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ABSTRACT

This paper presents a design approach that integrates machine learning techniques with traditional physics-
based simulations/models to enhance the ship design process with robust efficiency. While generative 
machine learning methods, which can directly produce design outputs such as the 3D hull form, have the 
potential to transform the design strategy, ship design inherently involves a decision-making process that 
requires consensus among stakeholders based on a foundation in physics-based simulations/models. This 
paper proposes a practical design strategy that positions physics-based simulations/models at the core of the 
design process, augmented by data-driven models. The paper first classifies hybrid types of the two models 
and integrates them into a practical design process. Finally, it demonstrates the effectiveness of the proposed 
design approach by showcasing the impact of data circulation, which accumulates and reinforces data in 
day-to-day design operations, on improving design outcomes. 
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INTRODUCTION

Until now, the application of machine learning in hull form design has primarily involved using parameters that surrogate 
the hull form, such as principal dimensions, instead of directly dealing with the detailed 3D hull shapes. However, recent 
developments have begun to propose methods that handle the detailed 3D shapes directly as design outputs. Khan has 
proposed a machine learning model that uses a deep convolutional generative model to produce multiple 3D hull shapes 
from a latent input vector (Khan et al., 2023). Similarly, Ichinose has proposed a surrogate model for viscous 
Computational Fluid Dynamics (CFD) that uses a Convolutional Neural Network (CNN) to estimate the hull resistance, 
surface pressure distribution, and wake flow distribution at the propeller plane (Ichinose & Taniguchi, 2022) in real-time 
on a web browser, following to changes in the hull form (Ichinose & Gaspar, 2023). The significant difference between 
machine learning methods traditionally presented at naval architecture conferences and those proposed more recently 
lies not in predicting scalar values such as horsepower, which are one of the evaluation values but not the design products 
themselves, but in the use of decoder models represented by image-generating AI to handle 2D and 3D data, namely the 
design outputs themselves, including hull shapes and pressure distributions. 

The emergence of data-driven approaches capable of directly outputting design products has been impacting ship design 
strategies. Erikstad has classified Marine system design methodology at the strategy level into four categories: 
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Optimization, Set-based, System-based, and Configuration-based, as an evolution from conventional design spiral methods 
(Erikstad & Lagemann, 2022). Each method has its advantages and disadvantages, and the choice among them is 
significantly influenced by design time constraints dictated by commercial practices. Bulk carriers, tankers, and container 
ships, which are predominantly built in East Asia, are often designed under strict time constraints due to negotiations 
with shipowners, making it difficult to move away from Design spiral methods. Papanikolaou, in the HOLISHIP project 
(Papanikolaou, 2022) aimed at Optimization, is constructing surrogate models for CFD calculations, which have been a 
bottleneck in multidisciplinary optimization due to their time dominance. Additionally, in adopting a system-based 
strategy, efforts are being made to optimize the entire process using a fast-responsive simulator known as 1D CFD  
(Perabo et al., 2020). In hull form design, which addresses the highly nonlinear flow around the hull, fast and accurate 
surrogate models for CFD are essential for designing environmentally friendly ships. Energy Saving Devices (ESDs), 
installed either before or after the propeller, are adapted on most ships to reduce the environmental impact of their 
operations. Viscous CFD calculations are the only way to design ESDs while considering the interaction effects between 
the hull form and the propeller. Integrated design of a hull form, a propeller, and ESDs can improve propulsive 
performance by a few percentage points compared to the sequential design method(Ichinose & Tahara, 2019). Aiming to 
enhance the integrated design of a ship’s propulsive performance, accurately modeling time-dominant viscous CFD 
calculations becomes a key technology for adopting next-generation ship design strategies. 
 
