗 and the flow capacity 𝑈𝑖,𝑗 solution is shown as the label for each arc. Consistent with the 

Operational Matrix in Table 11, at the top part of Figure 4 the total objective function (OF) value is 45 (i.e., 15 

from Arc (𝐸, 𝐹) + 10 from Arc (𝐷, 𝐹) +20 from Arc (𝐵, 𝐷) =45). 

 

 
 

Figure 4: The network flow solution for a simple “transportation” NSMCF network problem from Trapp 

(2015), revisited using the proposed Operational Matrix framework 

 

 

The solution shown in Figure 4 would have been different if, for example, Arc (𝐵, 𝐷) is unavailable or damaged. 

This has been referred to as the minus one (M-1) survivability, which guarantees the specified demands in the 

network can be met with a minimum ‘”cost” flow although an arc is assumed to be lost (i.e., flow variable 𝑥𝑖,𝑗 = 

0) in a given loss scenario (Trapp, 2015). Thus, if there are seven arcs, as in this example, there are seven arc loss 

scenarios in the linear programming formulations. Once those formulations are solved, the ‘aggregate’ solution, 

which is a term introduced by Robinson (2018), then captures maximum capacity flows in those loss scenarios 

i.e., an arc from the aggregate solution is sized to accommodate all possible arc flow capacities (𝑈𝑖,𝑗) in those loss 

scenarios. The application of such formulations in the Operational Matrix is now discussed. 

 

To simulate arc loss scenarios for this simple “transportation” NSMCF example, the formulation becomes 

multicommodity or multiflow conditions (i.e., not just one flow condition as in Figure 4). Thus, more than one set 

of constraints could be considered where each set of constraints represents an arc loss scenario and would be 

incorporated in a ‘global’ objective function (Trapp, 2015). This means the implementation of multiflow 

conditions would result in a large number of constraints in the Operational Matrix, e.g., rows 7 to 23 and columns 

8 to 21 of Table 11 will expand seven fold (i.e., necessary in this example for seven arc loss scenarios). Since this 

expansion depends on the number of arcs 𝑎 and number of nodes 𝑛 in a network problem, theoretically, it can be 

mathematically described as a [𝑎2 × (𝑎 + 𝑛)2] matrix. Hence, the scalability of the Operational Matrix for a 

network with (say) 100 arcs and 50 nodes would be about 10,000 rows and 22,000 columns, which would increase 

both the designer’s workload and the solver computational resources.  

 

Rather than expanding the Operational Matrix from that shown in Table 11, the optimisation was solved 

individually in each flow situation, using a loop in MATLAB. Thus, the Operational Matrix was repeated seven 

times (as many as the number of arcs in the network) with a flow variable 𝑥𝑖,𝑗 = 0 for each arc loss scenario. This 

can be referred to as a “single” flow formulation rather than “multi-commodity” flow formulation. The results are 

presented in Table 12 for each pair of networks such that the aim (left) are compared with the results of 

multicommodity formulation from Trapp (2015), which is given in Table 12 (right). In this comparison, some 

differences were found, more specifically, the flow path of scenarios (a), (c), (e), and (f), which are marked with 

an asterisk (*) in Table 12. These flow path discrepancies reveal that in those arc loss scenarios, the single flow 

formulation always gives a local minimum, i.e., the multicommodity formulation in some cases results in a higher 

objective function (OF) value than the single flow formulation.





 

 

Despite the difference in terms of the local minima, the single flow formulation gives the same aggregate result 

as the multicommodity formulation (see the aggregate solution at the bottom part of Table 12). This confirms that 

the same aggregate solution in this specific NSMCF example can be obtained more efficiently with fewer 

constraints without the need to include all arc loss scenarios in the global objective function. Therefore, this 

example suggests that by using the proposed Operational Matrix Framework, the input required for the NFO could 

potentially be easily manipulated and reduced. This would be more efficient for quick distributed ship service 

systems sizing focused investigations and thus more appropriate for early-stage ship design applications. 

 

The next section provides the application of the Operational Matrix Framework to simplified power and 

propulsion systems in a diesel-powered submarine. 

 

3.2  The Operational Matrix applied to simplified submarine power and propulsion 

systems 
 

This section describes the Operational Matrix Framework used to solve a simplified power and propulsion systems 

(PPS) SUBFLOW problem outlined in (Mukti et al., 2021). In the SUBFLOW formulation, there are only two 

broad types of nodes: terminal nodes and hub nodes (Mukti, 2022). Terminal nodes were used to model sources 

or sinks at the extremities of the flow. The extremities in the network were identified by the number of in-degree 

and out-degree flows. If a terminal node has only one or multiple out-degree flows (diverging), that node was 

taken to be a source. Conversely, if the flow(s) were converging and there were no out-degree flow(s), that node 

would have been considered as a sink/ target. Figure 5 shows the PPS configuration of a diesel-powered submarine 

(SSK) study, which was taken from a 3D Paramarine-SURFCON synthesis process (Mukti et al., 2021).  

 

 
Figure 5: A simplified PPS architecture displayed in Paramarine-SURFCON (top) translated into 

MATLAB model for the SUBFLOW analysis (bottom) on the SSK Case Study 

 

The simplified PPS 3D model above was then taken as a basis for the logical network as shown in Figure 6 with 

the network properties in Table 13. Figure 6 shows the PPS ring-main configuration network consists of 32 nodes 

and 36 arcs. There are two Propulsion Motors (PMs) as target (user) nodes, four Power Generations (PGs) as 

source nodes, and two electrical Stored Energy Devices (SEDs). The SED nodes can be the demand nodes during 

a snorting operating condition and can be supply nodes during a submerged operating condition. The rest of the 

nodes in the PPS network are hub or junction nodes. The nodes properties in Table 13 had to be defined from 

design requirements, i.e., the demanded power was based on the baseline SSK design (Mukti et al., 2021).  

  



 

 

 
 

Figure 6: Nodes labelling to the PPS architecturen MATLAB (not to scale) 

 

Table 13: The summary of the power commodity in snorting and transit 

 

System 

Component 

Supply 𝒀𝒔 

(kW) 

Demand 𝒀𝒕 

(kW) 

Node ID 

(Figure 6) 

PM aft - 
346 

9 

PM fwd - 11 

PG 1 ap 1600 (max) - 15 

PG 2 as 1600 (max) - 21 

PG 3 fp 1600 (max) - 17 

PG 4 fs 1600 (max) - 23 

SED aft - 2930 13 

SED fwd - 2930 19 

 

As an early development of SUBFLOW formulation as outlined in Table 14, this PPS example was kept simple 

(i.e., it does not represent myriad components in the actual submarine PPS). The equations are now briefly 

described in turn, the reasonings for the formulation are addressed in detail in (Mukti et al., 2021). 

