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ABSTRACT

In this work, a hybrid machine learning method, which uses ML strategies to model high-order force com-
ponents within a low-order equation of motion, is considered in the context of the global wave-induced
loads of a ship in irregular waves. It is shown that the method can make predictions in a range of wave
conditions even when the training data set only includes a single seaway. The proposed method offers a
data-leveraging technique which may be useful in the design space, where a small data set derived from a
high-fidelity source can be leveraged to make similar fidelity predictions in a larger number of wave con-
ditions.
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INTRODUCTION

Global wave-induced loads are an important consideration in the design of ship structures. Often, shear forces and bend-
ing moments are estimated using rules-based distributions or simplified quasi-static methods (Payer and Schellin, 2013).
Though practical for early-stage design, research has shown that real-world measurements can exceed rules-based predic-
tions (Andersen and Jensen, 2014). In many cases, linear frequency-domain hydrodynamic tools such as strip theory are
used (Payer and Schellin, 2013). However, it is well-known that such low-fidelity methods can underpredict the maximum
bending moment (Wu and Hermundstad, 2002), (Rajendran et al., 2016), (Gaspar et al., 2016), sometimes by as much as
32% when considering long-term responses (Parunov et al., 2022a), and compensating with large safety margins may lead
to an over-designed structure (Parunov et al., 2022b).

Nonlinear global loads are predominantly a second-order effect (Juncher and Terndrup, 1979), (Marlantes and Taravella,
2019) and strongly related to the body-nonlinear hydrodynamic forces, so it is necessary to use nonlinear numerical mod-
els. However, high-fidelity computational hydrodynamic tools, such as Reynolds Averaged Navier-Stokes (RANS) CFD
methods or nonlinear potential flow methods, especially if coupled to a structural solver, suffer from a high computational
cost, making it impractical to evaluate a large number of wave conditions (Hirdaris et al., 2014), (Temarel et al., 2016). As
a result, body-nonlinear methods, which model the Froude-Krylov and hydrostatic restoring forces nonlinearly, are popular
tools, as the nonlinearity from these forces capture much of the difference between hogging and sagging bending moments
(Guedes Soares, 1991), which is especially evident in ships with large flare (Rajendran et al., 2016). One promising ap-
proach for high-fidelity methods is to use design waves, such as the Design Loads Generator proposed in Alford (2008) and
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Alford et al. (2011) or the Critical Wave Groups method in Anastopoulos and Spyrou (2016), which greatly reduce the sim-
ulation time required. The role of simulators in design is enticing, but without the ability to identify “edges” in the design
space, their usefulness is reduced (Schellin et al., 2015). Developing new computational methods which preserve nonlinear-
ity, but are inexpensive to evaluate in a large number of wave conditions, is important to advancing simulation-based design
(Hirdaris et al., 2014).

In recent years, machine learning (ML) methods have been explored to reduce the computational cost of predictions, but
the accuracy of most ML methods is reduced when making predictions in wave conditions which differ from the original
training dataset, and most data-only methods require a large amount of training data (Portillo Juan and Negro Valdecantos,
2022). Hybrid machine learning methods, which combine physics with ML techniques, have been shown to reduce the
training data requirements (Willard et al., 2020). However, few examples of hybrid machine learning methods applied to
global wave-induced loads are found in the literature. Several examples of data-only methods, such as the work of Moreira
and Soares (2020), Hou et al. (2024), and Kwon et al. (2022) have been given, and a recent, and novel, approach in Wang
and Ti (2024) which considers the wave-induced loads on bridge structures with arbitrary shapes. Several studies also take
a probabilistic approach, such as the Bayesian models described in Zhu and Collette (2017). However, most studies focus
on structural health monitoring in real-time, fatigue monitoring, or structural event detection. Moreover, most of these stud-
ies considered in-situ applications where data is plentiful, which often precludes their use in a design or analysis scenario,
especially for unusual designs.

