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ABSTRACT 

 

We propose the concept of a Knowledge Graph as a data management and inference machinery that 

underpins digital twins of ships. The Knowledge Graph is a directed graph connecting dependent and 

independent model variables of interest in the digital twin, where the correlations between variables are 

continuously updated based on data received from the physical ship. The paper outlines a methodology for 

constructing the Knowledge Graph and proposes metrics that help to calculate the effectiveness of 

decarbonization solutions based on changes to the strength of data correlations. The proposed methodology 

allows for the extrapolation of decarbonization technology potential across specific vessels, fleets, 

operational patterns, and lifecycle phases. 
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INTRODUCTION 

 

The digitalisation of shipping to accelerate decarbonisation, supported by data gathered from sensors and ship systems 

(Agarwala et al, 2022), is a promising approach (Ksetri, 2021). Particularly relevant is Digital Twin (DT) technology, initially 

used by NASA, but applied in recent years to smart manufacturing, transport, smart cities and other areas. DTs enable the 

creation of a digital representation of a ship, which is fed with data acquired by the physical ship via sensors. These digital 

representations can then be used to analyse ship-related functions and processes, and actuate systems on the physical ship 

responsible for engine management, navigation and others. 

A ship digital twin therefore, can be viewed as a virtual replica of its physical counterpart that is not static but dynamic, with a 

bidirectional relationship to the physical system. Use of DT in shipping can result in reducing costs and improving time 

effectiveness and quality. 

A broad definition of a knowledge Graph is as a graph of data intended to accumulate and convey knowledge of the real world, 

whose nodes represent entities of interest and whose edges represent relations between these entities (Hogan et al, 2022). 

Knowledge graphs are knowledge-based models that utilize graph links to connect entities in a particular domain and to 

augment the existing knowledge by using queries and other types of inferences.  A knowledge graph therefore is ideally suited 

for modelling knowledge in the domain represented by the physical counterpart of the DT.  Moreover, the knowledge graph 

links data about the physical system as these are collected by the digital twin. Such data types may include: 

• geometrical data, e.g. CAD models of the ship 

• event based data for events generated by the physical ship throughout its operation, and 

• time series data such as speed, fuel consumption, etc, collected from the ship, as well as data such as sea state, 

direction, collected from the ship’s environment. 

 

A knowledge graph can be used as the data engine management, and also as the inference engine of the DT, that acts on the 

datasets received from the physical ship to make inferences such as predictions of future states of the ship, and also to evaluate 
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the actual current state of the ship and compare with the expected one, thus supporting anomaly detection (the existence of an 

abnormal state), and error and fault diagnosis. 

This paper builds upon foundational work on digital twin technology and knowledge graphs as tools for supporting the 

decarbonization of the shipping industry (Antonopoulos et al, 2023). In the research presented in (Antonopoulos et al, 2023), 

a digital twin of maritime vessels was developed to provide a platform for simulating and evaluating the impacts of various 

decarbonization technologies. Key to that approach is the use of knowledge graphs for maintaining ontologies, storing 

simulation models, and correlating these models with a combination of measured and estimated variables.  

The novel contribution of this paper is on enriching knowledge graphs with dynamic features by introducing a computational 

framework that establishes quantifiable links between system parameters. By utilizing measures such as correlation, we enable 

precise comparisons between data-driven ship models and their theoretical counterparts. 

The paper is structured as follows: Initially, the paper outlines the methodological framework within which the proposed 

technique is applied. The next section provides a formal definition of the Knowledge Graph and illustrates it with an example. 

Then, a procedure for constructing a Knowledge Graph is proposed. Next, we introduce metrics that are based on statistical 

analyses of the datasets collected by the digital twin. Again, an example is used to illustrate the various proposed metrics. 

Following that, a case study is shown where a sample data set and Knowledge Graph is used to analyse and quantify the 

effectiveness of a hypothetical wind-based decarbonisation technology introduced on a ship. We conclude the paper with an 

overview and critique of the proposed approach and with suggestions for further research. 