 

Table 14: Linear programming formulation and realisation of a simplified PPS SUBFLOW problem 

 

Linear 
Programming 
Formulation 

Mathematical Notation Realisation 

Objective 
Function: 

∑ (𝛼 𝛿𝑖,𝑗 + 𝛽 𝛿𝑖,𝑗 + 𝜆𝑖,𝑗  𝑃𝑖,𝑗)

(𝑖,𝑗)∈𝑎

 (𝛼 𝛿1,2 + 𝛽 𝛿1,2 + 𝜆1,2 𝑃1,2) + ⋯ 

(𝛼 𝛿31,32 + 𝛽 𝛿31,32 + 𝜆31,32 𝑃31,32) 

Subject To 

Continuity ∑ 𝑥𝑖,𝑗
𝑘

𝑘

(𝑖,𝑗)∈𝑎

− ∑ 𝑥𝑗.𝑖
𝑘

𝑘

(𝑖,𝑗)∈𝑎

= 𝛾𝑖
𝑘  

𝑥1,2
𝑘 − 𝑥25,1

𝑘 = 𝛾1
𝑘 … 

𝑥32,8
𝑘 − 𝑥31,32

𝑘 = 𝛾32
𝑘  

Capacity 
Rollup 

|𝑥𝑖𝑗
𝑘 | ≤ 𝑃𝑖𝑗

𝑘  
|𝑥1,2

𝑘 | ≤ 𝑃1,2
𝑘  … 

|𝑥31,32
𝑘 | ≤ 𝑃31,32

𝑘  

Inequality 
constraints 

𝛾𝑠
𝑘 ≤ 𝑌𝑠

𝑘  𝛾15
𝑘 ≤ 𝑌15

𝑘  … 𝛾23
𝑘 ≤ 𝑌23

𝑘  

Bounds 

𝛾ℎ
𝑘 = 0 𝛾ℎ

𝑘 = 0 

∑ 𝛾𝑡
𝑘

𝑘

(𝑡)∈𝑛

 = 𝑌𝑡
𝑘  

𝛾𝑡
𝑘 = 𝑌𝑡

𝑘  

𝛾9
𝑘 + 𝛾11

𝑘 = 𝑌𝑃𝑀
𝑘  

𝛾13
𝑘 = 𝑌13

𝑘  
𝛾19

𝑘 = 𝑌19
𝑘  

𝑃𝑖,𝑗
𝑘  ≥  0 𝑃1,2

𝑘  ≥  0 …. 𝑃31,32
𝑘  ≥  0 

Operating 
Scenario 

𝑃𝑖,𝑗
𝑘,𝑚 = 0 𝑃1,2

𝑘,𝑚 = 0 … 𝑃31,32
𝑘,𝑚 = 0 

Indices 𝛿(𝑖, 𝑗) ∈ {0,1} 𝛿(𝑖, 𝑗) ∈ {0,1} 

Capturing 
aggregate 
solution 

𝑃𝑖,𝑗 = max
(𝑘,𝑚)∈𝐾,𝑀

(𝑃𝑖,𝑗
𝑘,𝑚) 

𝑃1,2 = max
(𝑘,𝑚)∈𝐾,𝑀

(𝑃1,2
𝑘,𝑚)…. 

𝑃31,32 = max
(𝑘,𝑚)∈𝐾,𝑀

(𝑃31,32
𝑘,𝑚 ) 

  



 

 

In this example, the SUBFLOW formulation adopts the M-1 survivability (Trapp, 2015) by looping a 144 × 176 

Operational Matrix (see Table 16) as many as the quantity of arcs in the PPS network, i.e., 32 arcs. The objective 

function for the PPS study, which is given in Table 14, is in the first row and columns 1 to 108 in the Operational 

Matrix (see Table 16). To define variables 𝛼 and 𝛽 in (located in the first row and the first 72 columns) there were 

two assumed ‘standard’ edge components. 

 

In this formulation, the network solution can be used into two different ways. The first one was termed as the 

‘binary variables’ method that minimised the space taken by PPS connections using coefficients 𝛼 and 𝛽. These 

coefficients categorised arcs in the PPS network to a certain standard edge component via binary decisions δ𝑖,𝑗. 

The second one was the ‘integer variables’ method, which also minimised the value of multiplication between the 

power to volume ratio 𝜆𝑖,𝑗 and the power 𝑃𝑖,𝑗. The power to volume ratio 𝜆𝑖,𝑗 quantifies the power 𝑃𝑖,𝑗 for each set 

of arcs connecting a node 𝑖 and a node 𝑗 into a discrete volume. By assuming some variables related to the PPS 

cabling specifications, the power to volume ratio 𝜆𝑖,𝑗 was obtained. Since there were unique x, y, z locations for 

each node from the DBB synthesis, the distance between nodes 𝐿(𝑖, 𝑗)  could be calculated (see Table 15). 

 

Table 15: Assumed variables in the PPS study 

 

Variable Description Value 

𝛼 

Binary coefficient of first 
category for cable sizing via 
the binary variables in the 

objective function 

1.4 MW 

𝛽 

Binary coefficient of second 
category for cable sizing via 
the binary variables in the 

objective function 

4.8 MW 

𝜆𝑖,𝑗 

Power to volume ratio for 
sizing via the integer 

variables in th objective 
function 

1.043 × 10−5𝑚2

𝑘𝑊
𝐿𝑖𝑗  

 

In this case study, SUBFLOW did not just seek the minimum space for PPS cabling but also satisfied several 

constraints. These constraints were developed to show the distinctive SSK PPS operating conditions. In these 

constraints, 𝑘 is an indexed scenario within a set of operating conditions 𝐾 to represent various operating 

conditions, such as snorting and submerged conditions. In this PPS study, only the snorting (and transit) condition 

was considered, where the SEDs become the highest load in the PPS network, letting operating condition 𝑘 = 1. 

