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ABSTRACT

Early-stage design exploration is crucial since most of the major design decision are locked-in and only
small design modifications are possible at later stages. To assess the performance of the various design
candidates while performing design exploration, there are available methods and tools of various fidelities.
These methods can be combined to form a multi-fidelity (MF) framework that guarantees accuracy through
the high-fidelity model and achieves faster computational speeds through low-fidelity models. The present
study proposes the adoption of information-theoretic entropy to improve a MF design framework based on
Gaussian Processes (GPs). Entropy quantifies the uncertainty associated with the prediction of the design
space. We propose using this uncertainty metric both as a criterion to determine whether further designs
should be sampled to construct a reliable approximation of the design space and as a criterion to establish
in which optimization step the optimization of the covariance matrix for the MF-GPs should be performed.
The approach was tested to benchmark analytical functions and to a ship design problem of an AXEfrigate.
The approach holds potential in practical applications, as it aids in the determination of whether additional
resources should be allocated for high-fidelity analysis to support early-stage exploration.
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INTRODUCTION

Early-stage design of complex engineering systems is critical since it involves making the majority of key design decisions
Mavris et al. (1998); Andrews (2018). These design decisions determine the overall configuration of the vessel, includ-
ing main dimension selection, hull shape, and propulsion plant, among others. Committing to these decisions early in the
design process results in a swift reduction of design freedom and entails a substantial overall cost allocation Mavris et al.
(1998). Hence, it is crucial to perform a thorough exploration of the design space to identify trends and trade-offs, ulti-
mately guiding well-informed design decisions.

In the initial stages of design, the primary focus is on recognizing design trends and crucial trade-offs within the broad de-
sign space Duchateau (2016). Typically, during this design stage, low-fidelity (LF) methods are employed. LF methods are
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computationally cheap but fall short in terms of accuracy. Thus, with such tools, it becomes feasible to evaluate a vast num-
ber of designs. For instance, when assessing motions and loads, linear methods like potential flow can be employed as LF
models. Yet, in certain scenarios, LF methods prove inadequate for the following reasons: (1) LF models may fail to cap-
ture the complex physical behavior of complex engineering systems, and (2) LF methods, by their very nature, are simplifi-
cations derived from more advanced methods, simplified based on assumptions that may not apply to novel designs. When
LF models fail to accurately capture the physical behavior of the system, it becomes necessary to incorporate HF analysis
earlier in the design process. For example, Sapsis (2021) demonstrated the influence of nonlinearities on the seakeeping and
vertical bending moment of the tumblehome hull.

A promising approach to integrating HF analysis earlier into the design process involves the creation of multi-fidelity (MF)
models. In essence, MF models combine LF models with a HF model, aiming to harness the accuracy offered by the HF
model while benefiting from the computational efficiency provided by the LF models. Beran et al. (2020) assert that ‘anal-
ysis or design of a system is considered MF when there is synergistic use of different mathematical descriptions ... in the
analysis or design procedure’. MF models have shown promise in diverse engineering fields, particularly in applications
demanding computationally expensive iterations, such as design applications (e.g., Ng and Willcox (2015)), prediction of
extreme loads (e.g., Drummen et al. (2022)), and solving partial differential equations (e.g., Perdikaris et al. (2017)).

In the context of information theory, entropy serves as a metric for quantifying the amount of information inherent in a mes-
sage Shannon (1948). This concept can be extended to compute the information associated with an event, random variable,
or probability distributions Murphy (2012). In the context of design applications, entropy can function as a metric for as-
sessing the uncertainty associated with predicting the design space. Consequently, entropy can be utilized to enhance design
exploration by quantifying such uncertainty.

Different entropy metrics have been employed to support engineering applications. Nevertheless, to the authors’ best knowl-
edge, a research gap exists in utilizing entropy to enhance a MF design framework for the early-stage design of complex
vessels. Therefore, this research establishes a MF design framework and explores the role of entropy in facilitating the de-
sign exploration of complex vessels. More specifically, the utilization of entropy is proposed to determine the necessary
number of HF simulations for MF design optimization. As noted by Mainini et al. (2022), a mathematical formulation to
determine the required number of HF simulations for MF analysis is currently lacking. The authors suggest that entropy
can be considered as a suitable mathematical formulation for this purpose. Furthermore, as an expansion of Charisi et al.
(2022b), we suggest that entropy can act as an indicator to perform kernel optimization throughout the optimization process.

RELEVANT WORK

Early-stage design exploration of novel vessels with multi-fidelity models

As previously stated, the importance of early-stage design lies in the crucial decisions that shape a vessel’s performance.
To achieve a good design, ship designers must make well-informed decisions. This involves conducting a broad explo-
ration of the design space, considering various concepts Van Oers et al. (2018). The goal of such exploration is to discern
design trends and crucial trade-offs Andrews (2018), rather than offering highly precise values for specific key performance
indicators (KPIs). The difficulty lies in striking a balance between attaining the necessary accuracy and managing com-
putational costs, given our constraints in terms of both computation and time. When designing novel vessels, it becomes
essential to incorporate HF analysis early in the process to effectively capture design trends Charisi et al. (2022a). How-
ever, achieving the required accuracy through HF tools results in escalated costs. These costs can be offset by integrating
HF analysis via MF analysis.

