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ABSTRACT

Ship design is a complex design process that may take a team of naval architects many years to complete.
Improving the ship design process can lead to significant cost savings, while still delivering high-quality
designs to customers. A new technology for ship hull design is diffusion models, a type of generative
artificial intelligence. Prior work with diffusion models for ship hull design created high-quality ship hulls
with reduced drag and larger displaced volumes. However, the work could not generate hulls that meet
specific design constraints. This paper proposes a conditional diffusion model that generates hull designs
given specific constraints, such as the desired principal dimensions of the hull. In addition, this diffusion
model leverages the gradients from a total resistance regressionmodel to create low-resistance designs. Five
design test cases compared the diffusion model to a design optimization algorithm to create hull designs
with low resistance. In all five test cases, the diffusion model was shown to create diverse designs with a
total resistance less than the optimized hull, having resistance reductions over 25%. The diffusion model
also generated these designs without retraining. This work can significantly reduce the design cycle time
of ships by creating high-quality hulls that meet user requirements with a data-driven approach.
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INTRODUCTION

Generative artificial intelligence has shown to be a promising tool for engineering design. By training models on engineer-
ing datasets, generative models have created designs with high performance. These tools are particularly useful in ship de-
sign, as the complexity of balancing competing trade-offs in a ship requires long design cycles for human design teams. A
hull’s shape affects several key aspects of a ship’s performance, including buoyancy, upright stability, hydrodynamics, and
general arrangements. A generative model specifically trained to generate ship hulls can improve this workflow by creating
high-quality designs quickly and inexpensively. The availability of open-source datasets on ship hull designs enables the
use of generative artificial intelligence for design. This work builds on prior work, a guided diffusion model called Ship-
Gen (Bagazinski and Ahmed, 2023a).

Hull design was chosen as the application for this work as hulls have a direct impact on over 70% of the cost of a ship (Lin
and Shaw, 2017) and they are the first step in the traditional workflow for ship design (Evans, 1959). Ship hulls can exist
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across many length scales, ranging from a few meters to over three hundred fifty meters in length. In addition, hulls can
exhibit large ranges in relative dimensions such as the beam, draft, depth, and volume displacement. A well-designed gen-
erative model for hull design should consider the scale and diversity of ship hulls in its training. This would allow the gen-
erative model to create ship hulls based on a designer’s needs.

This work proposes a model called C-ShipGen, which generates early-stage hull designs considering a designer’s inputs:
length, beam, draft, depth, volume displacement, and intended velocity. C-ShipGen is a conditional diffusion model that
implements guidance algorithms to create ship hull designs with low resistance while constraining to a user’s desired prin-
cipal characteristics. Figure 1 shows an overview of C-ShipGen, highlighting how the model utilizes a combination of
input conditioning and guidance algorithms during the design sampling process. The following sections detail prior re-
search on generative artificial intelligence for engineering design and computational ship design; the methods for training
and sampling hull designs with C-ShipGen; the evaluation of hulls generated by C-ShipGen; and a discussion on the work.
C-ShipGen generates ship hulls with low resistance for future design analysis. These generated hulls do not necessarily re-
semble real-world ship hulls as many other factors influence the design of hulls in addition to total resistance. Through the
development of C-ShipGen, the contributions of this paper are:

1. The use of a conditional diffusion model to generate diverse ship hulls within a 5% volume error tolerance given de-
sired principal characteristics across the full spectrum of hull sizes and relative dimensions found in real-world hull
designs.

2. The use of guidance in a conditional diffusion model to generate hulls with lower total resistance than optimized
hulls, having resistance reductions greater than 25% while maintaining the displaced volume within 5% of a target.

Figure 1: C-ShipGen is a guided conditional diffusion model that generates hull designs with low resistance while main-
taining the principal dimensions provided by the user during sampling. The model leverages guidance gradients from
pre-trained regression models to improve the performance of the hulls.



PRIOR WORK

Computational ship design refers to the application of computer-based modeling, simulation, and optimization techniques in
the design and analysis of marine vessels. This facilitates more efficient, innovative, and integrated design solutions. His-
torically, computational ship design can be divided into three categories: design representation, forward modeling which
includes surrogate regression models, and inverse design or synthesis, which includes optimization methods. Recently, gen-
erative artificial intelligence methods have emerged as a powerful technique, which has been used to represent and synthe-
size ship hull designs.