The continuity formulation ensures the flow variable or flow path 𝑥 entering and leaving a node 𝑛 from a node 𝑖 
or 𝑗 within a set of nodes 𝑛 is equal to the amount of commodity 𝛾 at that node 𝑛 and is preserved throughout the 

arcs 𝐴, except at relevant sources and targets. This equation is indicated in rows 2 to 33 and columns 109 to 176 

in the Operational Matrix (Table 16). 

 

For bidirectionality, the flow variable 𝑥𝑖,𝑗 was ‘rolled up’ (Trapp, 2015) and converted to power capacity flow 𝑃𝑖,𝑗 

as the decision variables in SUBFLOW. Thus, the required power 𝑃𝑖𝑗 , as the decision variables in the SUBFLOW 

formulation, is always positive. This formulation is located in two parts in the Operational Matrix (see Table 16): 

rows 35 to 106 and columns 72 to 144; rows 143 to 144 and columns 109 to 144. The bounds in the formulation 

define the amount of power source and demand 𝑌 in the PPS network. The source nodes in the PPS study were 

the PGs, i.e., nodes 15, 17, 21, and 23 (see Table 16). This equation is assigned at rows 143 to 144 and columns 

145 to 176 in the Operational Matrix framework. The bounds for hub nodes were set to zero. The examples of 

hub nodes in the PPS study were nodes 1, 2, 3, etc (see Figure 6). This equation is assigned at rows 143 to 144 

and columns 145 to 176 in the Operational Matrix. 

 

For applying the M-1 survivability by Trapp (2015) in this PPS network problem, each operating condition 𝑘 is 

associated with an edge loss scenario 𝑚 (the flow was set to zero) within a set of damaged scenarios 𝑀. This 

equation was applied by setting the upper bound of a power capacity flow 𝑃𝑖,𝑗 to zero in the Operational Matrix, 

which is located at row 144 and columns 72 to 108. This setup forced the solver to be unable to use that arc and 

then search for an alternative set of flowpaths in the network. 

 





 

 

The 𝛿 in Equation in Table 16 serves as the binary decision to classify a capacity of an edge 𝑖 to 𝑗 to achieve 

certain standards for an edge component (type 𝛼 and 𝛽). This equation is assigned at rows 143 to 144 and columns 

1 to 72 in the Operational Matrix (see Table 16). 

 

The redundant Propulsion Motors (PM)s were set as user nodes, but the solver could only select one PM to be 

online in an operating condition 𝑘. Other user nodes in the same operating condition (snorting) were set as the 

hard constraints. These are the batteries (SED) charging demands. Therefore, in the PPS study, the user nodes 𝑡 

were PMs and SEDs (nodes 9, 11, 13 and 19 in Table 14). These equations are shown in rows 34 and 143 to 144 

and columns 145 to 176 in the Operational Matrix (see Table 16). Finally, the network solutions from the solver, 

which consisted of numerical data in a matrix, were presented in Table 17. This used the last equation in Table 

14. 

 

Using the Operational Matrix framework, the solver was able to find the solutions. Table 17 shows three different 

set of network solutions. The first solution is referred to as a “conservative” solution as it was obtained by selecting 

the maximum possible power flow in the PPS problem, i.e., maximum power available from the four PGs. The 

second and third solutions were based on the Objective Function of the SUBFLOW PPS explained above. The 

three solutions can be used as a basis for sizing the PPS cabling although it was recognised that the aft part of the 

PPS network would have required further operating scenarios 𝑘 to be considered beyond snorting and transit (e.g., 

sprint condition). In this simple PPS example, there were found to be three possible options, the designer was able 

to choose between a smaller space solution (3 m3 and 5 m3) or the conservative solution (10 m3) for the PPS cable 

sizing. Another example is provided and thus the next section outlines another version of SUBFLOW formulation 

for an SSK power load network at a high level. 

 

3.3 Applying the Operational Matrix using high-level submarine power sizing 

variables 
 

Network can also be used to represent the constants, coefficients, and variables within the concept design model 

as opposed to the items of the distributed ship service systems. This means the nodes are not directly representing 

the actual distributed ship service systems equipment unlike the previous examples. Therefore, a mathematical 

relationship for diesel power (𝑃𝐷𝐼𝐸𝑆) sizing was used, which is given in Figure 7 (top) (Burcher and Rydill, 1994). 

This algorithm expresses that the power output that a diesel engine fit must be able to satisfy the electric service 

demand for charging batteries, propulsion load, and hotel load, as well as the likely inefficiencies and margins 

required to accomplish snorting operations.  

 

 
 

Figure 7:  A high level SSK power system problem based on to the power sizing algorithm due to Burcher 

& Rydill (1994)  



 

 

Table 17: Sizing results of the Power and Propulsion Systems (PPS) study 

 

Arc 

No 

Node Power to 

volume 

ratio 𝝀𝒊,𝒋 

(m3/kW) 

Conservative 

Result 

Integer 

Variables 

Result 

Binary Variables Result 

𝑖 𝑗 

Power 

𝑃𝑖,𝑗 

Volume 

𝑉𝑖,𝑗 

Power 

𝑃𝑖,𝑗 

Volume 

𝑉𝑖,𝑗 Alpha 

𝛼 

Beta 

𝛽 

Power 

𝑃𝑖,𝑗 

Volume 

𝑉𝑖,𝑗 

(kW) (m3) (kW) (m3) (kW) (m3) 