Physics-informed machine learning (ML) is one approach to accelerate time-consuming CFD calculations using ML. Raissi 
has estimated the flow field around a 2D cylinder by applying the Navier-Stokes equations as the loss function during 
Neural Network training (Raissi et al., 2018). A significant benefit of Physics-informed machine learning is that it 
eliminates the need for time-consuming mesh generation, which still requires some expert’s techniques. Furthermore, 
"Physics-informed neural networks can seamlessly integrate multi-fidelity/multi-modality experimental data with various 
Navier–Stokes formulations for incompressible flows" (Cai et al., 2021). Multi-fidelity CFD, a combination of potential-
based and RANS-based CFD, has been developed for hull form optimization to expand the exploration space in designing 
hull forms(Peri & Campana, 2005). Physics-informed neural networks have the potential to smoothly combine these 
multi-fidelity physics models, which could significantly alleviate the bottleneck in the overall optimization of ships by 
integrating one-dimensional and three-dimensional CFD methodologies. 
 
On the other hand, ship design is an integral component of larger engineering projects and necessitates a comprehensive 
design methodology that accommodates the decision-making process, including achieving consensus among stakeholders. 
While machine learning models and generative AI can offer significant advantages, one of their notable drawbacks is the 
potential to produce misleading information. Therefore, to facilitate consensus-building and ensure robust decision-
making, it is crucial to strategically combine these models with physics-based simulations. Employing machine learning 
models in a controlled setting, integrated with reliable simulation techniques, is essential for enhancing the accuracy and 
reliability of ship design processes. 
 
This study discusses how to integrate data-driven approaches with physical model simulation design from a practical 
perspective. After organizing the structural challenges of current Simulation-Based Design, this paper proposes a practical data-
driven method that integrates traditional simulation design with a data-enhanced, rationale-based design approach to overcome 
these challenges. Finally, demonstrating the proposed method shows its effectiveness. The core of our proposed design strategy 
is the effective circulation of data, which accumulates and is reinforced through day-to-day design operations. This paper 
partially showcases the impact of this data circulation, providing partial evidence of the efficacy of our approach. 
 
CHALLENGES IN SIMULATION-BASED DESIGN ARCHITECTURE 
 
First, this paper discuss about challenges in the conventional Physics-Simulation-Based Design architecture. The design 
of hull form has benefited from the adoption of Simulation-Based Design since around the year 2000 (ex. Matsumura & 
Ura, 1997). This led to have reduced the number of model tests and contributing to the reduction of design costs. Moreover, 
flow field information such as the pressure distribution on the hull surface and the wave height distribution provided by 
CFD outputs has deepened researchers’ and designers’ understanding of physical phenomena. However, the current 
architecture of Simulation-Based Design is described as a closed system that combines performance evaluation tools, shape 



   

deformation tools, and optimization tools (Tahara et al., 2003). Nevertheless, this architecture has the following practical 
challenges: 
 

1. Limited Design Space: The time-consuming CFD forces to constrain the design space to exploration 
in the optimization process. 

2. Lack of Information for Robust Efficiency: Decision-making suffers due to a lack of information 
during the design process. 

3. Lack of Design Reusability: Designs can't be reused for similar projects. 
 
Figure 1 illustrates the configuration of the Simulation-Based Design (SBD) architecture and its three challenges. 
The SBD architecture consists of three components: a Performance Evaluator, which estimates performance using 
methods such as CFD; a Geometry Manipulator, which performs shape modifications; and an Optimizer, which 
optimizes these components. This study proceeds with discussions based on this architecture. 
 

 
Figure 1: Challenges of Conventional Simulation-Based Design System. 