In this work, the hybrid machine learning method of Marlantes and Maki (2022) is considered in the context of the global
wave-induced loads problem. The method relates a high-fidelity and low-fidelity model by a force correction that is mod-
eled using an artificial neural network. To illustrate, Eq. (1) is the high-fidelity model, indicated by the superscript (h), and
the solution to this differential equation is the high-fidelity state z̈(h). This model might be a RANS-CFD simulation or a
fully-nonlinear three-dimensional panel method, but in general, the high-fidelity model is assumed to be both more accurate
and signficantly more expensive to evaluate. Eq. (2) is the low-fidelity model–a model that is inexpensive to solve but lacks
accuracy–indicated by superscript (l), where the solution to the equation is the low-fidelity state z̈(l).

mz̈(h) = f (h) (1)

mz̈(l) = f (l) (2)

Adding and subtracting the low-fidelity force model f (l) from Eq. (2) from the right-hand-side of Eq. (1) results in a force
correction term δ, as shown by Eq. (4).

mz̈(h) = f (l) + f (h) − f (l) (3)

mz̈(h) = f (l) + δ (4)

An analytical model for δ may not be available, so it is modeled using an artificial neural network, which introduces an er-
ror ϵ = δ − δ∗, where δ∗ is the approximate force correction obtained by the trained model. Considering this error, Eq. (4)
becomes Eq. (5). A solution to Eq. (5) will yield an approximate high-fidelity state z̈∗ which will approach z̈(h) as ϵ → 0.

mz̈∗ = f (l) + δ∗ (5)

Both recurrent neural networks like Long Short-Term Memory (LSTM) and simpler feed-forward densely-connected multi-
layer networks have been used to model δ, but it is found in Marlantes et al. (2023) that relatively small, simple networks
are sufficient for ship hydrodynamics problems, with the added benefit that they are inexpensive to train and evaluate. The



primary consideration when designing the network is to accomodate numerical integration of Eq. (5). To this end, δ is mod-
eled as a function of k-length discrete sequences of prior state {z}nn−k−1, {ż}nn−k−1, {z̈}nn−k−1 and the wave elevation
{η}nn−k−1, where the current time is tn. Therefore, the state and wave elevation comprise the input features of the neural
network and the output is simply δ∗,n+1.

In this paper, Eq. (5) is extended to the global loads problem by means of classical rigid beam theory. Of specific inter-
est is how well the method performs in wave conditions which differ from the training dataset, and the role that the low-
fidelity forcing model f (l) plays in this behavior. This property, known as generalizability, is critical to using data-driven
simulation methods in a design scenario, where limited data is the norm. The ability to train a model of δ on a small, initial
dataset, and then make predictions of wave-induced loads at similar fidelity in many additional wave conditions could pro-
vide considerable insight into the performance of a design.

THEORY

The classical model of global shear forces and bending moments assumes the hull behaves as a single rigid beam, as shown
in Figure 1. While this model is greatly simplified, it will be used as the basis for this work as it encompasses the essen-
tial physics. The total length of the beam L is taken as the principle length of the vessel under consideration. We restrict
the hull girder to move only in the vertical direction, z, such as in the heaving motion of a vessel in a seaway, reducing the
problem to a single degree-of-freedom (DOF) system. As a consequence, any effect pitch motion may have on the nonlin-
ear shear and bending moment is not considered. This simplifies the formulation of the hydrodynamic forces as they will
depend only on heave motion and wave elevation, and will not have any coupling into rotation, which may alter the ampli-
tude, frequency, or phase of the response.

m(x)

x

z

f(x; t, z, z)· x=L

x3x2x1 x4 x5

Figure 1: Hull girder as a rigid beam. The physical mass distributionm(x) is time-invariant. The hydrodynamic
force distribution f(x; t, z, ż) is shown at an instant in time t.

The dynamics of the rigid hull girder shown in Figure 1 follow Eq. (6), where the total physical massM is the integral of
the longitudinal mass distributionm(x) and is assumed to be time-invariant. The total hydrodynamic force F (t; z, ż) varies
with time t and is nonlinear with respect to the state variables z, ż and is found by integrating the sectional hydrodynamic
forces f(x; t, z, ż) over the length of the hull. Note that because the beam is rigid and moving only in heave, the vertical
acceleration z̈ is pulled out of the integral on the left-hand-side of Eq. (7).