1 1 2 5.52E-05 6291 0.347 0 0.000 - - 0 0.000 

2 1 25 8.68E-05 6291 0.546 0 0.000 - - 0 0.000 

3 2 3 5.84E-05 6291 0.367 346 0.020 yes - 1400 0.082 

4 2 10 4.31E-05 6291 0.271 346 0.015 yes - 1400 0.060 

5 3 4 4.02E-06 6291 0.025 1401 0.006 yes - 1400 0.006 

6 3 12 4.31E-05 6291 0.271 1401 0.060 yes - 1400 0.060 

7 4 5 7.72E-05 6291 0.486 3280 0.253 - yes 4890 0.378 

8 4 14 4.31E-05 6291 0.271 2934 0.127 - yes 4890 0.211 

9 5 6 7.30E-05 6291 0.459 1680 0.123 - yes 4890 0.357 

10 5 16 1.18E-05 6291 0.074 1600 0.019 - yes 4890 0.058 

11 6 7 1.71E-04 6291 1.076 3014 0.515 - yes 4890 0.836 

12 6 18 1.18E-05 6291 0.074 1600 0.019 - yes 4890 0.058 

13 7 8 1.05E-04 6291 0.660 0 0.000 - - 0 0.147 

14 7 20 4.31E-05 6291 0.271 3014 0.130 - yes 4890 0.211 

15 8 32 8.68E-05 6291 0.546 0 0.000 - - 0 0.121 

16 9 10 2.61E-06 6291 0.016 346 0.001 yes - 1400 0.004 

17 10 26 4.36E-05 6291 0.275 0 0.000 - - 0 0.000 

18 11 12 2.61E-06 6291 0.016 346 0.001 yes - 1400 0.004 

19 12 27 4.36E-05 6291 0.275 1401 0.061 yes - 1400 0.061 

20 13 14 2.74E-05 6291 0.172 2934 0.080 - yes 4890 0.134 

21 14 28 4.36E-05 6291 0.275 2934 0.128 - yes 4890 0.213 

22 15 16 2.61E-06 6291 0.016 1600 0.004 - yes 4890 0.013 

23 17 18 2.61E-06 6291 0.016 1600 0.004 - yes 4890 0.013 

24 19 20 2.74E-05 6291 0.172 2934 0.080 - yes 4890 0.134 

25 20 31 4.36E-05 6291 0.275 3014 0.132 - yes 4890 0.213 

26 21 22 2.61E-06 6291 0.016 1600 0.004 - yes 4890 0.013 

27 22 29 1.24E-05 6291 0.078 1600 0.020 - yes 4890 0.060 

28 23 24 2.61E-06 6291 0.016 1600 0.004 - yes 4890 0.013 

29 24 30 1.24E-05 6291 0.078 1600 0.020 - yes 4890 0.060 

30 25 26 5.52E-05 6291 0.347 0 0.000 - - 0 0.000 

31 26 27 5.84E-05 6291 0.367 0 0.000 - - 0 0.000 

32 27 28 4.02E-06 6291 0.025 1401 0.006 yes - 1400 0.006 

33 28 29 7.72E-05 6291 0.486 3280 0.253 - yes 4890 0.378 

34 29 30 7.30E-05 6291 0.459 1680 0.123 - yes 4890 0.357 

35 30 31 1.71E-04 6291 1.076 3014 0.515 - yes 4890 0.836 

36 31 32 1.05E-04 6291 0.660 0 0.000 - - 0 0.147 

Total Volume 10.865  2.723    5.243 

  



 

 

The network in Figure 7 shows the hierarchal sources and sinks of a SSK power system with several nodes starting 

from the fuel (oil) tankage node as the source of energy followed by the diesel generator node (quantified by 

𝑃𝐷𝐼𝐸𝑆), which converts the fuel is chemical energy (brown) to electric energy. The electrical energy is then 

converted and distributed by a power converter node to the three main electric loads which are coloured in 

magenta: the energy storage or battery charging for fully submerged operation (B); the hotel load in the snorting 

operation (D); and the propulsion load in snorting operations (C). Further nodes have been modelled to represent 

margins (coloured in blue) for battery charging (A) and submerged energy (B), as well as efficiencies (F and E) 

coloured in yellow, which contribute to energy waste or power loss. The detailed heat due to battery charging and 

hotel load in the snorting operation was not considered in this modelling. 

 

The properties of the nodes shown in Figure 7 are given in Table 18. The source node in this study was the Fuel 

Oil (FO) node, while the rest of the terminal nodes were sinks and between the terminal nodes, there were hub 

nodes. Unlike terminal nodes, hub nodes have to have at least one in-degree and one out-degree flow. The hub 

nodes shown in Table 18 are the Diesel Generator (DG), the Power Converter (PC), the Stored Energy (SE), the 

Margin Battery (MM), the Load Submerged (LS), Motor Submerged (MS), and Motor Snort (MT). Compared to 

the AFO approach (Brown, 2020), each arc in the SUBFLOW network also focuses on one commodity, which is 

energy (chemical, electrics, mechanical, or heat loss). However, in the AFO approach, there could be a non-energy 

flow, such as data flow (carrying binary 0 and 1 numerical data), as the ‘parallel’ commodity in the AFO 

formulation (Robinson, 2018). Reducing the number of commodities within the SUBFLOW then reduced the 

number of inputs and the complication in the network formulation, making the SUBFLOW more appropriate to 

be applied early in the design process, as in the implementation shown in Table 18. The energy storage was also 

explicitly modelled as the Load Submerged (LS) node in this network. 

 

Table 18: Nodes properties for an SSK power system network in Figure 7 

 

Node Name 
Relevant 

Variable 

Node 

Identification 
SUBFLOW Setup Node Type Data 

Fuel Oil 𝑃𝐹𝑢𝑒𝑙  FO 𝑃𝐹𝑂 ≥ 0 Terminal (Output) 

Diesel Generator 𝑃𝐷𝑖𝑒𝑠 DG 𝑃𝐷𝐺 ≥ 0 Hub (Output) 

Power Converter 𝑃𝐶𝑜𝑛𝑣 PC 𝑃𝑃𝐶 ≥ 0 Hub (Output) 

Stored Energy 𝑃𝐵𝑎𝑡𝑡  SE 𝑃𝑆𝐸 ≥ 0 Hub (Output) 

Margin Battery 𝑚 MM 𝑃𝑀𝑀 ≥ 0 Hub (Output) 

Load Submerged - LS 𝑃𝐿𝑆 ≥ 0 Hub (Output) 

Margin Energy 𝑥 MX 𝑃𝑀𝑋 ≥ 0 Terminal (Output) 

Hotel Submerged 𝐻𝑠𝑢𝑏  HS 𝑷𝑯𝑺 = 𝑯𝒔𝒖𝒃 Terminal 280 kW 

Motor Submerged 𝑃𝑀𝑜𝑡𝑜𝑟
′′  MS 𝑃𝑀𝑆 ≥ 0 Hub (Output) 

Velocity Submerged 𝑃𝑠
′′ VS 𝑷𝑽𝑺 = 𝑷𝒔

′′ Terminal 68 kW 

Motor Snort 𝑃𝑀𝑜𝑡𝑜𝑟
′  MT 𝑃𝑀𝑇 ≥ 0 Hub (Output) 

Velocity Snort 𝑃𝑠
′ VT 𝑃𝑉𝑇 = 𝑃𝑠

′ Terminal (Output) 

Hotel Snort 𝐻𝑠𝑛𝑜𝑟𝑡 HT 𝑃𝐻𝑇 = 𝐻𝑠𝑛𝑜𝑟𝑡 Terminal 224 kW 

Heat Loss - HE 𝑃𝐻𝐸 ≥ 0 Terminal (Output) 

 

In this example, a formulation used in the AFO approach (Robinson, 2018) was applied to continuity constraints 

and to define how much energy could come in and out of a hub node, denoted as an energy coefficient 𝑒𝑖 in this 

SUBFLOW simulation (see Table 19 and the continuity in Table 21). For example, at the Diesel Generator (DG) 

node, 100% of the incoming energy flow from the Fuel Oil (FO) node would be converted to the Power Converter 

(PC) node as the electric energy (48%) and Heat Loss (HE) node (52%). This split could be said to be similar to 

the Sankey diagram that can be used to breaking down energy inputs and outputs (Kennedy and Sankey, 1898). 