State-of-the-art research incorporates MF analysis in ship design. In this section, characteristic examples of studies are pre-
sented, without aiming for an exhaustive literature review. The design optimization of SWATH hull forms was explored by
Bonfiglio et al. (2018, 2020), who evaluated the vessel’s seakeeping using two methods: a strip theory and a boundary el-
ement method based on the potential flow assumption Bonfiglio et al. (2018). Additionally, the hull forms were assessed



Figure 1: Variability in uncertainty across the design process Mavris et al. (1998)

for calm water resistance using a Boundary Element Method (BEM) formulated approach, assuming a potential flow-like
behavior as the LF model, and a solver based on the unsteady Reynolds-averaged Navier-Stokes (RANS) equation, serving
as the HF model Bonfiglio et al. (2020). The MF model was built based on GPs. Serani et al. (2022) addressed the design
problem of optimizing the DTMB 5415 hull form for seakeeping and resistance. The researchers employed various anal-
ysis models, ranging from potential flow to Reynolds-Averaged Navier-Stokes equations, to solve the physical problem.
Different methods were employed to construct the MF surrogates, namely stochastic radial basis functions, Kriging partial
least squares, augmented expected improvement-based Kriging, and mixed-fidelity neural networks. Gaggero et al. (2022)
tackled the problem optimizing a marine propeller through two methods—utilizing an inviscid potential flow-based BEM
approach as the LF method and employing an inviscid finite volume RANS solver as the HF method. All the studies report
promising results.

As mentioned earlier, the primary objective in early-stage design is to identify the concept that best addresses the design
problem through key decisions. However, a substantial portion of relevant research, including the research studies pre-
sented, has concentrated on hull optimization, primarily emphasizing quantities of interest like resistance or seakeeping.
The authors have envisioned the possibility of advancing such frameworks to earlier stages in the design process to enhance
decision-making effectiveness. The uncertainty of the design space prediction is a significant factor that can be utilized to
facilitate the introduction of such methods earlier on in the design process.

Uncertainty is associated with the lack of knowledge North (2017). While uncertainty is closely connected to risk, the pri-
mary distinction lies in the ability to assign a quantifiable value to risk, a task that proves challenging in the realm of uncer-
tainty Silver (2012). Mavris et al. (1998) highlighted that there is heightened uncertainty in the early phases of the design,
as shown in Figure 1. This uncertainty is introduced by the assumptions, the analysis codes of various fidelities, economic
uncertainty, or technological risks. Using information-theoretic entropy as a metric enables the quantification of uncertainty
in predicting the design space. In this study, the objective is to leverage this uncertainty, measured through entropy, to facil-
itate the early-stage design of innovative vessels.

Information theory: the entropy

According to Martignon (2001), information theory ‘is the mathematical treatment of the concepts, parameters and rules
governing the transmission of messages through communication systems’. In 1948, Claude Shannon laid the foundation
for information theory. The concepts and principles of information theory have expanded far beyond their original appli-



cation. Nowadays, they find application in various domains, including cryptography, machine learning, economics, and
neuroscience. In the context of early-stage design, there is a direct link between design exploration and information theory
via uncertainty. Krus (2013) states that ‘design theory should really be a theory of design information’.

Entropy, a foundational concept in information theory, can be understood as either the measure of information content or the
degree of randomness associated with a discrete random variable Duplantier and Rivasseau (2018). Various mathematical
formulations exist for entropy, with some of the most commonly used ones encompassing relative entropy, or commonly
known as KL divergence, and mutual information. The relevant equations to be employed in this study are presented in a
subsequent section.

Entropy has found application in research problems related to design optimization. Saad and Xue (2023) proposed using
entropy as a means to identify design configurations with a high likelihood of attaining optimal solutions. In such content,
entropy was applied to assess the partial configuration candidates represented as branches in the AND-OR tree, aiding in
the elimination of improbable branches to lead to the optimal outcome. In addition, Krus (2013) suggested that the entropy
rate, which is based on Shannon’s information entropy, can be a performance criterion to characterize the difficulty of dif-
ferent optimization problems. Farhang-Mehr and Azarm (2008) proposed an entropy-based metric to assess the quality of
solution sets obtained during design optimization. The assessment is based on the distribution of the solution set over the
pareto optimal frontier. Finally, Chaudhuri et al. (2020) proposed a MF design framework for risk-averse design optimiza-
tion. The method is based on importance sampling and cross-entropy.

In this study, entropy serves as a metric to quantify the uncertainty within the early-stage design space. The proposal is to
employ this metric as a termination criterion for concluding the design exploration process. The rationale behind this rec-
ommendation lies in the observation that, to the best of our knowledge, these problems typically operate under a predeter-
mined budget. Thus, entropy can form a criterion to make an informed decision regarding the termination of the optimiza-
tion process. Furthermore, the authors advocate for using entropy as an indicator for optimizing the covariance matrix via
the optimization of the kernel function, as an extension of the method proposed in Charisi et al. (2022b). The technical de-
tails of the framework are elucidated in the following section.

PROPOSED METHOD

This section outlines the technical aspects of the methods employed in constructing the proposed framework. Specifically,
it offers a comprehensive overview of the framework itself and presents the mathematical formulation of MF-GPs, compo-
sitional kernels, Bayesian optimization, and information entropy.

Proposed Framework

The flowchart illustrating the design architectural framework (DAF) is depicted in Figure 2. Organized around three pri-
mary blocks—generation, analysis, and optimization engines—the design framework shares commonalities with other de-
sign frameworks. However, the distinctive feature of this particular framework lies in the way the analysis and optimization
engines are constructed to encompass the information entropy metrics. The analysis engine is dedicated to constructing the
MF surrogate model for the design space. To enhance the precision of design space predictions, compositional kernels, as
kernel functions, are employed to discern trends within the design space Charisi et al. (2022b). Entropy serves as a criterion
for determining the optimization step where kernel optimization is most beneficial. Additionally, the optimization engine
is designed to efficiently identify the optimal design point using Bayesian optimization. Entropy is incorporated into this
phase of the framework as a criterion for terminating the optimization process.