 
The first challenge in conventional SBD architecture is that time-consuming CFD calculations, especially those solving 
the Reynolds-averaged Navier-Stokes (RaNS) equations through direct discretization, restrict the design space that can be 
explored. As a result, a broader exploration beyond basic hull parameters is often left to the designer's tacit knowledge, 
not covered by the design system. To address this issue, Kandasamy has proposed a method to explore a wider space by 
combining potential flow calculations with RaNS-based CFD in a multi-fidelity optimization approach (Kandasamy et al., 
2010). Furthermore, Diez have suggested a method for dimensionality reduction of the design space through eigenvalue 
analysis of hull form deformation parameters (Diez et al., 2015). Indeed, these methods accelerate CFD calculations. 
However, they do not address the challenges of high-dimensional spaces encountered with the parametric hull form 
deformation methods currently used as Geometry Manipulators. As a solution to these high-dimensional challenges, 
Ichinose has proposed the use of machine learning to analyze a hull form database through the Hull-form Coordination 
System (Ichinose, 2022). 
 
The second challenge is that the output of the SBD system is insufficient for design decisions such as determining the hull 
form, which is the main objective of ship design. The system lacks integration of information on simulation uncertainties, 
as well as information on other evaluative factors affecting the hull form that are not related to simulation, such as stability, 
structure, productivity, and propulsive performance. Factors like CFD calculations, scale effects of actual ships, and wave 
conditions have high uncertainties not currently considered in the SBD architecture. To address this, Tahara have 
proposed a method that theoretically handles variations in sea conditions and other factors using reliability optimization 
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theory (Tahara et al., 2014) . Meanwhile, Ichinose and others have suggested visualization of the design space, which is 
compatible with data-driven approaches (Ichinose, 2022). 
The third challenge is the lack of a mechanism within the SBD architecture to reuse data obtained from SBD in subsequent 
projects, necessitating almost starting from scratch for each redesign. This issue stems from the absence of an information 
feedback mechanism within the architecture, suggesting that a solution could potentially be found through Data-driven 
approaches. 
 
FOUR HYBRID MODELING APPROACHES COMBINING PHYSICS-BASED 
MODEL/SIMULATION AND DATA-DRIVEN MODEL 
 
In ship design, the integration of physical simulations and data-driven methods is not actually a new concept. Ship design 
has long utilized design charts and empirical formulas from past data as data-driven tools. The direction of integrating 
physical simulation and data-driven approaches in this study involves replacing these design charts with machine learning 
models that are more accurate or advanced, and these models will be combined with physical simulations. Especially, the 
physical explain ability and reliability of the final design outputs based on physical simulations are particularly important 
considerations. On the other hand, introducing machine learning requires building mechanisms different from before. 
These include methods of databasing and data visualization, which become new considerations necessary for handling 
large-scale data. 
 
Kanazawa has classified the enhancement methods of a ship dynamic model for ship motion prediction into four modes 
(update mode, convert mode, serial mode, parallel mode) while using a physics-based model as the foundation model to 
ensure physical explain ability and reliability (Kanazawa, 2023). These classifications, which include methods of correcting 
physics-based simulations and ways of applying machine learning loss functions, aim to increase the reliability of physics-
based simulation results. 
 
Moreover, design is a series of processes, and the integration methods of data-driven models with physics-based 
simulations are not solely for the purpose of improving reliability. That is, in the challenge of how to efficiently and 
robustly explore the design space to produce the optimal design output, several integration methods of data-driven models 
and physics-based simulations can be considered. 
 
This study classifies and discusses the integration relationship between physics-based models and simulations and data-
driven models in the ship form design process into four models, as shown in Figure 2. 
 
A) Surrogate Model: The purpose of this model is to speed up time-consuming physics-based simulations. This 

integration method is particularly effective in multi-disciplinary optimization for overall optimization across various 
fields. 

B) Complementary Model: This model is used in the process of narrowing down the design space. Currently, the design 
space is narrowed down using design databases and design charts based on key hull parameters, and detailed shape 
design is performed within this narrowed range using physics-based models such as physics-based simulations and 
model tests. 

C) Correction Model: This model corrects the results of simulations or model tests using a design database. It is the most 
commonly used method in engineering, including scale effect correction of model test results for actual ships and 
data assimilation. 