Thus, all hub nodes’ energy coefficients 𝑒𝑖 in this SUBFLOW network (Figure 7) are provided in Table 19. 

  



 

 

Table 19: Arcs properties for an SSK power system network in Figure 7 

 

Arc (𝒊, 𝒋) Energy Colour Code 

SUBFLOW Setup  

∑ 𝑃𝑖,𝑗

(𝑖,𝑗)∈𝐸

− 𝑒𝑖𝑃𝑖 = 0 

(FO,DG) Chemical Brown 𝑃𝐹𝑂,𝐷𝐺 = 𝑃𝐹𝑂  

(DG,PC) Electrical Magenta 𝑃𝐷𝐺,𝑃𝐶 = 48% 𝑃𝐷𝐺  

(DG,HE) Heat Yellow 𝑃𝐷𝐺,𝐻𝐸 = 52% 𝑃𝐷𝐺  

(PC,SE) Electrical Magenta 𝑃𝑃𝐶,𝑆𝐸 = 98% 𝑃𝑃𝐶 − 𝑃𝑃𝐶,𝑀𝑇 − 𝑃𝑃𝐶,𝐻𝑇 

(PC,MT) Electrical Magenta 𝑃𝑃𝐶,𝑀𝑇 = 98% 𝑃𝑃𝐶 − 𝑃𝑃𝐶,𝑆𝐸 − 𝑃𝑃𝐶,𝐻𝑇 

(PC,HT) Electrical Magenta 𝑃𝑃𝐶,𝐻𝑇 = 98% 𝑃𝑃𝐶 − 𝑃𝑃𝐶,𝑆𝐸 − 𝑃𝑃𝐶,𝑀𝑇  

(PC,HE) Heat Yellow 𝑃𝑃𝐶,𝐻𝐸 = 2% 𝑃𝐷𝐺  

(SE,MM) Electrical Blue 𝑃𝑆𝐸,𝑀𝑀 =  4.8% 𝑃𝑆𝐸  

(SE,LS) Electrical Magenta 𝑃𝑆𝐸,𝐿𝑆 = 95.2% 𝑃𝑆𝐸  

(MT,HE) Heat Yellow 𝑃𝑀𝑇,𝐻𝐸 = 3% 𝑃𝑀𝑇  

(MT,VT) Mechanical Black 𝑃𝑀𝑇,𝑉𝑇 = 97% 𝑃𝑀𝑇  

(LS,MS) Electrical Magenta 𝑃𝐿𝑆.𝑀𝑆 = 64% 𝑃𝐿𝑆 − 𝑃𝐿𝑆.𝐻𝑆 

(LS,HS) Electrical Magenta 𝑃𝐿𝑆,𝐻𝑆 = 64% 𝑃𝐿𝑆 − 𝑃𝐿𝑆.𝑀𝑆 

(LS,MX) Electrical Blue 𝑃𝐿𝑆,𝑀𝑋 = 36% 𝑃𝐿𝑆  

(MS,HE) Heat Yellow 𝑃𝑀𝑆,𝐻𝐸 = 3% 𝑃𝑀𝑆 

(MS,VS) Mechanical Black 𝑃𝑀𝑆,𝑉𝑆 = 97% 𝑃𝑀𝑆 

 

All arcs in the network were not capped and thus it can be any positive values 0 ≤ 𝑃𝑖,𝑗 ≤ ∞ (or Inf). This will 

also be the case for the supply node, the Fuel Oil (FO) 𝛾𝑠, all hub nodes 𝛾ℎ, and some target nodes 𝛾𝑡, such as the 

Margin Energy (MX), the Motor Submerged (MS), the Motor Snort (MT), and the Heat Loss (HE) (see the bounds 

in Table 14. The capacities of the user nodes 𝛾𝑡 in the network then need to be calculated, which are dependent 

on the operating scenarios (see Table 14). They are the Hotel Submerged (HS), the Velocity Submerged (VS), the 

Velocity Snort (VT), and the Hotel Snort (HT). Finally, the coefficients of the objective function coefficient 𝑐𝑖,𝑗  

in this SUBFLOW example were set to zero (see Objective Function equation in Table 14), because the aim of 

this optimisation example was not to cost the distributed ship service systems configuration, as in the case of 

Trapp’s (2015) NSMCF investigation or Robinson’s (2018) AFO study (including its variants (Parsons et al., 

2020)). In this study, SUBFLOW was used to solve the energy balance, through a linear programming, set of 

equations. This ensured that the total energy demand on the submarine would be equal to the total energy available, 

indicating an initial systems design balance. Thus, in this SUBFLOW example, the network styles were proposed 

on the basis of prior expert knowledge and were deliberately not validated by analysis in early stage of ship design. 

Nonetheless, the SUBFLOW network created could have provided a suitable basis for further analyses in 

subsequent design phases, if required.  