Figure 2: Flowchart of the design framework

Gaussian Processes, MF-Gaussian Processes and Compositional Kernels

Gaussian Processes

GPs are used to build approximations of real-world processes f(x). Mathematically, a GP is defined as “a collection of ran-
dom variables, any finite number of which have a joint Gaussian distribution, and it is fully characterized by its mean and
covariance function Rasmussen (2003)”. The mathematical formulation for the GPs is taken from Rasmussen (2003). The
GP is fully defined by a mean µ(x) and a covariance function k(x, x′) according to Equations 1, 2, and 3. A common prac-
tice is to assign the prior a zero mean and a kernel functionKij = k(xi, xj ; θ).

f(x) ∼ GP(m(x), k(x, x′)) (1)

m(x) = E[f(x)] (2)

k(x, x′) = E[f(x)−m(x)][f(x′)−m(x′)] (3)

The available analysis or experimental data can be described according to Equation ??:

y = f(x) + ϵ, ϵ ∼ N (0, σ2
nI) (4)

where f represents the function to be approximated and ϵ represents the error term which is assumed to be normally dis-
tributed with variance σ2

n .

GPs are part of the Bayesian methods, where a pivotal aspect of the analysis involves the prior distribution. The prior distri-
bution encapsulates our pre-existing knowledge or assumptions about the unknown function f . The prior distribution of the
observed data X and the test data X ′ is determined according to Equation 5.



[
y
f∗

]
∼ N

([
0
0

]
,

[
K(X,X) + σ2

n I K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(5)

where f∗ are the function values evaluated at the test locationsX∗. In Bayesian learning, the prior distribution is revised by
incorporating the observed data, resulting in the formation of the predictive distribution. Mathematically, the prior distribu-
tion is conditioned on the observed data to form the predictive distribution according to Equations 6, 7, and 8:
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whereK = K(X,X), k∗∗ = k(x∗, x∗) and k∗ = k(x∗). In order to optimize the model’s hyperparameters, , the marginal
log-likelihood was applied. The marginal log-likelihood is defined according to Equation 9.
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2
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2
log 2π (9)

MF Gaussian Processes

The present study adopts the autoregressive scheme AR1 introduced by Kennedy and O’Hagan (2000). The scheme is
based on the assumption that there is a linear dependency among different fidelity models. The mathematical formulation
follows the description in Le Gratiet and Garnier (2014). The mathematical description of the bifidelity model is given
since the case studies deal with bifidelity problems. The sub-models are linked according to Equation 10 and 11. The HF
function connects to the LF function via a scaling function ρ and an additive function δ. It is assumed that F2 refers to the
HF function and F1 refers to the LF function. The function δ is a GP which is independent of F1.

F2(x) = ρ(x)F1(x) + δ(x) (10)

F1(x) ⊥ δ(x) (11)

The predictive model is a multivariate normal distribution described by Equation 12, with a mean function according to
Equation 13 and a variance according to Equation 14.
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The covariance matrix is calculated as described in Equation 17.
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(
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Compositional Kernels

The covariance matrix conveys the degree of resemblance among data points Rasmussen (2003) and integrates prior be-
liefs and knowledge regarding the function f . The validity of the covariance matrix requires both symmetry and positive
semi-definiteness. Prior research has examined basis functions used as kernel functions, which are defined as functions gen-
erating valid covariance matrices. For instance, the periodic kernel is employed for modeling repetitive functions. In this
study, the framework introduced in Charisi et al. (2022b) was employed. The core idea was the development of composi-
tional kernels, aiming to facilitate early-stage design analysis and optimization.

Compositional kernels, introduced by Duvenaud et al. (2013), are defined as a combination of a limited number of basis
kernels through addition or multiplication. Choosing the basis kernels is intended to mathematically encapsulate the key
features of the function f or, in the context of this specific research problem, the design space. The compositional kernels
are built via discrete optimization. As the objective function, the Bayesian Information Criterion (BIC) was used as pro-
posed in the original paper Duvenaud et al. (2013). BIC is defined according to Equation 18.

BIC = khyp lnn− 2 lnL (18)

where n is the number of training data, khyp is the number of hyperparameters, and L is the maximized likelihood value.
BIC comprises two elements: a penalty term determined by the count of model parameters and a term derived from the like-
lihood function. The advantage of opting for BIC over maximizing the marginal log-likelihood is its attention to the com-
plexity of the kernel function. By favoring functions with fewer hyperparameters, BIC aids in preventing overfitting.

Bayesian Optimization

Bayesian optimization (BO) has found extensive application in addressing optimization problems characterized by objec-
tive functions that are costly to evaluate. It comprises three fundamental components: establishing the prior distribution,
refining the prior distribution to derive the posterior distribution, and determining the subsequent sampling point Brochu
et al. (2009). The initial two components are associated with shaping the surrogate model, while the last one is linked to the
acquisition function. The MF surrogate model in the proposed framework was built via MF-GPs as described in the previ-
ous sections. The acquisition function establishes a strategy for assessing the utility of evaluating the objective function at
specific points within the search space Di Fiore and Mainini (2024). The objective of the acquisition function is to strike a



balance between exploring new areas and exploiting known areas within the search space. For this research, Expected Im-
provement (EI) was employed as the acquisition function, as described in Equation 19.

αEI(ybest, µ.σ) = −
(
ϕ

(
ybest − µ

σ

)
+

ybest − µ

σ
· Φ

(
ybest − µ

σ

))
· σ (19)

ybest represents the current optimum, µ and σ denote the mean and covariance matrix, respectively, while ϕ and Φ refer to
the probability density function and the cumulative distribution function, respectively.