In order to computationally design a product, a design representation is needed that allows a computer to manipulate the de-
sign. For ship design, the two most popular modes to represent the design of a ship hull are parameterized vectors (Brown
and Salcedo, 2003; Feng et al., 2022; Read, 2009; Zhang et al., 2018; Chrismianto and Kim, 2014; Lu et al., 2016; Knight
et al., 2014, 2015; Hodges et al., 2022; Bagazinski and Ahmed, 2023a) and free form deformation techniques (Wang et al.,
2022; Ao et al., 2021, 2022; Peri et al., 2001; Demo et al., 2021; Abbas et al., 2023). With a design representation, a dataset
of designs can can be created by calculating or simulating performance metrics for each design. With the dataset, data-
driven models can be trained to make inferences on new designs. For ship design specifically, the works of Khan et al. (Khan
et al., 2022b,a, 2023), Shaeffer et al. (Shaeffer, 2023; Shaeffer et al., 2020), and Bagazinski et al. (Bagazinski and Ahmed,
2023a) have looked at various methods to create diverse design spaces and datasets for ship hull design.

With a dataset of designs and performance metrics of a hull as inputs, data-driven surrogate models, using methods such as
neural networks, provide a computationally inexpensive way to predict performance. Significant research has been done on
predicting the hydrodynamics of hulls with neural network-based surrogates due to the high cost of performing computa-
tional fluid dynamics simulations (Ao et al., 2021, 2022; Khan et al., 2022a,b; Peri et al., 2001; Read, 2009; Lu et al., 2016;
Feng et al., 2022; Wang et al., 2022; Marlantes and Maki, 2021; Silva and Maki, 2023).

Generative artificial intelligence models are designed to create new content or data that resemble the input they were trained
on. These models can produce a wide range of outputs, from text to images, and even complex design structures. In the
context of ship design, datasets facilitate quick performance predictions and serve as a foundation for training generative
artificial intelligence models to innovate in hull design. Prior work has explored various generative approaches, including
variational autoencoders (Hodges et al., 2022), generative adversarial networks (Yonekura et al., 2023; Khan et al., 2023),
and diffusion models (Bagazinski and Ahmed, 2023b), each contributing uniquely to the field.

Diffusion models, in particular, iteratively modify a noisy data vector over many specified steps. This transforms random
data to mirror the statistics of training data (Ho et al., 2020). The development of diffusion models has shown that they can
generate complex data and already have applications for engineering design. For example, diffusion models were shown to
create higher quality images compared to generative adversarial networks (Ho et al., 2020). Subsequent advancements in
diffusion models introduced guidance, where gradients from a classifier neural network guide image synthesis to match a
specific image classification label (Dhariwal and Nichol, 2021). This evolution enabled text-to-image diffusion models that
employ text-based guidance to craft custom, lifelike images (Ramesh et al., 2022; Rombach et al., 2022). Guided diffusion
models have found applications in generating 3D shapes from image data (Liu et al., 2023). In addition, guided diffusion
can be applied to engineering design generation. For example, guided diffusion has been used to create two-dimensional
structures (Mazé and Ahmed, 2023; Giannone et al., 2023b,a), room layouts (Ploennigs and Berger, 2023), thermome-
ters (Yang et al., 2023), architected materials (Lew and Buehler, 2023), and vehicles (Arechiga et al., 2023). A notable ad-
vantage of diffusion models is their adaptability, allowing the incorporation of new design constraints or objectives without
necessitating retraining the entire model. This attribute is particularly beneficial for iterative design processes, where con-
tinuous adjustments are essential for optimizing performance.

The work presented in this paper builds on the prior work in training diffusion models for hull design. A prior model called
ShipGen can generate parametric ship hull designs that have 91.4% lower wave drag and 47.9x higher internal volume on
average compared to the original training data (Bagazinski and Ahmed, 2023b). ShipGen implements seven different guid-
ance models to create these designs. A major shortcoming of this model is that there is no control to generate desired princi-
pal characteristics in a hull design, such as length, beam, draft, depth, and displacement. All hull designs generated by Ship-



Gen are purely influenced by the guidance models and not by a human designer. This makes ShipGen impractical for some
real-world design applications, where designers may seek more freedom in imposing constraints. To address this gap, we
propose a model that utilizes an additional feature called conditioning, where the diffusion model is given a hull design’s
principal characteristics during training. This way, the diffusion model will generate designs that satisfy the principal char-
acteristics provided by a designer during sampling. The following subsections detail this improvement and showcase a few
design applications with this diffusion model.