 

ENCODING DOMAIN-SPECIFIC KNOWLEDGE OF DIGITAL TWINS USING KNOWLEDGE 
GRAPHS 

  

Within the maritime sector, a DT is conceptualized as a real-time digital counterpart of a physical entity, such as a ship, port, 

or maritime operation [Madusanka et al, 2023]. Specifically, a ship's DT represents an exact digital reflection of the physical 

vessel, encapsulating its structural design (like hull type and layout, hull parameters), onboard equipment (engines, propellers, 

rudders), and operational functionalities (propulsion, navigation, cargo handling). This comprehensive digital model integrates 

technical specifications, component designs, and operational data within a fleet management framework, facilitating the 

computerized simulation and optimization of ship operations across various performance metrics with a focus on environmental 

sustainability. 

Digital Twins engage in a two-way communication with the ship's Information and Communication Technology (ICT) 

infrastructure [Tao et al, 2018], utilizing data collection techniques and devices to continuously update the digital model with 

real-time information from the physical vessel. This dynamic learning process allows the DT to accurately reflect the physical 

ship's lifecycle, offering insights into its present condition and forecasting future states through simulations and predictive 

analytics. 

A ship DT is built around measurable parameters and can be structured into a network of interconnected modules, such as 

propulsion systems, voyage and fleet management systems. These modules may also be integrated with broader digital twins 

that encompass ship operations management or the entire spectrum of ship design, construction, and lifecycle management. 

The primary goal of employing a ship DT is to facilitate both reactive and predictive decision-making processes, aiming to 

achieve objectives that include reducing environmental impact. The insights gained from one ship's DT can often be applied to 

others, enabling data and knowledge sharing in advancing green shipping practices. This prerequisite a degree of 

interoperability between digital twin instances, which can be achieved by using a common ontology, as suggested by (Hiekata 

et al, 2010). 

Digital Twin technology has found application across various maritime domains, including shipbuilding, offshore oil and gas 

exploration, marine fisheries, and renewable marine energy production (Zhihan et al, 2023). For instance, (Coraddu et al, 2019), 

have developed a data-driven digital twin for ships, capitalizing on vast datasets from onboard sensors to estimate speed loss 

due to marine fouling, showcasing the practical utility of digital twins in enhancing maritime operations. 

 

KNOWLEDGE GRAPH FORMAL DEFINITION 
 
Rationale 
 

Knowledge graphs are sophisticated semantic networks acting as knowledge bases, structured like directed graphs (Qiu et al, 

2017). They function by organizing data into triples of (subject, predicate, object) from semi-structured or unstructured sources, 

thereby enabling advanced knowledge retrieval and reasoning capabilities (Wei et al, 2018). Knowledge graphs are adept at 

modelling  complex relationships within domains, linking disparate pieces of information, and supporting a wide range of 

applications including knowledge retrieval, question and answer (Q&A)  systems, recommendations, and visualization. 

Initially developed for extracting knowledge from extensive datasets, knowledge graphs are now a cornerstone in the semantic 

web, setting a benchmark for efficient information retrieval and usage. Their utility spans various sectors, notably in industry 



   

for tasks such as maintenance planning of sophisticated equipment (Xia et al, 2023), and predictive maintenance for hydraulic 

systems (Yan et al, 2023). 

Within the maritime and shipping sector, knowledge graphs have found applications in analyzing ship collision accident reports 

to enhance maritime traffic safety. (Zhang et al., 2020), have developed a knowledge graph for maritime dangerous goods, 

streamlining the knowledge retrieval of hazardous materials, automating the assessment of cargo stowage and segregation, and 

advancing the intelligent transport of dangerous goods. Similarly, (Langxiong et al, 2023) crafted a Ship Collision Accident 

Knowledge Graph, aiding in uncovering accident correlations and streamlining the judicial and investigative processes for 

marine accidents. 

Crucially, knowledge graphs have become integral to augmenting the functionality of Digital Twins. By mapping entities, their 

relationships, and attributes in an organized fashion, they offer a systematic approach to collating and interlinking data within 

the DT framework. In maritime contexts, they enable comprehensive representations of vessel ecosystems, covering equipment, 

maintenance histories, and compliance with regulations. These interconnected networks support predictive analytics, risk 

evaluations, and the simulation of various scenarios, enhancing operational decision-making. By bridging real-time and 

historical data, knowledge graphs also underpin predictive maintenance strategies, facilitating early detection of potential 

failures, thus ensuring operational reliability and safety. 