D) Constrained Model: This model involves setting design conditions and operational scenarios from operational data 
and designing with physics-based models. In the aviation field, Kim has proposed a model where machine learning 
models based on flight data set the simulation's flight phases and constraints(Kim et al., 2022). 

 



   

 
Figure 2: Schematic Representations of Four Hybrid Modeling Approaches Combining Physics-Based 

Model/Simulation and Data-driven Model 
 

The hybrid models of physics-based models/simulations and data-driven models in the design process can be organized 
into four categories. However, as these hybrid models are incorporated into the design process, there may be instances 
where each model is sequentially combined or nested in accordance with the level of detail in the design deliberations. 
Therefore, when integrating physics-based models and simulations with data-driven models throughout the entire hull 
design process, it is necessary to appropriately apply these four models to each area of the design process. The next section 
will discuss how to practically construct a process that integrates physics-based models/simulations with data-driven 
models. 

 
DATA-ENHANCED SBD ARCHITECTURE 
 
This section discusses how to practically implement the hybrid models explained in the previous section into a practical 
design process. 
 

 
Figure 3: Component Technologies for Integration into Data-Enhanced Simulation-Based Design.  



   

Figure 3 shows four data-driven design technologies that are considered capable of overcoming the challenges of the 
traditional Simulation-Based Design architecture discussed in the previous section. The first is an automatic hull-form 
generation tool. A hull design tool that automatically generates multiple design candidates from latent vectors (Khan et 
al., 2023) or past linear databases (Ichinose & Tahara, 2019) is one of the most critical technologies in the hull design 
process utilizing data-driven methods. Many conventional formulaic hull representations and parametric hull deformation 
methods are used for local hull modifications, but not extensively for entire design processes. This is because it is 
challenging to encapsulate the tacit knowledge of past designs, an asset of shipyards or experienced designers, into 
formulaic or parametric expressions with limited hull parameters. The second method, the Hull-form Coordination 
System (Ichinose, 2022), has potential to overcome this difficulty. It uses assets of past design project as basis vectors, 
allowing systematic expansion (interpolation) of hull form which was unable to express in conventional formulation. The 
purpose of interpolating hull form to increase database density is to create a CFD Surrogate model. For example, expanding 
the database with the Hull-form Coordination System by dividing 15 basic hull forms into four parts can automatically 
generate 15,504 (=!"#(%#!) 𝐶!") hull forms. With a system that constantly runs CFD calculations in the background for 
these hull forms, the database and CFD Surrogate model (Ichinose & Taniguchi, 2022) continuously update based on 
accumulating day-to-day design work. Naturally, this database can also include data generated by traditional parametric 
hull representations and deformation methods. The last of the four is the method for analyzing and visualizing the database. 
Nonlinear optimization methods for designing hull forms within specific constraints often result in local optimal designs 
with uncertainties questioning their robustness. This necessitates further investigation by designers before deciding on 
the final design of a ship. The method for analyzing and visualizing the database enhances the robustness of these designs 
by allowing for analysis and visualization of the design space surrounding the optimal solution. 

 

 
Figure 4: Overview of Data-Enhanced Simulation-Based Design system. 

 
Considering the ways of integrating models discussed in the previous sections, this paper proposes the Data-enhanced 
Simulation-Based Design method illustrated in Figure 4. Here, based on the observation that the decision-making of the design 
process is always carried out based on physics-based model and simulation such as CFD and towing tank tests, the term "Data-
enhanced" is used to explicitly denote the enhancement of processes using data, signifying the symbiotic relationship between 
data-driven methods and physics-based simulation. 