 

Table 20: Linear programming formulation and realisation of an SSK power system network in Figure 7 

 

Linear 
Programming 
Formulation 

Mathematical Notation Realisation 

Objective 
Function: 

𝑚𝑖𝑛. ∑ 𝑐𝑖,𝑗𝑃𝑖,𝑗

(𝑖,𝑗)∈𝑎

 

where 𝑐𝑖,𝑗 = 0 

𝑐𝐹𝑂,𝐷𝐺𝑃𝐹𝑂,𝐷𝐺+. . . +𝑐𝑀𝑆,𝑉𝑆𝑃𝑀𝑆,𝑉𝑆 

 

  



 

 

 

Subject To 

Linear 
Programming 
Formulation 

Mathematical Notation Realisation 

Continuity ∑ 𝑃𝑖,𝑗

(𝑖,𝑗)∈𝐸

− 𝑒𝑖𝑃𝑖 = 0 𝑃𝐹𝑂,𝐷𝐺 − 𝑒𝐹𝑂𝑃𝐹𝑂 = 0… 

𝑃𝐷𝐺,𝐻𝐸 + 𝑃𝑃𝐶,𝐻𝐸 + 𝑃𝑀𝑇,𝐻𝐸 + 𝑃𝑀𝑆,𝐻𝐸 − 𝑒𝐻𝐸𝑃𝐻𝐸 = 0 

Bounds 

0 ≤ 𝑃𝑖,𝑗 ≤ ∞ (or Inf) 
0 ≤ 𝑃𝐹𝑂,𝐷𝐺 ≤ ∞… 

0 ≤ 𝑃𝑀𝑆,𝑉𝑆 ≤ ∞ 

0 ≤ 𝛾𝑠 ≤ ∞ (or Inf) 0 ≤ 𝑃𝐹𝑂 ≤ ∞ 

0 ≤ 𝛾ℎ ≤ ∞ (or Inf) 
0 ≤ 𝑃𝐷𝐺 ≤ ∞, 0 ≤ 𝑃𝑃𝐶 ≤ ∞, 0 ≤ 𝑃𝑆𝐸 ≤ ∞, 
0 ≤ 𝑃𝑀𝑀 ≤ ∞ , 0 ≤ 𝑃𝐿𝑆 ≤ ∞, 0 ≤ 𝑃𝑀𝑆 ≤ ∞, 

0 ≤ 𝑃𝑀𝑇 ≤ ∞ 
0 ≤ 𝛾𝑡 ≤ ∞ (or Inf) 0 ≤ 𝑃𝑀𝑋 ≤ ∞ and 0 ≤ 𝑃𝐻𝐸 ≤ ∞ 

Investigated 
Operating 
Scenarios 

𝛾𝑡 = 𝑌𝑡 𝛾𝐻𝑇 = 𝑌𝐻𝑇 , 𝛾𝑉𝑇 = 𝑌𝑉𝑇 , 𝛾𝑉𝑆 = 𝑌𝑉𝑆, 𝛾𝐻𝑆 = 𝑌𝐻𝑆 

 

The Operational Matrix for this particular SUBFLOW example is outlined in Table 21. Since undirected network 

or bidirectional network contains more information than an undirected network (Mukti, 2022), the size of the 

Operational Matrix would have become quite large if bidirectionality had had to be considered (i.e., a [61 × 47] 
matrix). Nonetheless, in this case, bidirectionality was not necessary as there had to be no backward flow from 

the target to the source nodes and thus the Operational Matrix has only 29 rows and 31 columns. Compared to the 

Operational Matrix for Sections 3.1 and 3.2, the Operational Matrix in this example shows how to arrange the 

energy coefficient from the AFO approach (Parsons et al., 2020) in the matrix, which is reflected as the coefficient 

𝑒𝑖 for the continuity constraints (rows 2 to 27 and columns 17 to 30). 

 

By using the Operational Matrix in Table 21, the solver can provide the network solution as shown in Figure 8. 

Figure 8 shows 5.7 MW of power is transferred from the Fuel Oil node to the Diesel Generator node. The Diesel 

Generator node then converted the 5.7 MW of the fuel flow to 2.7 MW to Power Converter node (as electrical 

flow shown in magenta) and 2.9 MW to Heat Loss node (as waste heat shown in yellow). At the Power Converter 

node, the 2.7 MW of electrical flow was divided into 2.3 MW electrical flow for Stored Energy node, 166 kW for 

Motor Snort node, 224 kW to Hotel Snort node, and 55 kW to Heat Loss node. For the Stored Energy various 

flows simulate how much energy is needed during the submerged operating condition, i.e., a different time domain 

from the snorting operating condition. All of the flows shown in Figure 8 satisfied the SUBFLOW constraints 

given in Table 21. 

 
Figure 8: SUBFLOW solution for an SSK power system





 

 

4. THE OPERATIONAL MATRIX FRAMEWORK APPLIED TO THE UCL 
NETWORK BLOCK APPROACH 
 

Section 3 addresses how the Operational Matrix Framework can be used to assess different types of network flow 

formulations. This section presents the setup of the Operational Matrix Framework that has been adopted in the 

UCL Network Block Approach (Mukti, 2022). Unlike the previous examples, the SUBFLOW formulation in the 

UCL Network Block Approach was devised to be ship design efficient, yet without losing the advantages of 

capturing the complexity of distributed ship service systems using a range of applicable network tools. In the UCL 

Network Block Approach, spreadsheet-based tools are used to define the ship design and its distributed ship 

service systems (Mukti et al., 2022). The tools specific for defining the network configuration and SUBFLOW 

inputs for the distributed ship service systems are the Component Granularity Program (CGP) and System 

Connection Program (SCP) (see (Mukti et al., 2022)). 

 

Table 22 shows the example of the CGP inputs: the type of components (nodes), which were either terminal or 

hub nodes; the equipment load demand or maximum capacity was used to define the lower and upper bounds for 

the SUBFLOW in various operating conditions, for example, snort or sprint submerged); the objective function 

coefficient, which was set to zero; the energy coefficients 𝑒 of each component up to 15 different types of 

distributed ship service systems commodities; and the logical layout (x, y, z coordinates) to create a “logical” 

multiplex network. 

 

The energy coefficients 𝑒 of each component node in Table 22 are defined as follows: 

 

• The energy that enters a node is expelled 100% outside the node (IN=-1). This option was used 

for terminal source nodes, such as fuel, or terminal sink nodes, such as propulsion load. 

 

• The energy that enters a node is dispersed to different types of energy in a form of some fraction 

(IN=fractional OUT). This reflects the Sankey Diagram practice and could have been used for 

electrical consumer nodes, including energy storage. 

 

• The energy that enters a node is determined by the proportion of the energy from at least two 

different nodes in different systems. This option could have been used for modelling the fuel-

air (energy) ratio of the diesel generator.  

 

• The energy that might have entered a node could have been specified as a fraction of the total 

heat received at the node and that fraction of energy that has not been forwarded beyond that 

node (fractional IN=OUT). This choice could be used to describe the ‘coefficient of 

performance’ of cooling systems components. 