A related modelling formalism, dependency graphs, have been studied as part of engineering design (Rötzer et al, 2022). There 

is a variety of such graphs based on their formal underpinning and role in the design/manufacturing cycle. Effect Graphs, for 

instance are qualitative models built to produce early qualitative statements about the system behaviour. Directed Acyclic 

Graphs (DAG) or causal diagrams as described by (Pearl, 1995).  

The Knowledge Graph we propose is a dependency network of dependent and independent model variables of interest, where 

the links show the strength of correlation associations between the variables. The Knowledge Graph utilizes the ship data 

collected by the DT to learn the strength of the correlations between system variables and to represent them as rule nodes. 

Association rule learning is a rule-based machine leaning method for discovering interesting relations between variables in 

large databases. (Agrawal et al, 1993). Association rule mining has been studied since the 1990s in domains such as supermarket 

transactions. However, in such domains there are not many theoretical models to cross validate against the empirically mined 

association rules. In contrast, the association rule we propose utilizes both theoretical and data driven ship models. 

The Knowledge Graph can therefore, be considered as a qualitative statistical summarizer of the ship’s models parameters of 

interest, reflected in the strength of associations between the key variables that represent the system and its environment. 

As shown in Figure 1, the knowledge graph models dependency rules such as statistical correlations of the data collected from 

the physical ship and its environment. The rules describe statistical dependencies (correlations) between independent variables 

(factors) and dependent variables (factors) of interest. For instance, independent factors include ship speed and direction as 

well as environment factors such as ship state.  Dependent factors include ship fuel consumption and emissions. 

The exact relationships between independent and dependent variables are complex and mostly nonlinear.  Complexity means 

that the independent variables may be correlated with each other as well as with the dependent variables 

To calculate the strength of the influence of each independent variable on a dependent variable, standard correlation analysis 

techniques such as Person for linear, and Spearman, for nonlinear correlations, can be employed. For instance, although ship 

sped is positive related to fuel consumption for very low speeds the polarity of the relation is reversed as in such speed, the 

friction is increased and requires more power to overcome. 

 

 

 
Figure 1: Knowledge Graph in the context if the digital twin 

 

Knowledge 
graph

Digital twin

Physical 
ship



   

 

Formal Definitions 
Let X be a finite set of independent variables (‘factors’) x1, …x2,.. and Y a finite set of dependent variables y1. y2,… 

 

Each factor x in X draws values from a finite countable set of ordered values called the domain of X and   denoted as Dom(x) 

We use val(xi) to refer to a value drawn from Dom(xi) 

Similarly, each dependent variable y in Y draws values from a finite countable set of ordered values demoted as Dom(y) 

We define a record type r of variables x1,..,xk k >1, as a tuple   (val(x1)…,val(xk)) with k >= 1 where xi ≠Xj for all i, j. 

We define a set of correlation rules C where  c є C  is a tuple (x1,..,xn, y),  and the strength of the rule c corr(c) as a function 

corr returning a value between 0 and 1. 

We define a Knowledge Graph as a directed graph <V,E> where v є V is a variable from  X U C U Y  and e є E  is a tuple (x, 

c) where x є X and c є  C or {c, Y) where c  є C and y є Y. 

Informally, factors are connected to rules and rules are connected to dependent variables. A rule (x1,..,xn, y),  shows the 

correlation of factors x1,..,xn  with the dependent variable y, while the weight on the edge between rule and dependent variable 

corresponds to the strength of the correlation . The correlation strength can be the result of a theoretical formula or an 

empirical (e.g.  regression) formula.    
 
 

Example  
 

 

 

 
Figure 2: Knowledge Graph for Fuel Consumption 

 
Figure 2 shows a small sample Knowledge Graph.  The modelled factors are Speed, Wind Strength and Wind Direction.  All 

these factors are quantized as discussed in the next section, and draw values from their respective domains. For instance, Wind 

Strength draws values from the domain of integers between 0 and 9 following the Douglas Sea Scale units of measurement.  

The three factors are connected to rule nodes.  Consequently, the rule nodes connect to dependent variables of interest, in this 

case to Fuel Consumption. The labels on edges between rules and dependent variables show the strength of the correlation.  