Information Entropy

Entropy measures the uncertainty that observers have about the state of a random variableX Varley et al. (2023). The en-
tropy H[p(x)] of a distribution p(x) is a measure measuring the uncertainty in the distribution Rasmussen (2003). The inte-
gral can be replaced by a sum of discrete variables. The differential entropy for continuous variables is calculated according
to Equation

H(X) = −
∫
s

f(x) log f(x) dx (20)

where S is the support of the probability density function. Regarding the multivariate Gaussian distribution, the entropy is
defined according to Equation 21.

H[N (µ,Σ)] =
1

2
log |Σ|+ D

2
log 2πe (21)

where D is the number of dimensions. Unlike entropy for discrete random variables, differential entropy can take negative
values. The covariance matrix is guaranteed to be symmetric positive semi-definite. However, in instances where the co-
variance matrix becomes singular, the entropy value tends toward negative infinity. To mitigate this issue for singular ma-
trices, the eigenvalues are computed. Any zero eigenvalues are replaced with a value of 10−6, and the covariance matrix is
then reconstructed based on the adjusted eigenvalues using Equation 22.

A = UΛU−1 (22)

where A represents an n × n matrix, U is an n × n matrix containing the eigenvectors of A, with each column of U repre-
senting an eigenvector of A, and Λ is an n× n diagonal matrix containing the eigenvalues of A along its diagonal elements.

The termination of the optimization loop occurs when the quantified uncertainty of the design space prediction, assessed
through entropy, reaches a predetermined threshold. To ensure robustness, the criterion includes the condition that the value
of entropy should not increase by more than a predetermined margin for n iterations. In summary, the formulation of the
termination criterion can be found in Algorithm 1. A comparable concept was applied to the optimization criterion for
compositional kernels. Entropy serves as an indicator to decide whether compositional kernel optimization should be con-
ducted. The rationale behind this approach is that a notable decrease in entropy signifies a significant change in the predic-
tive distribution. The formulation of the kernel optimization criterion is detailed in Algorithm 2.



input : ∆Hcritical, ∆Hmargin, nrcriticaliter , nrmaxiter ; /* critical value of entropy change, acceptable
margin of entropy change, critical number of optimization iterations, maximum
number of optimization iterations */

output: ϵx, ϵf , ϵt,RMSE, nrterminateiter ; /* performance, metrics, step to terminate the optimization
loop */

1 nriiter ← 1 ;
2 comp_cost← 0 ;
3 counter ← 0 ;
4 while nriiter ≤ nrmaxiter do
5 Compute µ, σ from Equations 7, 8 ; /* MF surrogate model */
6 Compute entropy Hiteri from Equation 21;
7 if nriiter = 1 then
8 H0 ← Hiteri ; /* Reference entropy value */
9 end
10 else
11 if Hiteri > H0 then
12 H0 ← Hiteri

13 end
14 end
15 Compute comp_costi;
16 comp_cost← comp_cost+ comp_costi ; /* Computational cost */
17 Compute ϵx, ϵf , ϵt,RMSE from Equations 24,25,26,23; /* Performance metrics */
18 if H0 −Hiteri ≥ ∆Hcritical then
19 counter ← counter + 1; /* Counting optimization steps */
20 if counter = nrcriticaliter then
21 nrterminateiter = nriiter;
22 break;
23 end
24 end
25 if Hiteri −Hiteri−1 ≥ ∆Hmargin then
26 counter ← 0
27 end
28 nriiter ← nriiter + 1 ;
29 end

Algorithm 1: Termination criterion



input : ∆Hcritical, ∆Hmargin, nrmaxiter , nrcriticaliter ; /* critical value of entropy change, acceptable
margin of entropy change, maximum number of optimization iterations, critical
number of optimization iterations */

output: ϵx, ϵf , ϵt,RMSE; /* performance, metrics */
1 nriiter ← 1 ;
2 boolker_opt ← False ;
3 counter ← 0 ;
4 while nriiter ≤ nrmaxiter do
5 Compute µ, σ from Equations 7, 8 ; /* MF surrogate model */
6 Compute entropy Hiteri from Equation 21;
7 if nriiter = 1 then
8 H0 ← Hiteri ; /* Reference entropy value */
9 end
10 Compute ϵx, ϵf , ϵt,RMSE from Equations 24,25,26,23; /* Performance metrics */
11 if |H0 −Hiteri | ≥ ∆Hcriticaland(H0 −Hiteri)(H0 −Hiteri−1) > 0 then
12 counter ← counter + 1; /* Counting optimization steps */
13 if counter = nrcriticaliter then
14 Perform compositional kernels optimization;
15 H0 ← Hiteri ;
16 end
17 end
18 if |Hiteri −Hiteri−1| ≥ ∆Hmarginand(Hiteri −H0)(Hiteri −Hiteri−1) < 0 then
19 counter ← 0
20 end
21 nriiter ← nriiter + 1 ;
22 end

Algorithm 2: Kernel optimization criterion



Error metrics

Various error metrics were employed to evaluate the accuracy of the proposed framework. The Root Mean Squared Error
(RMSE), as defined in Equation 23, was used to quantify the accuracy of the models in predicting the design space. Fur-
thermore, the error metrics ϵx, ϵf , ϵt characterize the normalized error in the design space, the objective function, and the
Euclidean distance in the normalized x-f hyperspace. Detailed descriptions of these metrics are provided in Equations 24,
25, and 26.