METHODS

This section outlines the methodology for developing C-ShipGen (Conditional ShipGen). The first subsection explores the
training dataset of ship hulls, including formulae for geometric and performance measurements of the dataset hulls. The
second subsection details the model training for the regression models used in this study. The third subsection details train-
ing and sampling with a conditional diffusion model. The fourth subsection details the methodology for analyzing designs
generated with the diffusion model.

Dataset

To train the regression and generative models, a dataset of ship hulls and their respective performance metrics was created.
The training dataset consists of 82,168 parametric ship hull designs. These dataset hulls were derived from the following
sources:

• 30,000 hulls from the Ship-D dataset (Bagazinski and Ahmed, 2023a)

• 41,752 hulls generated using ShipGen (Bagazinski and Ahmed, 2023b)

• 10,416 hulls subset from the former ShipGen hulls with the addition of randomly parameterized bulbous bows and
sterns

These parametric hull designs are represented with a forty-five-parameter scheme that algebraically defines the hull’s sur-
face. The Ship-D hulls cover the full design space possible with the parametric design scheme. The Ship-D hulls do not rep-
resent realistic-looking or performing hullforms. The hullforms, however, provide a large diversity of feature combinations
that encompass realistic hull designs for machine learning applications (Bagazinski and Ahmed, 2023a). A few examples
of the Ship-D dataset hulls are shown in Figure 2. Using the initial 30,000 Ship-D hulls, a guided tabular diffusion model
called ShipGen was trained to generate high-performing hull designs. The mean performance of the 41,752 ShipGen hulls
and the mean performance of the 30,000 Ship-D hulls was calculated and non-dimensionalized. Comparatively, the gener-
ated ShipGen hull designs have a mean wave drag that is 91.4% lower and a mean internal volume that is 47.9x higher than
the mean performances found among the Ship-D dataset hull designs (Bagazinski and Ahmed, 2023b). A selection of Ship-
Gen hulls is shown in Figure 3. The ShipGen hulls are much more representative of realistic hull designs compared to the
Ship-D hulls. Among the ShipGen hulls, it was observed that few were generated with bulbous bows and bulbous sterns, a
feature that can reduce the drag on hulls when designed well. To increase the presence of bulbs in the training dataset, bulbs
were added to 10,416 hulls by randomly sampling the design parameters for bulbs. These bulbs were not tuned for hydro-
dynamic performance. Only a smaller subset of the ShipGen hulls were selected for bulbs as these were the hull designs
that allowed for the generation of feasible bulb designs.

The feasibility of hulls is calculated using a set of forty-nine algebraic constraints. These constraints ensure that a paramet-
ric hull surface is watertight and non-self-intersecting. These algebraic constraints are solved with the parameter values for
a given hull design without generating the hull’s surface, reducing the total computation time. Full documentation of the
hull design parameters and constraints is provided at https://decode.mit.edu/projects/ShipGen/.

https://decode.mit.edu/projects/ShipGen/


Figure 2: A selection of hulls from the Ship-D dataset,
showing the variability possible with the hull parameter-
ization. A random sampling from the dataset may lead to
unrealistic hulls, containing combinations of features that
do not resemble real-world ships and features that lead to
poor performance.

Figure 3: A selection of hulls generated with multi-
objective guided performance generation. Notice the
relative slenderness of the hulls leading to drastically re-
duced drag coefficients relative to the Ship-D dataset hulls.

Measures of Hull Geometry

In addition to the parametric hull designs, the dataset includes geometric measures for each hull. The displaced volume,
wetted surface area, and waterline length were calculated at 100 evenly spaced draft marks across the depth of each hull. To
generate designs regardless of scale, these geometric measures are scaled using the first parameter in the hull representa-
tion: length overall, or LOA. The equations for the normalized volume, surface area, and waterline length are provided in
Equations 1, 2, and 3.