 

PROCEDURE FOR CONSTRUCTING KNOWLEDGE GRAPH 
  

The main steps in constructing a Knowledge Graph are as follows 

 

1. Identify subsystems and components of the ship system.  

2. Identify additional systems that the current system interacts with/is part of. 

3. Identify model variables (endogenous as well as exogenous) that describe the behaviour/performance of the 

system/subsystem/component.  

4. Define the Knowledge Graph vertices (nodes) in terms of the variables in Step 3. 

5. Discretise continuous or numerical variables into categorical variables.  

6. Determine dependencies between independent variables and dependent ones using theoretical models, experimental 

data and expert knowledge/Create one rule vertice per rule in the Knowledge Graph. 

WindDirect
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Fuel Consumption

FuelConsumption
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Speed

WindStren
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Discussion on the proposed Knowledge Graph construction procedure. 

In general, quantizing/binning of continuous variable introduces non-linearity and tends to improve the performance of 

the model. It can be also used to identify missing values or outliers. We quantise the values of the independent factors 

using natural (e.g. physics dictated, as well as business related criteria, using ordered categorical variables.   

 

Example 

Although vessel speed can be modelled as a continuous variable, we discretise it according to speed categorisation that is 

dictated by physics/ operational and legislation constraints So, speed is discretised according to the categories of normal, 

slow steaming and extra slow steaming.  Table 1 shows examples of quantizing ship and environment variables. 

Table 1: quantizing variables 

 

 

Record 

id 

Avg. Speed 

(knots) 
Speed quantized 

Avg wave 

height (m) 

Waves in 

Douglas 

Sea Scale 

Fuel  

consumption 

rate (lt/min) 

Fuel  consumption 

rate quantized 

T1 22 n (normal) 6.5 7 14 h(high) 

T2 19 ss (slow steaming) 3 5 10 m (medium) 

T3 21 n (normal) 2 4 8 l(low) 

T4 15 
ess (extra slow 

steaming) 
1 3 6 vl (very l(ow) 

 

Metrics 

In this section we define metrics related to the numbers, frequency of occurence and correlations in the dataset vailable to the 

DT and consisting of measurements taken from the physical ship, discretised and grouped into records. We define a record 

instance of a record r an appearance of a record of type r in the dataset.   

Expected Frequency  

Expected frequency Ef(r) is a measure of how frequently instances of record of type r  are expected to appear  in the dataset. 

It is based on the strength of correlation between variables appearing in the record according to the existing knowledge 

(theoretical and/or empirical) of the domain. 

Example  

Assuming high (0.9) correlation between ship speed and fuel consumption and the following quantization of speed and fuel 

consumption: 

Dom(Speed):{ ss,n} with ss < n 

Dom(FuelConsumption) : {l, h} with l < h. 

If speed and fuel consumption were totally uncorrelated we would expect to find all combinations (ss, l),(ss,h),(n,l),(n,h) with 

equal probability of 0.25. 

However because of the assumed correlation we expect to find record types (ss,l),(n,h) with probability 0.9 and record types 

(n,l) , (ss, h) with probability 0.1 

However, not all combinations are equally represented in the dataset due to measurement limitations. For instance, it may be 

possible to measure some particular combinations of factors due to technical and physical limitations such as very strong 

winds co-occurring with high vessel speeds. Therefore, we introduce the concept of support below. 



   

Coverage 

Coverage for a record of type r is the number of record instances in the dataset divided by the number we could theoretically 

find in a dataset of that size. For example, because of the strength of the correlation between speed and fuel, we could expect 

on average 10 instances of record (low speed,  high fuel) in a sample of 100 instances, If we find instead 5 instances of the 

record the coverage  is 5/10 or 0.5 

When coverage < 1 for a record type it means that the record type is underrepresented  in the dataset while > 1 means the 

record type is overrepresented 

Counterrecord  
A counterrecord  of record type  r:(x1, x2, .., xk, y) with respect to some correlation rule c is a record type   ř:(x1, x2,..,xk,y’) 

where y ≠ y’ has expected frequency   Ef(ř) < Ef(r)  

For instance, if the association between speed:(l,h) and fuel consumption:(l,h) is strong positive (with  for example,  0.9 

strength) we expect to find record instances  of type (l, l) and speed: (h, h) with high frequency and records of type (l,h) and 

(h,l) with lower frequency in the dataset. Thus record types (l,h) and (h,l) are counterrecords of (h, h). 