Mz̈ = F (t, z, ż) (6)

z̈

∫ L

0

m(x) dx =

∫ L

0

f(x; t, z, ż) dx (7)

The total force F (t; z, ż) is nonlinear, high-fidelity, and assumed to be exact. Following the method outlined in the intro-
duction, the high-fidelity total force F (t, z, ż) can be expressed in terms of a force correction∆(t, z, ż) to some inexpen-
sive and low-order forcing model F (l)(t, z, ż), given by Eq. (8). Similarly, the low-order total force F (l) and force correc-
tion∆ are the integral of their sectional counterparts f (l) and δ, respectively.



F (t, z, ż) = F (l)(t, z, ż) + ∆(t, z, ż) (8)

=

∫ L

0

f (l)(x; t, z, ż) dx+

∫ L

0

δ(x; t, z, ż) dx (9)

The instantaneous vertical shear force V at time t at a section x = s balances the difference between the inertial forces I and
hydrodynamic forces F acting on the hull girder up to s, as given by Eq. (10). The internal bending moment is found by a
nearly identical process after including the lever-arm (x − s) in the integrand, so for brevity it will not be presented here.
We extend the same force-correction approach from Eq. (8) to the vertical shear force and bending moment. The resulting
expression for shear is given by Eq. (12).

V (s; t) = I(s; t)− F (s; t, z, ż) (10)

= z̈

∫ s

0

m(x) dx−
∫ s

0

f(x; t, z, ż) dx (11)

= z̈

∫ s

0

m(x) dx−
∫ s

0

[
f (l)(x; t, z, ż) + δ(x; t, z, ż)

]
dx (12)

The sectional low-fidelity forcing model f (l)(x; t, z, ż) and force correction δ(x; t, z, ż) in Eq. (12) are the same terms as in
Eq. (9). Therefore, we restrict our focus to the sectional forces at x = s, and express the dynamics of a section as Eq. (14),
which is simply the two-dimensional version of Eq. (6). If the sectional forces f (l) and δ are modeled, the shear force and
bending moment will follow.

m(s)z̈s = f(s; t, zs, żs) (13)

= f (l)(s; t, zs, żs) + δ(s; t, zs, żs) (14)

While a solution of Eq. (14) will yield a z̈s that is indeed different than z̈, due to the rigid body assumption, it differs by
only a constant factor equal to L. Therefore, a solution to Eq. (14) captures the same underlying dynamics of the global
problem and an investigation of Eq. (14) will allow us to make conclusions about Eq. (10). In the remainder of this work,
we will focus primarily on Eq. (14), as it is the fundamental building block of the global loads problem.

Duffing Equation

To investigate the choice of f (l) on the performance of the method, a forced Duffing equation is used as a theoretical model
of the sectional hydrodynamic force f(s; t, zs, żs), as it captures the salient features of the nonlinear hydrodynamics prob-
lem of a ship in waves. The Duffing equation model is given by Eq. (15), where c1 and c3 are the linear and cubic hydro-
static restoring coefficients, b1 and b2 are the linear and quadratic hydrodynamic damping coefficients, and the wave exci-
tation forcing due to irregular waves is expressed as a summation of harmonic wave components. The wave excitation is
made nonlinear by including the state zs in the amplitude, modified by a coefficient α.

m(s)z̈s =
∑
i

(ζi − αzs) cos(kis+ ωit+ ϕi)− c1zs − c3z
3
s − b1żs − b2ż

2
s (15)



The wave component amplitudes ζi, wave numbers ki, and angular frequencies ωi are sampled from a generic wave energy
spectrum S(ω) given by Eq. (16), where Hs is the significant wave height and ωp is the peak frequency. The component
phase angles ϕi are selected randomly from the range [−2π : 2π].

S(ω) = H2
s
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)

(16)

To cast Eq. (15) in the form of Eq. (14), we must choose a model for f (l)(s; t, zs, żs). This choice will determine the physics
that are solved directly versus what must be learned by the ML model for δs. Five different low-fidelity forcing models are
proposed, given by Eqs. (17)-(21), with Eq. (17) having the most physics retained (and consequently the least physics that
must be learned in δs). In Eq. (21), the entire forcing function must be learned by the ML model.