εRMSE =
1

ymax − ymin

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (23)

ϵx =
∥x̂∗ − x∗∥√

N
(24)

ϵf =
f(x̂∗)− fmin
fmax − fmin

(25)

ϵt =

√
ϵ2x + ϵ2f

2
(26)

CASE STUDIES

The case studies encompass a simplified example, using the Jump Forrester function, to illustrate the rationale behind in-
tegrating information entropy into an early-stage design framework. Subsequently, two analytical problems will the ad-
dressed: the 1D Heterogeneous function and the 2D shifted rotated Rastrigin function. Finally, a realistic ship design is
showcased, addressing the 2D design of the AXE frigates focused on optimizing the wave-induced vertical bending mo-
ment (VBM).

A toy example: the Jump Forrester function

This simplified design problem aims to give a better understanding on how and why entropy is integrated in the design
framework. The toy case study assumes a one-dimensional design space characterized by the Jump Forrester function as
described in Equations 27 and 28. The initial dataset comprises 5 HF and 35 LF observations.

f1(x) =

{
(6x− 2)2 sin(12x− 4), 0 ≤ x < 0.5

(6x− 2)2 sin(12x− 4) + 10, 0.5 ≤ x ≤ 1
(27)

f2(x) =

{
0.5f1(x) + 10(x− 0.5)− 5, 0 ≤ x < 0.5

0.5f1(x) + 10(x− 0.5)− 2, 0.5 ≤ x ≤ 1
(28)

Figure 3 illustrates the evolution of error metrics and entropy throughout the optimization process. Evidently, an augmented



dataset correlates with heightened accuracy in the obtained results. This is a general trend which can be observed in both
the evolution ofH and ϵ throughout the optimization. Figure 3a illustrates a notable decrease in entropy between iteration
10 and 11. The decrease in entropy is correlated with a reduction in the error metrics, as depicted in Figure 3b. It is evident
that the variations in entropy do not perfectly align with changes in the error metrics. This underscores the importance of
treating entropy as an indicator rather than an absolute measure.

(a) TrackingH throughout the optimization iterations (b) Tracking ϵ throughout the optimization iterations

Figure 3: Comparing H with ϵ error metrics

To further analyze the results, the design spaces for iterations 9, 10, and 11 are plotted in Figure4. Specifically, Figure 4a
displaying the prediction of the design space at step 9, reveals that the prediction is inaccurate across the domain and the
variance is high. However, the area where the optimum lies is further explored, resulting in a lower calculated error. This
localized behavior cannot be captured via entropy which is calculated over the entire design domain. Similarly, the design
space in iteration 10, depicted in Figure 4b, is characterized by an inaccurate prediction of the design space and high uncer-
tainty bounds. Entropy is slightly increased between iteration 9 and 10. In addition, the measured error is higher since the
prediction fails to capture the area containing the optimum. Moving on to iteration 11, illustrated in Figure 4c, the predic-
tion aligns more closely with the true design space, resulting in a significant reduction in both calculated error and entropy.

(a) Optimization Step 9 (b) Optimization Step 10 (c) Optimization Step 11

Figure 4: Design space for various optimization steps



Analytical function 1D: the Heterogeneous function

A commonly employed analytical function is the Heterogeneous function, known for its localized and multi-modal behavior
Mainini et al. (2022). The 1D Heterogeneous function is described by the Equations 29 and 30. The Heterogeneous func-
tion can be visualized in Figure 5.

f1(x) = sin 30(x− 0.9)4 cos 2(x− 0.9) + (x− 0.9)/2 (29)

f2(x) = (f1(x)− 1.0 + x)/(1.0 + 0.25x) (30)

Figure 5: Heterogeneous function

where 0 ≤ x ≤ 1. In this case study, the initial training set comprised included 10 HF data fused with 35 LF data. The
base case underwent 15 optimization steps. The parameters of this case study remained consistent when evaluating both
the entropy-driven termination criterion and entropy-driven kernel optimization. Furthermore, recognizing the substantial
impact of the training set on model performance, statistical insights were derived by employing 20 distinct training sets in
both scenarios.

Regarding the entropy-driven optimization criterion, relevant statistics can be found in Tables 1 and 2 for the proposed and
the base model, respectively. Six scenarios were examined, involving the increase of noise in the training data from 0.00
to 0.05. The comparison of mean error metric values is presented and visualized in Figure 6. The main observation is that,
as anticipated, the error generally rises with an increase in noise level. In most instances, the proposed model demonstrates
comparable or slightly elevated errors compared to the base model, while concurrently achieving significant computational
savings. For instance, when σn = 0.04, the average number of iterations is 10.5, resulting in a 30% improvement compared
to the 15 iterations in the base scenario.

Regarding the entropy-driven kernel optimization, the results can be found in Tables Tables 3 and 4 for the proposed and
base models, respectively. The visualization of mean error metrics is presented in Figure 7. As illustrated in Figure 7, the
proposed model demonstrates a comparable performance to the base model, and their results are closely aligned, thus the
performance of the two models is similar.

Analytical function 2D: the Shifted Rotated Rastrigin function

In this case study, the 2D shifted-rotated Rastrigin function was employed. This function is characterized by multi-modal
behavior. To investigate this, a noise term edata was added to the 2D shifted-rotated Rastrigin function, taken from Mainini
et al. (2022). Thus, for this analysis, Equations 31 and 34 were used. The function can be visualized in Figure 8.