 
As shown in Figure 4, the foundational Simulation-Based Design architecture is incorporated within the proposed method, 
enveloping it with the application of hull form databases and machine learning methods to overcome the three challenges of 
traditional SBD. First, regarding challenge 1 – limitation of the design space, the proposed method features initial hull form 
recommendations using the hull form database (1 in Figure 1) and narrowing down the design space with a CFD calculation 
Surrogate model by machine learning (2 in Figure 1). Next, for challenge 2, the proposed method addresses this challenge 
through two methods: proposing robust hull form selection using the Visualization method of the design space shown in 4 in 
Figure 4 (Ichinose, 2022), and multi-objective optimization considering general arrangement, stability, structure, and 
productivity (Papanikolaou, 2022).  Lastly, for challenge 3, the proposed method enables data reuse in similar projects by 



   

creating a database of all CFD calculation results and hull information, including performance evaluation results of hull forms 
discarded during optimization calculations, by databasing them based on the Hull-form Coordinate System treating each hull 
shape like a gene, thereby creating a cycle of data. 

 
DEMONSTRATION OF THE PROPOSED METHOD 

 
This section demonstrates the effectiveness of the proposed Data-enriched Simulation-Based Design method through a partial 
demonstration. 
 
This paper takes as an example the design database shown in Table 1, which simulates an asset in a shipyard. Generally, 
shipyards tend to build ships with similar principal dimensions which they have built in the past, due to factors like crane 
capacity and dock size. The designs of these previously built ships are saved as CAD data along with CFD calculation data. 
These data have not been able to be organized by a set of hull parameters, making it difficult to database them. The Image-
based Hull Form Representation method (Ichinose & Taniguchi, 2022) holds the hull form as the surface data of CFD structural 
grids, saving this data in a format similar to image data, which is more manageable for machine learning methods, thus allowing 
for databasing. This makes it possible to database nearly all hull forms that can be represented by structural grids. 
 
Furthermore, the Hull-form Coordination System can generate new hull forms from this database. This method allows for the 
automatic expansion of a denser hull form database suitable for machine learning. The 20,952 data points shown in Table 1 are 
from a hull form database expanded from 20 basis hull forms using the Hull-form Coordination System. This expanded database 
is utilized as a surrogate model for CFD calculations by a Convolutional Neural Network (CNN) model. 

 
Table 1: Overview of Database for the Demonstration 

 
Ship Type Container Ship, Pure Car Carrier, Bulk Carrier, Chemical 

Tanker, Oil Tanker, Mathematical Hull Form with 
Buttock Flow Stern 

Basis Ships 20 
Total Number of Ships 20,952 

Length/Breadth 5.00 – 7.50 
Breadth/Draft 2.0 – 3.60 

Blockage Coefficient 0.47 – 0.88 
 

 
Figure 5: An Examples of Hull Forms and on the Database generated by Basic Ships 

 
A feature of this proposed method is that the items related to estimated propulsive performance are not limited to integrated 
values such as resistance values, which have traditionally been estimated by design charts. By incorporating a Decoder model 



   

into the Neural Network architecture, as shown in Figure 6, it is possible to present information useful for designers to 
understand physical background and deepen the insight, such as the pressure field on the hull surface and the wake flow 
distribution on the propeller surface. The Decoder model is a type of generative AI model used for creating images. Historically, 
the application of machine learning in ship design has been confined to tasks such as classification and scalar value inference. 
While scalar values, such as main engine output, are essential estimations for design, they do not provide guidance on which 
specific parts of the hull form could be improved. In contrast, models utilizing the Decoder model can estimate the pressure 
distribution on the hull surface and the wake distribution behind the propeller. This capability marks a significant shift as it 
offers detailed guidelines on how to modify the hull form for design improvements, providing much-needed directional insights 
for enhancing overall ship design. 

 
Moreover, the estimation time for this surrogate model by machine learning is less than 0.1 seconds, significantly faster than 
the hours it takes for one case of RaNS-based CFD. Although the design space that can be covered by machine learning is 
limited in this example, in actual operation in shipyards, it is assumed that the design exploration range of this surrogate model 
is almost equivalent to the entire expected design space due to the abundance of conventional databases and the ability to semi-
automatically construct a large amount of hull form data using Hull Form blending methods or FFD methods. 