Model A: f
(l)
A (s; t, zs, żs) =

∑
i

ζi cos(kis+ ωit+ ϕi)− c1zs − b1żs (17)

B: f
(l)
B (s; t, zs, żs) = −c1zs − b1żs (18)

C: f
(l)
C (s; t, zs, żs) = −c1zs (19)

D: f
(l)
D (s; t, zs, żs) =

∑
i

ζi cos(kis+ ωit+ ϕi)− c1zs (20)

E: f
(l)
E (s; t, zs, żs) = 0 (21)

To further illustrate the differences in the low-fidelity forcing models, Table 1 shows the force contributions that are mod-
eled analytically and those that are data-driven for each choice of forcing model f (l)(s; t, zs, żs).

Table 1: Forces retained as physics (P) in f (l)(s; t, zs, żs) or learned by ML in δs

Forcing Model
Force Description Term A B C D E
Linear Restoring c1zs P P P P ML
Nonlinear Restoring c3z

3
s ML ML ML ML ML

Linear Damping b1żs P P ML ML ML
Nonlinear Damping b2ż

2
s ML ML ML ML ML

Linear Excitation
∑

i ζi cos(..) P ML ML P ML
Nonlinear Excitation

∑
i −αzs cos(..) ML ML ML ML ML

RESULTS

The Duffing equation is configured usingm(s) = 1.0, c1 = 1.0, c3 = 0.01, b1 = 0.1, b2 = α = 0 so that the only nonlinear
term is the cubic restoring force. For a given significant wave heightHs and peak frequency ωp, the wave elevation ηs, and
time series of nonlinear state zs, żs, z̈s and force correction δs, are generated by solving Eq. (15) numerically. This is done
to generate training data which are used to train the ML model for δs. In addition, testing data are also generated, but these
data are used to verify the performance of the trained models and are not used during the training process, as is discussed
later in this section.

Throughout the study, each of the five low-fidelity forcing models given in Table 1 are considered. In all time series, a time
step of ∆t = 0.1 s is used. Also, when sampling the wave spectrum to create ηs, the sample frequency bandwidth is taken



such that the repeat period of the resulting summation is equal to the length of the time series.

An ML model consisting of a feed-forward, densely-connected neural network with 2 hidden layers, 30 nodes per layer, and
ReLU activation functions is trained for each δs corresponding to each low-fidelity forcing model f (l)

s . In this work, a sten-
cil length k = 5 is used, per the recommendations outlined in Marlantes et al. (2023). The reason a small k is effective in
this case is because the nonlinear force components are functions only of the instantaneous state variables zs and żs. Each
model is trained for a total of 1000 epochs until the training loss no longer improves, however, only the weights from the
epoch with the lowest loss are retained as final weights. The training time for each model is approximately 1 minute on a
modest computing platform.

The average L2 error, L∞ error, given by Eqs. (22) and (23), respectively, are used to evaluate the accuracy of the time se-
ries predictions in terms of RMS and extreme values.

L2 =

√∑N
i (x̂− x)2

N
(22)

L∞ = max(|x̂− x|) (23)

However, such measures are sensitive to small phase errors. As a more powerful measure of performance, the Jensen-Shannon
divergence (JSD), as given by Eq. (24), is used to estimate the entropy of the predicted response pdf relative to a known
reference pdf. P is the reference distribution and Q is the model distribution, both being pdfs, andM is the mixture. The
Jensen-Shannon divergence is based on the Kullback-Leibler divergenceD, given by Eq. (25), which is a measure of the
relative entropy between the model distributionK and the reference distributionM , both defined over the domain χ. It can
be thought of as a measure of information loss, or expected surprise, if a certain distribution is used to model a reference
distribution. A lower JSD means the model is closer to the reference, with a divergence of zero meaning the two distribu-
tions are identical.

JSD(P∥Q) =
1

2
D(P∥M) +

1

2
D(Q∥M) (24)

M =
1

2
(P +Q)

D(K∥M) =
∑
x∈χ

K(x) log
(
K(x)

M(x)

)
(25)

The L2, L∞, and JSD metrics will be evaluated on predictions of the sectional acceleration z̈s as it captures both the ac-
curacy of the force integral on the right-hand-side of Eq. (9), as well as the inertial force of the entire beam to a constant
factor.