(a) Graph depicting the relationship between ϵx and
σn

(b) Graph depicting the relationship between ϵf and
σn

(c) Graph depicting the relationship between ϵt and σn

(d) Graph depicting the relationship between RMSE
and σn

Figure 6: Heterogeneous function: Entropy-driven termination criterion, while varying the noise σn



(a) Graph depicting the relationship between ϵx and
σn

(b) Graph depicting the relationship between ϵf and
σn

(c) Graph depicting the relationship between ϵt and σn

(d) Graph depicting the relationship between RMSE
and σn

Figure 7: Heterogeneous function: Entropy-driven kernel optimization, while varying the noise σn



Table 1: Proposed model performance (entropy-driven termination criterion, Heterogeneous function)

σn ϵx (std) ϵf (std) ϵt (std) RMSE (std) computational
cost (std)

optimization
steps (std)

0 0.0045
(0.0050)

0.0092
(0.0104)

0.0075
(0.0079)

0.0530
(0.0387)

2.21
(0.71)

10.45
(4.00)

0.01 0.0298
(0.0811)

0.0048
(0.0062)

0.0241
(0.0564)

0.0716
(0.0231)

2.91
(0.39)

14.5
(2.18)

0.02 0.0323
(0.0803)

0.0086
(0.0131)

0.0273
(0.0559)

0.0715
(0.0126)

2.6
(0.74)

12.75
(4.11)

0.03 0.0187
(0.0585)

0.0177
(0.0223)

0.0211
(0.0430)

0.0925
(0.0222)

2.38
(0.97)

11.6
(5.31)

0.04 0.0318
(0.0772)

0.0306
(0.0408)

0.0345
(0.06)

0.1306
(0.0528)

2.18
(1.03)

10.5
(5.62)

0.05 0.0535
(0.0991)

0.0354
(0.0362)

0.0518
(0.0703)

0.1298
(0.0485)

2.67
(0.79)

13.2
(4.29)

Table 2: Base model performance (entropy-driven termination criterion, Heterogeneous function)

σn ϵx (std) ϵf (std) ϵt (std) RMSE (std) computational
cost

optimization
steps

0 0.0025
(0.0044)

0.0037
(0.0062)

0.0032
(0.0053)

0.0542
(0.0516) 3 15

0.01 0.0298
(0.0811)

0.0035
(0.0024)

0.0232
(0.0566)

0.0723
(0.0230) 3 15

0.02 0.0318
(0.0804)

0.0093
(0.0130)

0.0273
(0.0559)

0.0716
(0.0126) 3 15

0.03 0.0182
(0.0586)

0.0165
(0.0217)

0.02
(0.0431)

0.0925
(0.0223) 3 15

0.04 0.0308
(0.0776)

0.0273
(0.0410)

0.0319
(0.0606)

0.1288
(0.0512) 3 15

0.05 0.0535
(0.0991)

0.03273
(0.0376)

0.05
(0.0713)

0.1299
(0.0486) 3 15

f1(z) =

D=2∑
i=1

(Z2
i + 1− cos (10πzi)) (31)

where
z = R(θ)(x− x∗) (32)

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(33)

where xiϵ[−0.1, 0.2] for i = 1, .., D, R is the rotation matrix, and θ = 0.2.

f2(z, ϕi) = f1(z) + er(z, ϕi) + edata (34)

where the resolution error er is defined according to Equation 35.

er(z, ϕi) =

D=2∑
i=1

α(ϕ) cos2(w(ϕ)zi + βϕ+ π) (35)



Table 3: Proposed model performance (entropy-driven kernel optimization, Heterogeneous function)

σn ϵx (std) ϵf (std) ϵt (std) RMSE (std)

0 0.0
(0.0)

0.0015
(0.0030)

0.0010
(0.0021)

0.0235
(0.0279)

0.01 0.0162
(0.0590)

0.0047
(0.0047)

0.01396
(0.0412)

0.0610
(0.0218)

0.02 0.0434
(0.0964)

0.0063
(0.0059)

0.0342
(0.0668)

0.0939
(0.0618)

0.03 0.0040
(0.0049)

0.0160
(0.0131)

0.0124
(0.0091)

0.1154
(0.0633)

0.04 0.0576
(0.1077)

0.0116
(0.0081)

0.0452
(0.0743)

0.1215
(0.0468)

0.05 0.0702
(0.1114)

0.0385
(0.0562)

0.0618
(0.0847)

0.1278
(0.0529)

Table 4: Base model performance (entropy-driven kernel optimization, Heterogeneous function)

σn ϵx (std) ϵf (std) ϵt (std) RMSE (std)

0 0.0010
(0.0030)

0.0032
(0.0052)

0.0025
(0.0042)

0.0367
(0.0359)

0.01 0.01616
(0.0590)

0.0044
(0.0050)

0.0137
(0.0413)

0.0681
(0.0172)

0.02 0.0439
(0.0962)

0.0067
(0.0059)

0.0348
(0.0665)

0.1017
(0.0665)

0.03 0.0040
(0.0049

0.0174
(0.0141)

0.01334
(0.0097)

0.1105
(0.0557)

0.04 0.0576
(0.1077)

0.0130
(0.0086)

0.0461
(0.0738)

0.1209
(0.0451)

0.05 0.0571
(0.1018)

0.0396
(0.0558)

0.0534
(0.0794)

0.1293
(0.0522)

with α(ϕ) = Θ(ϕ), w(ϕ) = 10πΘ, β(ϕ) = 0.5πΘ(ϕ), Θ(ϕ) = 1 − 0.0001ϕ. For the present case study, we chose
ϕ = 2500.

In this case study, the initial training set consisted of 10 HF data combined with 50 LF data. The base case underwent 15
optimization steps. Consistent with other studies, parameters were maintained constant during the assessment of both the
entropy-driven termination criterion and entropy-driven kernel optimization. Statistical insights were obtained by using 20
different training sets in both scenarios.

Regarding the entropy-driven optimization criterion, relevant statistics can be found in Tables 5 and 6. The visualization
of mean error metrics is presented in Figure 9. A notable observation is that, similar trends to the previous case study are
observed, where the suggested model displays errors that are comparable or slightly higher than those of the base model, yet
it concurrently realizes computational savings. The discrepancy between the models is more apparent, possibly due to the
increased complexity of this problem. Notably, in this instance, the error does not escalate with the noise level.