Vt∗ =

(´ T/D=t∗
0

δV (z) δz

LOA3

)
(1)

SAt∗ =

(´ T/D=t∗
0

δSA(z) δz

LOA2

)
(2)

WLt∗ =

(
Xfwd(t∗)−Xaft(t∗)

LOA

)
(3)

In each equation, LOA scales the value based on its dimensionality: LOAn. The other terms, t∗ is ratio of draft, T , to
depth, D. During model training, t∗ will be used as an additional embedding to hull shape to predict the geometric mea-
sures of a hull at a specific draft mark.

Calculation of Total Hull Resistance

In addition to the geometric measures of each hull, the total resistance of each hull is calculated for many speed and draft
conditions. Total resistance, RT is estimated to be the sum of wave-making resistance, Rw, and skin friction resistance,
Rf , as seen in Equation 4. Wave drag calculations were computed using Michell’s integral. Michell’s integral was chosen
as the simulation for this study as it considers the full 3D geometry of a hull in the total resistance prediction while being
computationally inexpensive to calculate. In practice, any fluid simulation would work for this study as the methodology
of training generative models is the same. For this study, 2.6 million fluid simulations were performed using the Michell
integral. The Michell integral balances the need for accurate simulation data with reduced computational cost of performing
the simulation. For this study, thirty-two wave drag coefficients for each hull across four different drafts and eight velocity
conditions. The four drafts are t∗ = 0.25, 0.33, 0.50, and 0.67. The eight velocity conditions are normalized using Froude



scaling as seen in Equation 5, where g is gravitational acceleration, U is the ship’s speed, andWLt∗ is the non-dimensional
waterline length for a given draft. In the denominator,WLt∗ is multiplied by LOA to balance the dimensions of U and the
denominator.

RT = Rw +Rf (4)

Fn =
U√

gWLt∗LOA
(5)

The eight ship speeds are scaled between Fn = 0.10 and Fn = 0.45 in increments of 0.05, corresponding to typical operat-
ing conditions of traditional displacement hulls (Zubaly, 1996; Newman, 2018). Given the 3D surface of a hull submerged
to t∗ and a velocity, U , the wave-making resistance is calculated with Equation 6.

Rw =
Aρg2

πU2

ˆ ∞

1

(I2 + J2)
λ2

√
λ2 − 1

dλ (6)

where ρ is the density of water, and A, I , and J are integrated terms relating to the surface normal across the hull and the
direction of wave propagation. Further insight into these terms is in Michell’s paper from 1898 (Michell, 1898). With these
thirty-two wave drag measurements, a given hull’s wave-making resistance for a given t∗ and Fn is interpolated between
these calculations.

Skin friction resistance is calculated using the ITTC-1957 formula in Equations 7 and 8.

Cf =
0.075

(log(Re)− 2)2
(7)

Rf =
1

2
CfρU

2SAt∗LOA2 (8)

The Reynolds number of the hull, Re, scales with forward velocity, U , and waterline length,WLt∗. SAt∗ is the non-dimensionalized
wetted surface area of the hull for a given draft. Together, Rw and Rf can be used to calculate the coefficient of total resis-
tance, CT . To learn with the dataset, CT is scaled by LOA2 as opposed to the more traditional use of wetted surface area.
This was done so that a regression model can embed LOA and t∗ to predict CT without explicitly providing SAt∗. Ad-
ditionally, CT is on a logarithmic scale so that the distribution of CT is approximately Gaussian for model training. The
calculation of CT is provided in Equation 9.

CT = log10

(
Rw +Rf

1
2ρU

2LOA2

)
(9)

With this representation, CT will be predicted using the 45 design parameters, t∗ for a draft embedding, and Fn for a speed
embedding. The predicted coefficient of total resistance, ĈT , can then be scaled to a prediction of total resistance. R̂T with
Equation 10.

R̂T = 10ĈT
1

2
ρU2LOA2 (10)

The following subsection will detail training the regression models and the diffusion model with a dataset made from these
equations.



Regression Modeling with Neural Networks

Using neural networks, four regression models were trained with the dataset: displaced volume, coefficient of total resis-
tance, waterline length, and design feasibility. A trained neural network for regression provides two key benefits for com-
putational design. The first benefit is a fast prediction of performance directly from design parameters. The second benefit
is the ability to calculate the gradient of a performance metric with respect to the design parameters. This subsection will
detail the process of training the regression models.