Training Data Size

We wish to use the smallest training dataset possible, so the influence of training dataset size on prediction accuracy is first
investigated. Using a significant wave heightHs = 1.0 and a peak frequency of ωp = 1.0, irregular wave records of ηs rang-
ing in total length of 10 s up to 1000 s are generated, and the corresponding responses zs, żs, z̈s, and the force correction δs
are computed. Using this data, an ML model is trained for each low-fidelity forcing model in Table 1. The trained models
are used to make predictions of the response in 1000 s of irregular waves with the sameHs = 1.0 and ωp = 1.0, but with dif-
ferent random phase angles. For each model, the L2, L∞, and JSD are computed. Figure 2 shows the prediction errors vs



training dataset size for each low-fidelity forcing model. Note that the training dataset size is given as the number of Zero-
Up-Crossings (ZUCs) in the wave record, as this is a more meaningful measure of response encounters than time alone.
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Figure 2: L2, L∞, and JSD prediction errors for each low-fidelity forcing model over increasing training data size
measured in wave record Zero-Up-Crossings (ZUCs). Predictions are in irregular waves Hs = 1.0, ωp = 1.0, with
random phase angles that differ from the training dataset.

Figure 2 shows that prediction errors of the five different models converge at roughly the same rate relative to the size of
the training dataset. Datasets of approximately 50 ZUCs and larger yield similar prediction errors, with the exception of
model E, which requires at least 100 ZUCs.

Generalizability in Hs

Training data is generated for two different significant wave heights,Hs = 0.7 and Hs = 1.0, at a peak frequency of ωp = 1.0
for a total time series lenth of 500 s, or about 108 ZUCs to correspond with the findings in Figure 2. The time series for the
state variables zs, żs, z̈s, and wave elevation ηs are shown in Figure 3.
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Figure 3: Training data time series for Duffing equation: m(s) = 1.0, c1 = 1.0, c3 = 0.01, b1 = 0.1, b2 = α = 0, in irreg-
ular waves: Hs = 0.7 and Hs = 1.0, ωp = 1.0.



Figure 4 shows the corresponding δs for each low-fidelity forcing model for the training data caseHs = 1.0 and ωp = 1.0.
Note the difference in magnitude of δs between the models, where δE,s encompasses all of the hydrodynamic forces.
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Figure 4: Training data for force correction δs for the five different low-fidelity forcing models f (l)
j ,

j = A,B,C,D,E in irregular waves: Hs = 1.0, ωp = 1.0. The time series is given only from 200 s to 400 s so that
the difference between the models is easier to distinguish, however, the pdfs are generated from the entire 500 s time
series.

Training data for two differentHs are shown in Figure 3, however, only one realization will be used for training at one
time. This represents the minimum useful training dataset: 100 ZUCs in a singleHs. ML models for each of the five low-
fidelity forcing models are trained at each wave height, to investigate any difference the trainingHs may have on the per-
formance of the models when making predictions.

As a benchmark, a Long Short-Term Memory (LSTM) neural network is also trained using a sequence-to-sequence paradigm,
where the entire wave elevation ηs is used as the input to the network, and the output is the corresponding responses zs,
żs, and z̈s. LSTM networks and their variants are widely used in literature on data-driven modeling of marine dynamics
(Xu et al., 2021), (Silva and Maki, 2022), and may be the predominant data-driven model for time series modeling. Due to
its popularity, the LSTM is chosen for comparison. The network is composed of 4 hidden layers with 50 cells per layer to
mimic the models used in Xu (2020). The model is trained for 200 epochs, until the loss plateaus at a value less than 1%.
The best weights during the training process are restored at the end of the training process. The training time for the LSTM
network using the data in Figure 3 is approximately 2 hours on a modest computing platform.