We use Ȓc for the set of all counterecord types of r under correlation rule c. 

 

Association rule strength 

The strength of an association rule c for a record of type  r is defined as 

𝛴řЄȒ𝑐
(E𝑓(ř)) ∗

|𝑟|

|ř|∗ E𝑓(𝑟)
 [1] 

Where |ř| is the cardinality of the set of all counterexamples found in the data set. 

The summation of expected frequencies of counterrecords in formula [1] can be explained with this example: If  we have  3  

types of counter records  and we find one instance  per counter record  and the expected frequency of each counter record  is 

1/30 and 5 record instances  with frequency 0.9 ,we obtain the association rule strength as 3 x 1/30 x (5/3*0.8= 0.13 

 

CASE STUDY 
 
Background 

We illustrate our approach with a hypothetical example about the introduction on a ship of a fuel consumption reduction 

technology that is based on wind assist propulsion (WASP). It is well known today that the use of wind is one of the solutions 

to substitute existing fossil-based propulsion technologies. The sizing of wind assists devices such as sails and kites needs to 

take into account the propulsion system. Therefore, vessels equipped with variable pitch provide a greater range of 

applicability. Moreover, analytical models for kite have been developed (Leloup et al, 2016). Models of the operation of 

wing sails have calculated  the Energy Efficiency Design Index (EEDI) change for  specific commercial routes, identifying a 

potential reduction of 18% (Yong et al, 2919). 

Estimating the correlation strengths 

The correlation graph of Figure 3 is small as it is only used to illustrate the principles of our approach. A real life scale 

knowledge graph would also include variables such as fuel consumption/mile, wind direction, wind speed, vessel speed and 

propeller pitch. The new WASP technology is expected to negatively correlate fuel consumption with wind power, i.e. as the 

wind power increases, the new technology will utilize it to reduce required engine power, and hence, fuel consumption.  The 

size of our synthetic data is small compared to a real life scenario where the data set could contain thousands or millions of 

records collected over large time periods, and is used to illustrate the proposed approach. It is envisaged that the Knowledge  

Graph would periodically carry out the calculations described below as the ship conditions change, on very large datasets that 

are updated over the ship’s lifecycle. The impact of both speed and wind strength on fuel consumption has been investigated 

both empirically and theoretically. More specifically, the weather a ship encounters during voyage has significant influence 

on her fuel consumption, in particular relating to prevailing wind and waves (Bialystocki and Konovessis, 2016). 

Accordingly, prior to introducing the new technology the correlation between wind strength, speed and fuel consumption rate 

for the particular vessel was calculated experimentally and theoretically as shown in the Knowledge Graph of Figure 3. As 



   

per Figure 3, there is a very strong positive correlation between speed and fuel consumption rate (0.9) and a strong (0.7) 

positive correlation between wind strength and fuel rate consumption. 

The factors’ corresponding domains after discretization are: 

Speed: {(n)ormal,  (s)low steaming. m(anouvring)} 

Wind Strength:{0..9}  

Fuel Consumption Rate: {n(ormal), l(ow), h(igh)} 

 

The sample dataset received by the digital twin is shown in Table A1 in appendix A. 

 

To assess the effectiveness of the decarbonisation technology based on the collected data we need to pose several questions 

and analyse the dataset using the metrics that we defined previously. The different analyses are further discussed below. 

 

 
Figure 3: Correlation graph for Speed, Wind Strength and Fuel Consumption 

 

 

The coverage of the dataset for every speed-wind strength combination 

 
 The total number of record types is ||Dom(Speed)|| x ||Dom(WindStrength)|| i.e. 30.  The coverage of the different record types 

Speed x WindStrength is shown in Table 2. 