 

• A ‘child’ node could receive 100% energy from two parent nodes from different systems and 

then store 100% energy output to that child node. This could have been used to model sink 

nodes on the vessel, for example, a seawater node. 





 

 

Like the CGP, the System Connection Program (SCP) also provides necessary inputs for the SUBFLOW 

formulation, particularly for the connections/arcs. As shown in Table 23, the input consists of the identification 

of distributed ship service systems commodity/ technology (e.g., DT for data, EL for electrics), the minimum and 

maximum capacity of the connection based on a given scenario (e.g., snort or sprint submerged for submarine 

case), and the objective function coefficient, which was also set to zero.  

 

Table 23: Example of the SCP inputs for performing SUB/RFLOW 

 

 
 

Once these inputs had been defined, the inputs above (captured in CGP and SCP) needed to be converted into an 

Operational Matrix format so that the solver in MATLAB could produce the SUBFLOW network solution. The 

generation of the Operational Matrix format can be demanding in the early stage of ship design if it was not 

automated as there can be thousands of rows and columns for defining a network of distributed ship service 

systems SUBFLOW problem. Thus, to make SUBFLOW as efficient as possible, the generation of the Operational 

Matrix need to be automated (see Figure 9).  



 

 

 
Figure 9: Automatic generation of the Operational Matrix from CGP and SCP inputs 

 

To make an automated generation of the Operational Matrix possible, a MATLAB script was developed. Figure 

10 shows the process including reading the CGP and SCP inputs and storing them into the network matrix in 

MATLAB. The SUBFLOW formulation is next converted into the Operational Matrix format and the Operational 

Matrix is fed into a solver in MATLAB to find the SUBFLOW solution. If the solver fails to find a set of feasible 

solutions, the CGP and SCP inputs need to be evaluated and altered. Once the SUBFLOW solution is found, the 

data is stored back in the network matrix in MATLAB. 

 

 
 

Figure 10: The procedure for automatic Operational Matrix generation 

  

Table 22 Table 23 



 

 

The pattern of the Operational Matrix for the UCL Network Block Approach is given in Table 24. The number of 

columns of the Operational Matrix depends on the number of arcs in the SUBFLOW network. This matrix is 

divided into several groups of boxes in rows. The first box of the matrix in Table 24 gives the objective function 

coefficients, which is set to zero to obtain the energy balance. The second box is allocated to continuity as well as 

the energy coefficient 𝑒 for each node, which can be positive or negative. The third box contains the inequality 

constraints and the last two boxes consists of the lower bounds and the upper bounds. The lower and upper bounds 

are where the ‘operational’ aspect is defined, i.e., the supply or demand of a commodity of a node in each operating 

condition. Therefore, a different operating condition (e.g., snort and sprint submerged) requires a different 

Operational Matrix, which can be treated as a loop in MATLAB (see Figure 11). 

 

 
 

Figure 11: Solving the Operational Matrix based on operating condition(s) 

 

Compared to example Operational Matrices in the previous section, the matrix in Table 24, is scalable and simpler. 

This was to reduce the extent of the SUBFLOW analysis to be commensurate with early stage ship design. 

SUBFLOW was used to perform a steady state simulation of power flow in a distributed ship service systems 

network. SUBFLOW was employed to provide early estimates of the distributed ship service systems space and 

weight input as well as to explore distributed ship service systems options as part of the Requirement Elucidation 

process (Andrews, 2018).  

 

The continuity constraints in the SUBFLOW network for the UCL Network Block Approach were hardcoded, 

i.e., automatically generated. However, the rest of the mathematical model for SUBFLOW formulation could be 

adjusted/ defined in the Component Granularity Program (CGP) and the System Connection Program (SCP). The 

formulation process was iterative and substantial to achieve a feasible network solution, i.e., if the formulation is 

incorrect, the solver will not be able to find the linear programming network solution (see Figure 10). Still, the 

SUBFLOW required more engineering and inputs than parametric approach, such as the configuration of the 

distributed ship service systems, also specifying its properties, and creating mathematical models for the energy 

balance analysis.  

  



 

 

The SUBFLOW in the UCL Network Block Approach allows the style (Andrews, 2018) of distributed ship 

systems to be captured and can aid the designer to understand how a given system functions. Most importantly, 

when combined with the whole ship UCL Design Building Block approach (Andrews and Pawling, 2003), it 

enabled a more realistic distributed ship service systems synthesis to be undertaken. This was thus not just numeric 

but also addressed spatial/architectural aspects which a parametric approach lacking. However, it is not as detailed 

as collaborative analysis tools which are more appropriate to detailed design of such distributed ship service 

systems. Figure 12 shows an example of modelling a range of submarine systems: fuel (FO); electrical (EL); data 

(DT); mechanical (ME); hydraulics (HY); trim and ballast (TB); saltwater (SW); high-pressure air (HP); low-

pressure air (LP); ventilation (HVIN/HE/EX); chilled water (CW); lubricating oil (LO); fresh water (FW) cooling 

systems (see (Mukti, 2022) for details). 

 

 
Figure 12: An example of SUBFLOW network development and solution in the UCL Network Block 

Approach (Mukti, 2022), showing energy flows in various distributed ship service systems 



 

 

 

Table 24: The pseudo-Operational Matrix of SUB/RFLOW in the UCL Network Block Approach 

 

 

 

 

1, 2, … number of arcs 1, 2, … number of arcs 1, 2, … number of arcs  1 

Objective Function 0 .  .  . 0 .  .  . 0 .  .  .  0 

               

Equality 

constraints matrix 

for continuity 

0    +𝑒    +𝑒     

0 

 0  .  . .   or  .  . .   or  .  . .   

  0    −𝑒    −𝑒   

 

. 

. 

. 

   

. 

. 

. 

   

. 

. 

. 

   

               

Inequality 

constraints matrix 

for bidirectionality  

-1    -1    0     

0 

 -1  .  .  .  -1  .  .  .  0  .  .  .  

  -1    -1    0   

 

. 

. 

. 

   
. 

. 
   

. 

. 
   

-1    +1    0     

 -1  .  .  .  +1  .  .  .  0  .  .  .   

  -1    +1    0   

 

. 

. 

. 

   

. 

. 

. 

   

. 

. 

. 