A testing dataset is generated for a range of significant wave heightsHs from 0.01 to 1.5 and a peak frequency ωp = 1.0
over 1000 s of time. The component phase angles ϕi are selected randomly to differ from the phase angles used in the train-
ing dataset. Each trained ML model is used to make predictions of the responses in eachHs from the testing dataset. Us-
ing Eqs. (22) through (24), the L2, L∞, and JSD metrics for the predictions are computed over the last 900 s of time se-
ries, omitting the first 100 s as it is a transient region. Figure 5 shows the performance metrics for each low-fidelity forcing
model, the LSTM predictions, and a benchmark linear model, over the range of test significant wave heights. The wave
height that was used for training is marked by a vertical line in each figure.
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Figure 5: L2, L∞, and JSD error metrics for predictions of z̈s for different low-fidelity forcing models over a range
of Hs. The left panels correspond to models trained using Hs = 0.7, and the right panels Hs = 1.0. Results from the
LSTM predictions are also shown for comparison. The linear model is also included to show how the linear error
decreases to zero in the limit of small significant wave heights.

Figure 5 shows model A–the model that retains the most physics–performs better than the other models, and the LSTM
benchmark, in nearly all wave conditions. This suggests that the more physics that are retained as analytical terms in the
model, i.e. not data-driven, the generalizability of the model is improved. This is especially evident at low wave heights,
where the low-fidelity physics enforce the correct dynamics at the linear limit. The L2 and L∞ errors from the LSTM pre-
dictions are roughly in line with model E, which is perhaps intuitive as it is almost a purely data-driven model as well.
Training in largerHs seems to reduce prediction errors in largerHs, while slightly increasing prediction errors at low-Hs.
However, this difference is greatly reduced in models which retain more physics.

To emphasize the performance of model A further, Figures 6 and 7 give the time series and pdfs of the predictions for each
forcing model and the LSTM benchmark at the smallestHs = 0.01 and the largestHs = 1.5 significant wave heights. It is
shown that the LSTM model struggles in both extremes, especially to predict the tails of the distribution. In comparison,
models A and D perform well for both cases. Model E performs the worst, greatly over-predicting the response in smallHs,
appearing as rapid, but stable, oscillations. Consider the pdf for model A atHs = 0.01 in Figure 6 and note the sensitivity of
the JSD to small errors in the predicted distributions, as this proposed model fits qualitatively well to the reference distribu-
tion, but the small errors in the tails are magnified in Figure 5.
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Figure 6: Predictions of z̈s in irregular waves Hs = 0.01, ωp = 1.0 using the proposed method with different low-
fidelity forcing models. Each model is trained in irregular waves withHs = 1.0, ωp = 1.0. Results from an LSTM
prediction are also shown for comparison. Only 200 s of response is shown for clarity, however, the distributions
encompass the entire 1000 s time series.
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Figure 7: Predictions of z̈s in irregular waves Hs = 1.5, ωp = 1.0 using the proposed method with different low-
fidelity forcing models. Each model is trained in irregular waves: Hs = 1.0, ωp = 1.0. Results from an LSTM predic-
tion are also shown for comparison. Only 200 s of response is shown for clarity, however, the distributions encom-
pass the entire 1000 s time series.



CONCLUSIONS

The results of this study show that the neural-corrector method of Marlantes and Maki (2022) can be extended to the global
loads problem and provide predictions in a range of irregular wave conditions that differ from the original training dataset.
It is also found that retaining low-fidelity physics greatly improves the generalizability of the model. The accuracy of the
predictions exceeds that of an LSTM benchmark when trained on an equivalent training dataset, especially in preserving
the tails of the response distributions. The fact that a simple, feed-forward neural network as used in the proposed method
offers improved performance over a typical LSTM model is largely due to the inclusion of low-fidelity physics in the for-
mulation. A well-tuned linear model intrinsically captures much of the important dynamics of the problem, so that the ML
correction must learn only higher-order terms, as shown in Marlantes and Maki (2022), such that a much simpler network
is adequate. Finally, the proposed method, when including the most physics in the low-fidelity forcing model, requires a
dataset of responses encompassing only 50 - 100 irregular wave encounters.

This work considered the responses of only a single section of the global loads problem. To implement multiple sections in
unison, there are two possibilities: training a single model with multiple output nodes corresponding to a spatial discretiza-
tion of δ(x; t, z, ż) at different longitudinal locations; or, training multiple models with single node outputs–such as done in
this paper. In the former case, the output nodes must respect the integral on the right-hand-side of Eq. (9), which could be
enforced in the loss function during training.
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