Regarding the entropy-driven kernel optimization, the results can be found in Tables Tables 7 and 8 for the proposed and
base models, respectively. The visualization of mean error metrics is presented in Figure 10. The findings indicate a sub-
stantial enhancement in error metrics of the proposed model compared to the base case across various scenarios. These
results are noteworthy, with a more pronounced improvement compared to the previous case study. This heightened im-
provement could be attributed to the increased complexity of the problem or the ability of compositional kernels to better
capture the structure of the function.



Figure 8: Rastrigin function

Table 5: Proposed model performance (entropy-driven termination criterion, Rastrigin function)

σn ϵx (std) ϵf (std) ϵt (std) RMSE (std) computational
cost (std)

optimization
steps (std)

0 0.1192
(0.2064)

0.0068
(0.0103)

0.0875
(0.1443)

0.1110
(0.0386)

0.9
(0.0696)

14.15
(1.53)

0.01 0.2007
(0.2475)

0.0151
(0.0207)

0.1464
(0.1722)

0.1212
(0.0570)

0.8969
(0.0845)

14.15
(1.74)

0.02 0.0239
(0.1042)

0.0035
(0.0082)

0.0192
(0.0733)

0.1094
(0.0348)

0.8875
(0.1129)

14
(2.17)

0.03 0.1044
(0.2121)

0.0097
(0.0196)

0.0775
(0.1489)

0.1538
(0.0718)

0.8844
(0.1330)

13.9
(2.45)

0.04 0.0717
(0.1706)

0.0049
(0.0093)

0.0528
(0.1199)

0.0997
(0.0351)

0.9031
(0.0850)

14.15
(1.68)

0.05 0.1924
(0.2658)

0.0121
(0.0298)

0.1367
(0.1889)

0.1312
(0.0658)

0.8875
(0.0980)

13.8
(1.91)

Ship design problem 2D: the AXE frigates

The AXE frigates are characterized by the inclusion of an AXE bow, a design initially conceived by Keuning et al. (2015).
The AXE bow offers the potential to enhance a vessel’s seakeeping capabilities, making it a compelling choice for frigates
that must effectively carry out missions even in challenging weather conditions. The key performance indicator (KPI) for
this design problem focuses on predicting the wave-induced VBM.

The VBM emerges as a significant load with substantial implications for ship structural design. It results from the uneven
distribution of water pressure and gravity, resulting in the bending of the elastic hull structure Molland (2008). Wave load-
ing conditions are assessed independently for each design variation. More specifically, we have chosen to examine the ves-
sel in a sea state that maximizes wave-induced VBM, specifically when the wavelength equals the ship’s length. Conse-
quently, a regular sea state is selected and characterized by Equations 36 and 37 Tupper (2004). The vessel’s speed was set
to 0 knots. The problem is simplified into a 2D case, where only the vessel’s length (Lpp) and breadth (B) are varied.



(a) Graph depicting the relationship between ϵx and
σn

(b) Graph depicting the relationship between ϵf and
σn

(c) Graph depicting the relationship between ϵt and σn

(d) Graph depicting the relationship between RMSE
and σn

Figure 9: Rastrigin function: Entropy-driven termination criterion, while varying the noise σn

λ = Lpp (36)

H = 0.607 ·
√

Lpp (37)

In the frequency domain (FD) calculation of the wave-induced VBM, PRECAL software, developed by Marin, was em-
ployed. PRECAL is a dedicated tool designed to predict linear responses through potential flow calculations. The tool op-
erates by: (1) dividing the wetted hull into multiple quadrilateral panels and defining flexural modes, (2) calculating hydro-
dynamic coefficients through solving the linearized boundary value problem, and (3) determining ship motions and loads
using linearized potential flow. Additionally, it incorporates adjustments for viscous damping based on empirical correc-
tions.

Furthermore, the time domain (TD) results were obtained using PRETTI_R, a 3D time-domain nonlinear seakeeping and
hydroelasticity tool. In contrast to PRECAL, PRETTI_R is specifically crafted for predicting motions in high sea states, en-



Table 6: Base model performance (entropy-driven termination criterion, Rastrigin function)

σn ϵx (std) ϵf (std) ϵt (std) RMSE (std) computational
cost (std)

optimization
steps (std)

0 0.1259
(0.2200)

0.0076
(0.0104)

0.0926
(0.1536)

0.1025
(0.0324)

0.9375
(0.0)

15
(0.0)

0.01 0.1700
(0.2320)

0.0127
(0.0209)

0.1237
(0.1623)

0.1258
(0.0557)

0.9375
(0.0)

15
(0.0)

0.02 0.0239
(0.1042)

0.0035
(0.0082)

0.0192
(0.0733)

0.1084
(0.0344)

0.9375
(0.0)

15
(0.0)

0.03 0.0876
(0.2109)

0.0099
(0.0196)

0.0657
(0.1483)

0.1485
(0.0718)

0.9375
(0.0)

15
(0.0)

0.04 0.0478
(0.1434)

0.0035
(0.0082)

0.0351
(0.1011)

0.0978
(0.0326)

0.9375
(0.0)

15
(0.0)

0.05 0.1685
(0.2606)

0.0114
(0.0299)

0.1198
(0.1852)

0.1323
(0.0643)

0.9375
(0.0)

15
(0.0)

Table 7: Proposed model performance (entropy-driven kernel optimization, Rastrigin function)

σn ϵx (std) ϵf (std) ϵt (std) RMSE (std)

0 0.0902
(0.2177)

0.0076
(0.0183)