 

 
Figure 6: Architecture of neural network for prediction of pressure distribution 

 
Figure 7 shows the difference between the resistance coefficient predicted by the CNN model and the true value (CFD 
calculation value). The dataset shown has not been used in the machine learning training. The results in Figure 7 confirms that 
the resistance values are estimated within ±5% accuracy that is sufficient for practical design across a wide range of ship types 
and principal dimensions. This estimation is intended for narrowing down options in the preliminary phase of traditional design. 

 

 
Figure 7: Comparison of prediction and grand truth of resistance coefficient 

 
Next, Figure 8 compares the predicted and true values of the pressure distribution on the hull surface by the CNN model. The 
figure shows the pressure distribution from the bow to the stern from left to right, and from the bottom to the water surface in 
the girth direction from bottom to top, accurately reproducing the island-like shape of the pressure distribution that creates the 
adverse pressure gradient significant for resistance at the stern bilge. Such information is necessary for designers to physically 
understand why resistance has increased. Even while using an estimation method that can easily become a "black box" like 
machine learning, providing a means to understand physical phenomena is one advantage of the proposed method. 

 



   

 
Figure 8: Comparison of prediction and grand truth in pressure prediction 

 
CONCLUSIONS 

 
In conclusion, this paper has explored the transformative potential of machine learning techniques for directly producing design 
outputs, such as the 3D shape and pressure distribution of hull forms, within the realm of ship design. However, it also 
underscores the critical importance of achieving consensus among stakeholders in the inherently complex decision-making 
process of ship design, a process deeply rooted in physics-based simulations/models. This paper proposes a design strategy that 
leverages the strengths of both physics-based and data-driven models, positioning the former at the core of the design process 
while enhancing it with the latter. 

 
This paper has systematically outlined a method for hybridizing two model types and demonstrated their effective integration 
into a practical design process. This approach not only adheres to the traditional reliance on physics-based models but also 
leverages the efficiency gains provided by machine learning. The demonstration confirms that the CNN model, serving as a 
tool for initial exploration across a wide design space, can predict resistance performance with an accuracy of ±5%, which is 
sufficient for practical design across a broad range of ship types and principal dimensions. Additionally, this machine learning 
model is capable of estimating pressure distribution in viscous flow with high Reynolds number within 1 second, thereby 
enabling designers to incorporate physics-based insights to achieve robust efficiency. 

 
CONTRIBUTION STATEMENT 
 
Yasuo Ichinose: Conceptualization; data curation, investigation; methodology; software, validation; visualization; writing – 
original draft. Tomoyuki Taniguchi: Formal analysis; software; writing – review and editing.  
 
ACKNOWLEDGEMENTS 
 
This work was partially supported by JSPS KAKENHI Grant Number 20K04954. 
 
REFERENCES 
 
Cai, S., Mao, Z., Wang, Z., Yin, M., & Karniadakis, G. E. (2021). Physics-informed neural networks (PINNs) for fluid 
mechanics: A review. Acta Mechanica Sinica, 37(12), 1727–1738. https://doi.org/10.1007/s10409-021-01148-1 
Diez, M., Campana, E. F., & Stern, F. (2015). Design-space dimensionality reduction in shape optimization by Karhunen-
Loève expansion. Computer Methods in Applied Mechanics and Engineering, 283, 1525–1544. Scopus. 
https://doi.org/10.1016/j.cma.2014.10.042 



   