 

 

Table 2: Coverage of record types 

 

 

Record 

type 

(n,0),(n,2),(n.3),(n,4),(n,5),(n,6),(n,7),(n,8),(n,9) 

(ss,0),(ss,1),(ss,2),(ss,5),(ss,6),(ss,7),(ss,8),(ss,9) 

(m,0),(m,1),(m,2),(m.3),(m,4),(m,5),(m,6),(m,7),(m,8),(m,9) 

(n,1), (ss,3), (ss,4) 

Expected 

Coverage 
2/3 2/3 

Actual 

Coverage 
0 2 

 

The reasons that most record types are underrepresented on this occasion is the small size of our dataset. In real life 

underrepresentation could be interpreted as caused by: 

 
• Data corresponding to underrepresented record types were difficult to collect due to limitations of the measuring 

apparatus, Measuring or recording errors  

• Due to the rarity of the physical events corresponding to the record type. For instance, sea scales of strength between 

3-5 are more commonly experienced in open seas than those of strength 0, 1, 8, 9. 

 

Examine the sensitivity of the new technology to wind strength i.e. whether it works better with higher or 

lower wind strengths 
 

To analyse that, we compare the frequency of occurrence of record types (S:*any*, WindSrength:0-4, FuelConsumption:h), 

with those of record types (S:*any*, WindStrength:5-9, FuelConsumption:h) 

Fuel Consumption

FuelConsumption

Rule 1
Speed

WindStren

gth

FuelConsumption

Rule 2



   

According to the dataset of Table 1, the new technology tends to be more strongly associated with low fuel consumption at low 

wind strengths. Of course, that can be explained that other confounding factors such as ship wind resistance have a stronger 

effect on fuel consumption than the new technology at high wind speeds. 

 

Identify potential situations where the technology causes increased fuel consumption results 

 
For this type of analysis we need to enumerate all counterrecord types of records where fuel consumption is medium or low 

and compare the frequency of the record with that of the counterrecords. 

Counterecord types of (m,l) are (m,m),(m,h). From the association rule strength we expect to find 2  counterecord instances, 

however 5 instances where found in the dataset. This means that the new technology can have unintended increase in fuel 

consumption at maneuvering speeds. 

Counterecord types of (s,m) are (s,h),(s,l). From the association rule strength we expect to find 2  counterchord instances, 

however 4 instances where found in the dataset. This means that the new technology can have unitentended increase in fuel 

consumption at slow steaming speeds. 

 

However, all above analysis results should be interpreted in the context of the dataset size and coverage of each record type. 

 

Calculate the overall fuel improvement potential   of the new technology  
 

We need to test whether the new tech reduces the strength of the association between speed and fuel consumption and increases 

the strength of the association between wind strength and fuel consumption 

By applying equation [1] to the dataset we obtain the revised correlation strengths as shown in Table 4.  

 

 

Table 3 revised correlation strengths after new decarbonization technology 

 
|RSpeed| | Ȓspeed| c(Speed→Fuel 

Consumption) 

| R Wind Strength | | Ȓ Wind Strength | c(Wind→Fuel 

Consumption) 

4 5 ~0.11 4 11 ~0.65 

 

From the results shown in table 3 we observe that the strength of the correlation between speed and fuel consumption has been 

reduced from 0.9 to 0.11. This means that speed is no longer the main determinant of fuel consumption. Similarly, the strength 

of the wind and fuel consumption has increased from 0.1 to ~0.65, meaning that wind strength is now the significant determinant 

of fuel consumption. This of course assume that all other factors have remained unchanged after the introduction of the new 

technology.  

 
CONCLUSIONS 
 

In this paper we presented the theoretical foundation of an approach to encode quantified domain-specific knowledge, 

followed by practical examples, and demonstrate its application in a use case focused on wind-assist technology. While this 

work primarily explores the methodology's principles and provides a preliminary report, it lays the groundwork for future 

development and implementation of a holistic decision-support framework aimed at decarbonizing the shipping industry with 

the use of DTs and knowledge graphs. The proposed Knowledge Graph  correlates independent and dependent variables that 

model  the physical system in a digital twin. Knowledge Graphs in general, are an important technology for data 

representation and knowledge inference in many industrial domains. (Abu-Salih, 2021). The Knowledge Graph connects 

theoretical and empirical ship knowledge with the data received from the ship throughout its operation.  