Following prior work, the forty-four (not including LOA), design parameters are quantile normalized and then scaled be-
tween -1 and 1 (Bagazinski and Ahmed, 2023b). Quantile normalization bins values of the design parameters so that the
distributions of the design parameters are approximately Gaussian. This parameter scaling improves the diffusion model
training. Scaling the parameters for the regression models allows them to work in conjunction with the diffusion model dur-
ing sampling. This process, called guidance, will be described in the following subsection.

The process for training the coefficient of the total resistance regression model is described in Table 1. In the algorithm,
the neural network is represented as PCT

. The inputs to the regression model are a quantile normalized design vector,Xi,
a draft embedding, t∗, a speed embedding, Fn, and a length embedding, log(LOA). The loss function is the mean-squared
error loss between the ground truth and the prediction of CT . The draft and speed embeddings are restricted to the limits of
the range of draft and Froude numbers used in the dataset calculation of wave-making resistance. The length embedding is
on a logarithmic scale for hulls with a length between 3 meters and 450 meters. This range of values allows the model to
learn the relative influence of skin friction across velocity and length scales. Given the diversity of hull forms in the dataset
and the range of length scales, this regression model is trained to predict the coefficient of total resistance on a large diver-
sity of shapes, speeds, and sizes. This model was trained with a batch size of 1024 for 50,000 batches. The resistance pre-
diction model predicts the total resistance coefficient across the full spectrum of the dataset hulls, draft ratios, and Froude
numbers. This regression model predicts the total resistance coefficient derived from the simulation with an R2 of 0.997.
Results of the training accuracy relative to the simulation data are shown in Figure 6 and Figure 8.

1: repeat
2: select Xi from Dataset
3: t∗ ∼ Uniform([0.25, 0.67])
4: Fn ∼ Uniform([0.05, 0.45])
5: log(LOA) ∼ Uniform([0.47, 2.65])
6: interpolate Rwt∗,Fn

, SAt∗, andWLt∗ from Dataset
7: calculate Cf , Rf , and CT

8: ĈT = PCT
(Xi, t∗, Fn, log(LOA))

9: Take gradient descent step on:
∇PCT

(CT − ĈT )
2

10: until converged

Table 1: The training algorithm for the total resistance coefficient regression model. The algorithm randomly samples a
Froude number and draft ratio for a hull in each batch so the model is trained on a full spectrum of speeds and drafts for the
hulls in the dataset.

The training for the volume regression model, PV , and the waterline regression model, PWL, is similar. The volume regres-
sion model was trained to predict log(Vt∗) given Xi and t∗. The model was trained to predict the logarithm of volume as
this term has an approximate Gaussian distribution across the dataset. Similar to the CT regression model, the volume re-
gression is trained to predict the displaced volume for any draft on a large diversity of hullforms. The waterline regression
model predicts the waterline length of a given hull at a given draft. This model is used with the coefficient of total resis-
tance regression model whenWLt∗ is unknown.

The final regression model is a feasibility classifier, fϕ. The feasibility classifier provides guidance gradients to influence
the diffusion model to generate parametric designs that satisfy the forty-nine algebraic feasibility constraints (Bagazinski



and Ahmed, 2023b). The only input to the feasibility classifier is a design vector,Xi. To learn the distinction between fea-
sible and infeasible designs, a set of 82,793 design vectors that violate at least one constraint was generated. The loss func-
tion in training was binary cross-entropy loss, which is better for classifier training than mean-squared-error loss.

Conditional Diffusion Model

A diffusion model is a generative artificial intelligence model that generates new instances of data by denoising random
information over many steps. The generated sample will fall within the statistical distribution of the training dataset sam-
ples. Conditional diffusion models are similar to the standard diffusion model described by (Ho et al., 2020), however,
their structure includes extra layers that embed information in the training and sampling process. This conditional diffusion
model is a modified version of the ShipGen model, a tabular diffusion model for ship hull design (Bagazinski and Ahmed,
2023b). The conditioning for the model is the principal characteristics of the hull: draft, beam, depth, and displaced vol-
ume. The diffusion model and the conditioning use parameters that are scaled by the length overall, which is the first term
in the forty-five parameter representation used to generate the hull designs. After sample generation, the parameter terms
are re-scaled by LOA to measure the scaled design. By training with parameters scaled with respect to LOA, the model
does not have to learn “length” in addition to the statistical relationships between the parameters to generate a hull design.
This reduces the complexity of the learning task. The training algorithm for the conditional diffusion model is stated in Ta-
ble 2 and illustrated with Figure 4.