Erikstad, S., & Lagemann, B. (2022). Design Methodology State-of-the-Art Report. https://doi.org/10.5957/IMDC-2022-
301 
Ichinose, Y. (2022). Method involving shape-morphing of multiple hull forms aimed at organizing and visualizing the 
propulsive performance of optimal ship designs. Ocean Engineering, 263, 112355. 
https://doi.org/10.1016/j.oceaneng.2022.112355 
Ichinose, Y., & Gaspar, H. M. (2023). Interactive Ship Flow Simulation Enhanced By Neural Network Model In A Web 
Environment. ECMS 2023 Proceedings Edited by Enrico Vicario, Romeo Bandinelli, Virginia Fani, Michele Mastroianni, 
155–161. https://doi.org/10.7148/2023-0155 
Ichinose, Y., & Tahara, Y. (2019). A wake field design system utilizing a database analysis to enhance the performance of 
energy saving devices and propeller. Journal of Marine Science and Technology, 24(4), 1119–1133. 
https://doi.org/10.1007/s00773-018-0611-x 
Ichinose, Y., & Taniguchi, T. (2022). A curved surface representation method for convolutional neural network of wake 
field prediction. Journal of Marine Science and Technology, 27(1), 637–647. https://doi.org/10.1007/s00773-021-00857-3 
Kanazawa, M. (2023). Data-driven enhancement to ship dynamic model for motion prediction [Doctoral thesis, NTNU]. 
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3088275 
Kandasamy, M., Ooi, S. K., Carrica, P., & Stern, F. (2010). Integral Force/Moment Waterjet Model for CFD Simulations. 
Journal of Fluids Engineering, 132(10). https://doi.org/10.1115/1.4002573 
Khan, S., Goucher-Lambert, K., Kostas, K., & Kaklis, P. (2023). ShipHullGAN: A generic parametric modeller for ship 
hull design using deep convolutional generative model. Computer Methods in Applied Mechanics and Engineering, 411, 
116051. https://doi.org/10.1016/j.cma.2023.116051 
Kim, D., Seth, A., & Liem, R. P. (2022). Data-enhanced dynamic flight simulations for flight performance analysis. 
Aerospace Science and Technology, 121, 107357. https://doi.org/10.1016/j.ast.2022.107357 
Matsumura, T., & Ura, T. (1997). Preliminary Estimation Tool of Propulsive Performance for High Speed Craft based 
onArtificial Neural Networks. Journal of the Society of Naval Architects of Japan, 1997(181), 221–232. 
https://doi.org/10.2534/jjasnaoe1968.1997.221 
Papanikolaou, A. D. (2022). Holistic Approach to Ship Design. Journal of Marine Science and Engineering, 10(11), 
Article 11. https://doi.org/10.3390/jmse10111717 
Perabo, F., Park, D., Zadeh, M. K., Smogeli, Ø., & Jamt, L. (2020). Digital Twin Modelling of Ship Power and Propulsion 
Systems: Application of the Open Simulation Platform (OSP). 2020 IEEE 29th International Symposium on Industrial 
Electronics (ISIE), 1265–1270. https://doi.org/10.1109/ISIE45063.2020.9152218 
Peri, D., & Campana, E. F. (2005). High-Fidelity Models and Multiobjective Global Optimization Algorithms in 
Simulation-Based Design. Journal of Ship Research, 49(03), 159–175. https://doi.org/10.5957/jsr.2005.49.3.159 
Raissi, M., Yazdani, A., & Karniadakis, G. E. (2018). Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning 
Framework for Assimilating Flow Visualization Data (arXiv:1808.04327). arXiv. 
https://doi.org/10.48550/arXiv.1808.04327 
Tahara, Y., Diez, M., Volpi, S., Chen, X., Campana, E., & Stern, F. (2014). CFD-Based Multiobjective Stochastic 
Optimization of a Waterjet Propelled High Speed Ship. Proceedings of 30th Symposium on Naval Hydrodynamics, 21. 
Tahara, Y., Sugimoto, S., Murayama, S., Katsui, T., & Himeno, Y. (2003). Development of CAD/CFD/Optimizer-
Integrated Hull-Form Design System. Proceedings of the Kansai Society of Naval Architects, 20, 1–5. 
 