The purpose of the proposed Knowledge Graph is to compare the theoretical with empirical model of the ship in order to 

identify discrepancies.  Such discrepancies can then be interpreted as anomalies, or as changes to   physical ship parameters, 

and used to compare ‘before’ and ‘after’ scenarios. This is also the approach employed in this paper where the Knowledge 

Graph is used to analyse the impact of decarbonization technologies on the ship’s operational parameters.  This dynamic 

characteristic of the knowledge graphs enables the optimization of predictive capabilities for computational efficiency, and 

facilitates the encoding of knowledge patterns that can be transferred across different instances of digital twins. By leveraging 

quantifiable associations, we can effectively analyze and quantify the effectiveness of newly introduced decarbonization 

technologies within an existing ship's system. Such analyses allow for the drawing of insightful conclusions regarding system 

changes brought about by the integration of new subsystems and their impact on system parameters. Through this novel 

integration of dynamic knowledge graphs and digital twin technology, our work lays a foundation for a more informed and 



   

effective application of decarbonization technologies across the maritime industry, ensuring a strategic approach to mitigating 

environmental impact while maintaining operational efficiency. 

The research presented in this paper aims to support the development of a knowledge graph for encoding domain-specific 

knowledge generated by the digital twin. The knowledge graph is not just a static repository of data but a dynamic system that 

integrates, processes, and standardizes knowledge for easy access and application. The proposed knowledge graphs catalogs 

simulation outcomes, operational insights, and environmental data, transforming raw data into actionable intelligence. 

The encoding process involves several key steps: Firstly, simulation models within the digital twin generate data reflecting the 

performance and environmental impact of various decarbonization technologies under different operational scenarios. This 

data, along with measured data, is then contextualized within the knowledge graph, which correlates it with existing operational 

parameters, environmental conditions, and technology performance metrics. Through semantic tagging and linkage, the 

knowledge is not only stored but also interconnected in meaningful ways, facilitating complex queries and analysis (Fonseca  

et al, 2022). 

Using ontologies to maintain a shared vocabulary and structure, allows for the consistent interpretation of data across different 

digital twin instances. This standardization is crucial for enabling the transfer of knowledge between instances, ensuring that 

insights gained from one vessel or fleet can inform decisions on others, even if they operate under differing conditions. 

The ultimate goal of this methodology is to enable the extrapolation of decarbonization technology potential across various 

maritime contexts. By analyzing data from specific vessels or fleets, our approach can predict the effectiveness of 

decarbonization technologies in different operational patterns (e.g., speed, route, and cargo type) and throughout different 

phases of a vessel's lifecycle (e.g., design, mid-life retrofitting, and decommissioning). This predictive capability allows ship 

owners, operators, and industry stakeholders to make informed decisions on adopting decarbonization technologies, tailored to 

their specific needs and circumstances. 

To conclude, our work seeks to bridge the gap between theoretical decarbonization potential and its practical application, 

offering a scalable and adaptable tool for accelerating the shipping industry's transition towards a more sustainable future.  
It must be emphasized that a knowledge graph is never complete or entirely encompassing the modelling perspectives for a 

ship. It is instead modelled from the perspective of the stakeholders who use the Knowledge Graph/ digital twin in order to 

study and understand the physical ship. Also, some types of data that may be of  interest may not be represented in the digital 

twin due to technology limitations or even due to non technical reasons (e.g. confidentiality issues).  

Additionally, the increasing utilization of Knowledge Graphs as parts of digital twins raises questions about their quality and 

robustness. (Abu-Salib, 2021). Both model quality and the quality of the underlying data needs to be present for the inferences 

and predictions made with the use of the Knowledge Graph to be trustworthy. The size and dynamicity of the data sets handled 

by the DT requires data quality assurance techniques to be automated and integrated in the overall Knowledge Graph 

infrastructure. As part of future research, we propose techniques of self-reflection and self-correction to be utilized by the 

Knowledge Graph in order to always remain a reliable and up to date representation of the physical ship. 
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APPENDIX A 
Table A.1: Sample dataset 

 
 

Record 

id 

Speed Wind Strength Fuel  

consumption 

rate 

T1 n 1 n 

T2 n 2 n 

T3 n 5 l 

T4 s 2 l 

T5 s 3 n 

T6 s 4 n 

T7 s 3 l 

T8 m 8 h 



   

T9 m 6 h 

T10 m 4 h 

T11 n 1 n 

T12 s 4 l 

T13 s 7 n 

T14 s 6 h 

T15 n 8 h 

T16 n 3 h 

T17 m 7 l 

T18 m 3 h 

T19 n 4 l 

T20 n 7 h 

 

 
 