Figure 4: During training, the diffusion model predicts a denoising step, given a timestep embedding and a partially noised
sample design vector. The model is informed by the input conditioning at each denoising step.

The diffusion model is conditioned with the draft, t∗; volume, Vt∗; Beam, B, and depth, D of each hull. During training,
the original design vector is partially noised to a timestep, t, and the conditional diffusion model predicts the noise of the
sample at that timestep. Conditioning is applied to the diffusion model to influence the denoising process to satisfy input
conditioning. To clarify in the algorithm, t is the timestep embedding of the denoising process, while t∗ is the draft embed-
ding of the hull design in the conditioning vector.

After training, the diffusion model can be sampled to create design vectors that satisfy the input conditioning. While the
diffusion model can generate hull designs that satisfy the input conditioning, the sampling process does not consider the to-
tal resistance of the hull. To generate hulls with reduced total resistance, the total resistance coefficient regression model
is implemented in the sampling process as a guidance algorithm. Guidance leverages the gradients of the regression model



1: repeat
2: X0 ∼ q(X0)
3: t∗ ∼ Uniform([0.01, 1.0])
4: interpolate Vt∗, B, and D from Dataset
5: C = [t∗, log(Vt∗), B,D]
6: t ∼ Uniform({1, ..., T})
7: ϵ ∼ N(0, I)
8: Take gradient descent step on:

∇θ||ϵ− ϵθ(
√
ātX0 +

√
1− ātϵ, t, C)||2

9: until converged

Table 2: This is the training algorithm for a conditional diffusion model. The diffusion model is represented by the function
ϵθ(X0, ϵ, t, C) in step 8. The conditioning for hull design is the draft,t∗; displaced volume, log(Vt∗); beam, B; and depth,
D, of the hull, X0

at each timestep to influence the denoising process toward producing designs with reduced total resistance. In addition to
resistance guidance, the feasibility classifier and the volume prediction regression models are also used as guidance. The
feasibility classifier aims to improve the likelihood that a generated design vector leads to a feasible hull design. The vol-
ume guidance assists the diffusion model in generating a design that satisfies the input conditioning for displaced volume.
This was implemented to prevent the resistance guidance from over-influencing the sampling process and producing hulls
that do not satisfy the input conditioning. Each guidance algorithm is tuned with a hyperparameter: γ tunes the classifier
guidance, while λ0 and λ1 tune the performance guidance. The sampling process is illustrated in Figure 1. The sampling
algorithm is stated in Table 3.

1: input C = [t∗, V,B,D, ] and U,LOA
3: XT ∼ N(0, I)
4: for t = T, ..., 1 do
5: Z ∼ N(0, I) if t > 1, else z = 0
6: Fn = U

gPWL(Xt,t∗)LOA

7: Xt−1 = 1√
αt

(
Xt − 1−αt√

1−ᾱt
ϵθ(Xt, t, C)

)
+ σt(Z(1− γ)) + γ∇Xt

fϕ(y|Xt)

−λ0∇Xt
PCT

(Xi, t∗, Fn, log(LOA))− λ1∇Xt
(V − PV (Xt, t∗))2

8: end for
9: return X0

Table 3: This is the sampling algorithm for a guided conditional diffusion model. The diffusion model is represented by the
function ϵθ(Xt, t, C) in step 7.

In the sampling algorithm, γ is equal to 0.2, while λ0 and λ1 are equal to 0.3. The performance guidance hyperparameters
are set equal so that no model overpowers the others. The λ values are set low so the guidance models do not overpower the
denoising process from the diffusion model. One advantage to leveraging performance guidance is that the diffusion model
does not need to be retrained to produce designs when considering different objectives. The guidance model can simply
be replaced with a new one. Using an NVIDIA GeForce RTX 4090, 512 samples are generated in approximately 2.5 sec-
onds. The feasibility check, total resistance calculation, and geometric measurements are computed on a single Intel Core
i9-13900K core in approximately 2.5 seconds per sample. After sampling, the parallel CPU process across 32 cores for the
512 samples is less than 30 seconds.