   

               

Lower bounds 

matrix 
.  .  .  0  .  .  . .  .  .  -inf  .  .  . Based on input provided in the 

Component Granularity 

Program (CGP) and the 

System Connection Program 

(SCP) 

  

           

Upper bounds 

matrix 
.  .  .  inf  .  .  . .  .  .  inf  .  .  .   

 



 

 

5. CONCLUSION AND FUTURE WORK 
 

There are several possible applications of the Operational Matrix Framework, such that it could be employed to suit several 

specific network flow formulations. Table 25 shows the high-level comparison between various Network Flow Optimisation 

setups. Generally, the SUB/RFLOW excludes the survivability analysis to allow enhancement in several aspects, such as the 

incorporation of a colour-coded 3D multiplex network with the labels showing how much energy flowing from system to 

system (Figure 12). The Operational Matrix Framework approach has enabled the solvers to be very efficient compared to 

millions of lines of CPLEX scripts (Brown, 2020). Most importantly, SUB/RFLOW enabled the incorporation of the 3D rich 

architecturally centred approach, the UCL DBB approach, which shows the potential benefits in assessing wholeship impact 

of a new (style) of distributed ship service systems design (Mukti, 2022). However, as aforementioned, the design data in the 

UCL Network Block Approach could have provided a suitable basis for further (survivability) analyses in subsequent design 

phases, if required. 

 

Table 25: General comparison between different types of Network Flow Optimisation setup for naval ships 

applications 

 

Formulation 
Network Flow Optimisation for Ship Systems Application 

NSMCF (Trapp, 2015) AFO (Brown, 2020) SUBFLOW (Mukti, 2022) 

Objective Function 
Procurement and 
installation cost 

Procurement and 
installation cost 

None (“constraints only” 
approach to find energy 

balance) 

Solver CPLEX CPLEX 
CPLEX toolbox (or linprog) 

in MATLAB 

Software interface/ 
Programming language 

MATLAB script to 
CPLEX script 

MATLAB script to 
CPLEX script 

Fully in MATLAB using 
Operational Matrix 

Framework 

Survivability analysis Yes Yes No 

Can be used for sizing 
distributed systems 

No Yes Yes 

Application 
Integrated 

Engineering 
Propulsion (IEP) plant 

Surface ship systems 
Submarine/  

Surface ship systems 
(Mukti et al., 2024) 

Using energy coefficient No Yes Yes 

Using flow capacity Yes Yes No 

Hot and cool model Yes Yes No/Simplified 

Multilayer network/ all arcs 
visible to inspect the energy 

flow between systems 
No No 

Yes, using SUB/RFLOW 
Multiplex Framework 

Support 3D rich ship 
architecture definition (e.g., 

equipment arrangement 
and routings) 

No No 
Yes, via Paramarine-

SURFCON 

 

In this paper, studies range from the simplest application of Operational Matrix Framework to an example of one of the more 

complex Operational Matrix applications to the 3D multiplex submarine systems problem in the last section. The use of the 

proposed Operational Matrix Framework can reveal the relationship between objective functions, constraints, bounds, and 

solutions of that linear programming formulation. This is demonstrated particularly by the arrows in Table 11, which shows 

that the network formulation is driven by the constraints at the user nodes, i.e., the lower and upper bounds for the user nodes. 

These values first influence the equality constraints and subsequently the inequality constraints (these are defined earlier in the 

paper). The set of solutions in the inequality constraints is directly influenced by the lower and upper bounds for the inequality 



 

   

constraints. Ultimately, the solver ensures that the objective function produces the possible minimum value for the network 

solution (see the values in the bracket in the first seven columns in the first row of Table 11). 

 

By mapping the coefficients of the linear programming formulation and the network solution in a manner of the Operational 

Matrix Framework, coefficients that drive the network solution could be identified before incorporating more extensive 

cost/survivability coefficients as part of meeting an objective function and responding to further constraints. This gave the ship 

designer awareness, clarity, and confidence in understanding the logical reasoning behind why the solver produces such a 

network solution. Without the Operational Matrix Framework, the linear programming in the UCL Network Block Approach 

would not have been sufficiently simplified for early-stage ship systems sizing applications. An overcomplicated network 

formulation could distract the designer from the main focus of requirement elucidation: to understand the impact of distributed 

ship service systems (DS3) choices on the overall submarine design, which could have consequences for the vessel's overall 

architecture. Thus, the Operational Matrix Framework can be seen to reduce the “black box” nature when using the linear 

programming tool to explore DS3 choices in early stage of ship design. 

 

One of the main areas of future work is to consider whether the existing execution time of the MATLAB script could be further 

improved by incorporating a new solver other than CPLEX toolbox (e.g., MATLAB linprog) to ensure a designer could perform 

the many iterations required to formulate SUB/RFLOW. Another area would be to expand the application of the Operational 

Framework to other complex vessels, including but not limited to various surface warships or oil and gas service vessels 

(Floating Production Storage and Offloading (FPSO) ship, OSVs, drilling ship, etc). This includes expanding the consideration 

of aspects of maintenance, and supportability for evaluating various submarine systems style choices. The Operational Matrix 

Framework could also be developed further for investigating the analysis of energy balances for new systems to achieve net 

zero energy demands for future naval vessels. 
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APPENDIX A 
 

G = digraph([0 1 1 0; 0 0 0 1; 0 0 0 1; 0 0 0 0]); 
G.Nodes.Name = {'Source' 'Hub1' 'Hub2' 'Target'}'; 
 
ops_mtx=[1 1 2 2 0 0 0 0; 
        1 0 1 0 -1 0 0 0; 
        -1 1 0 0 0 -1 0 0; 
        0 0 -1 1 0 0 -1 0; 
        0 -1 0 -1 0 0 0 -1; 
        0 0 0 0 0 0 0 -10; 
        10 10 10 10 inf 0 0 -10]; 
x=linprog(ops_mtx(1,:),[],[],ops_mtx(2:5,:),zeros(4,1),ops_mtx(6,:),ops_mtx(7,:)); 
 
G.Edges.Weight(1) = x(1,1); 
G.Edges.Weight(2) = x(3,1); 
G.Edges.Weight(3) = x(2,1); 
G.Edges.Weight(4) = x(4,1); 
 
G.Edges.LWidths = 7*G.Edges.Weight/max(G.Edges.Weight)+1; p=plot(G); p.LineWidth = 
G.Edges.LWidths; 
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