0.0663
(0.1536)

0.1070
(0.0597)

0.01 0.7382
(0.2700)

0.0150
(0.0288)

0.1245
(0.1912)

0.1349
(0.0691)

0.02 0.1115
(0.2262)

0.0096
(0.0254)

0.0796
(0.1607)

0.1175
(0.0437)

0.03 0.0543
(0.1643)

0.0015
(0.0039)

0.0389
(0.1160)

0.0961
(0.0189)

0.04 0.0756
(0.1699)

0.0035
(0.0069)

0.0540
(0.1200)

0.1043
(0.0529)

0.05 0.1050
(0.2132)

0.0069
(0.0138)

0.0759
(0.1503)

0.1012
(0.0494)

compassing rigid-body motion, elastic deformation, and hydrodynamic loads. It is also capable of considering slamming
and whipping loads. Developed as part of the Cooperative Research Ships (CRS) initiative, this software calculates the
Froude Krylov force by integrating incident wave hydrodynamics and hydrostatic pressure across the vessel’s hull surface.
The diffraction force is estimated by scaling the FD diffraction force Response Amplitude Operator (RAO) with the inci-
dent wave amplitude. The radiation force is computed through a convolution integral involving an impulse function, and
slamming force can be assessed using either the Generalized Wagner Model or the Modified Logvinovich Model. PRETTI_R
utilizes FD results to derive the required impulse functions.

The initial training set consists of 2 HF PRETTI_R simulations (TD data) and 20 PRECAL simulations (LF data). The LF
and the HF design space can be visualized in Figure 11. The optimization steps were configured to be 10. The outcomes
are presented in Tables 9 and 10 for the entropy-driven termination criterion and kernel optimization, respectively. The data
was gathered through 20 simulations utilizing various initial Design of Experiments (DoEs). In general, the results exhibit
similar trends to previous case studies. The performance metrics of the proposed model slightly surpass those of the base
model, with an associated reduction in computational steps to an average of 8.55 from the set 10 steps. Concerning the ker-
nel optimization scenario, the performance metrics of the proposed model are improved compared to the base model.



Table 8: Base model performance (entropy-driven kernel optimization, Rastrigin function)

σn ϵx (std) ϵf (std) ϵt (std) RMSE (std)

0 0.1377
(0.2432)

0.0087
(0.0181)

0.1001
(0.1709)

0.1178
(0.0571)

0.01 0.1966
(0.2743)

0.0217
(0.0364)

0.1424
(0.1938)

0.1615
(0.0710)

0.02 0.1932
(0.2682)

0.0135
(0.0273)

0.1382
(0.1897)

0.1396
(0.0570)

0.03 0.1260
(0.2223)

0.0096
(0.0212)

0.0912
(0.1570)

0.1086
(0.0494)

0.04 0.1036
(0.2117)

0.0140
(0.0765)

0.0765
(0.1468)

0.1468
(0.0703)

0.05 0.1528
(0.2366)

0.0081
(0.0141)

0,1098
(0.1666)

0.1131
(0.0524)

Table 9: Models’ performance (entropy-driven termination criterion, AXE frigates)

model ϵx (std) ϵf (std) ϵt (std) RMSE (std) optimization
steps (std)

base 0.0
(0.0)

0.0436
(0.0285)

0.0308
(0.0202)

0.1300
(0.0405)

10
(0)

proposed 0.0068
(0.0172)

0.0513
(0.0304)

0.0376
(0.0232)

0.1388
(0.0416)

8.55
(2.5)

CONCLUSIONS

In summary, the paper proposes the integration of entropy, a mathematical concept from information theory, to improve a
MF design framework for early-stage design exploration. Two concepts, namely the entropy-driven termination criterion
and entropy-driven kernel optimization, were formulated and illustrated. The case studies encompassed analytical bench-
mark problems, including the 1D Jump Forrester and the 2D Shifted Rotated Rastrigin function, along with a 2D physical
problem involving AXE frigate design where variations in L and B were considered.

Similar patterns were observed across the different case studies. Concerning the termination criterion, the performance met-
rics slightly exceeded those of the base model while concurrently achieving computational savings. This suggests the po-
tential for a potent tool in design exploration, particularly when the goal is to discern design trends. Furthermore, the out-
comes related to kernel optimization exhibited enhancements in most cases and comparable results in others. This under-
scores the concept’s potential in integrating compositional kernels within a design optimization loop.

The inclusion of entropy in design exploration is rooted in the concept that entropy can serve as an indicator of how com-
prehensively the design space has been investigated. It is crucial to emphasize that entropy is not presumed to be an abso-
lute performance measure akin to error metrics. Instead, its significance lies in the fact that in practical design exploration
problems, calculating error metrics is not feasible. To advance this concept, exploring its scalability to higher-dimensional
problems is an area that needs further research. Additionally, determining the critical parameters for the method is a case-
dependent and challenging aspect in real-world applications.
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Table 10: Models’ performance (entropy-driven kernel optimization, AXE frigates)

model ϵx (std) ϵf (std) ϵt (std) RMSE (std)

base 0.0
(0.0)

0.0349
(0.0298)

0.0247
(0.0210)

0.1295
(0.0523)

proposed 0.0
(0.0)

0.0180
(0.0301)

0.0127
(0.0213)

0.1133
(0.0303)
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(a) Graph depicting the relationship between ϵx and
σn

(b) Graph depicting the relationship between ϵf and
σn

(c) Graph depicting the relationship between ϵt and σn

(d) Graph depicting the relationship between RMSE
and σn

Figure 10: Rastrigin function: Entropy-driven termination criterion, while varying the noise σn



Figure 11: MF design space for the AXE frigates
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