Diffusion models rely on a degree of randomness in the denoising process. Sampling from the guided conditional model
will not guarantee that every generated design will be high-quality. Therefore, studies on designs generated from the model
evaluate the statistics from a set of generated designs. In addition, high-quality designs will be filtered from a set of gener-
ated designs to select potential candidates for further design evaluation. This is distinctly different from other data-driven
design approaches, such as optimization, which provides some guarantee of design performance and constraint satisfac-



tion among generated designs. Assuming that intended designs fall within the statistical distribution of the training dataset,
conditional diffusion models can produce a large diversity of designs without needing to retrain the model, significantly de-
creasing the computational effort to create high-quality designs compared to optimization methods.

Evaluation of Diffusion Model for Low-Drag Design

A baseline comparison is needed to evaluate the ability of the guided conditional model to generate high-quality hull de-
signs. Design optimization for drag reduction was selected as the baseline comparison. To conduct the study, five design
test cases compare optimized hull forms to diffusion-generated hull forms. The purpose of this test is twofold:

1. Evaluate the diffusion model’s ability to design low-resistance hulls while meeting specific dimensional properties.

2. Evaluate the accuracy of the total resistance regression model for a wide array of designs, scales, and relative speeds.

The five test cases were selected to create a unique set of dimensional requirements for both the design optimization and
the diffusion model to satisfy. The designs of real-world ship classes inspired the dimensions of the five test cases. The de-
sign inspirations are a supercarrier 1 , a kayak 2 , a NeoPanamax container ship 3 , a frigate 4 , and a ROPAX ferry 5 . These
test cases encompass two military-style ships, two large ship designs, one small hull design, two small block coefficient de-
signs, and one high beam-to-draft ratioed hull. The principal dimensions and design speed of the test cases are provided in
Table 4.

Test Case LOA BOA T D V— CB Us

(m) (m) (m) (m) (m3) (−) (m/s) (knots)
Supercarrier 1 333.0 42.1 11.3 29.6 97,561 0.617 16.0 31.1
Kayak 2 3.8 0.787 0.15 0.438 0.166 0.372 1.50 2.92
NeoPanamax 3 366.0 50.0 15.2 40.0 182,114 0.654 10.3 20.0
Frigate 4 127.0 16.0 6.90 11.0 4,488 0.320 14.4 28.0
ROPAX Ferry 5 72.0 20.0 3.2 4.8 3,917 0.850 6.17 12.0

Table 4: This table provides the dimensions of hull design test cases inspired by real-world ship designs. These test cases
cover a diversity of principal characteristics, hull speeds, and length scales.

It is not expected for the diffusion model nor the optimization algorithm to produce designs that look like real-world ship
designs with the same principal characteristics. Real-world hull designs satisfy many additional performance objectives
in addition to total resistance; such as seakeeping, upright stability, cargo packing, general arrangements, etc. Since these
hulls are generated only considering total resistance and principal dimensions, they are not expected to resemble real-world
hull designs. For each design test case, 512 hull designs were generated with the full diffusion model, 512 were generated
with the diffusion model and classifier guidance only, and 100 designs were generated using design optimization. In each
test case, the diffusion-generated designs will be evaluated on drag, dimensional target satisfaction, and design diversity
compared to optimized designs.

The optimization algorithm used for these studies is NSGA-II (Deb et al., 2002). NSGA-II is a state-of-the-art genetic al-
gorithm for optimizing two or more objectives. Genetic algorithms are a set of optimization algorithms that act similarly
to biological evolution to drive the optimization over several “generations”. These tests were performed with a population

1supercarrier Inspiration: https://www.nvr.navy.mil/SHIPDETAILS/SHIPSDETAIL_CVN_68.HTML
2Kayak Inspiration: https://oldtownwatercraft.johnsonoutdoors.com/us/shop/kayaks/recreation/loon-126
3NeoPanamax Inspiration: https://www.cmacgm-group.com/en/group/at-a-glance/fleet/ships/9780873/cma-cgm-t-roosevelt
4Frigate Inspiration: https://www.dcms.uscg.mil/Our-Organization/Assistant-Commandant-for-Acquisitions-CG-9/Programs/

Surface-Programs/National-Security-Cutter/
5ROPAX Inspiration: https://www.steamshipauthority.com/about/vessels

https://www.nvr.navy.mil/SHIPDETAILS/SHIPSDETAIL_CVN_68.HTML
https://oldtownwatercraft.johnsonoutdoors.com/us/shop/kayaks/recreation/loon-126
https://www.cmacgm-group.com/en/group/at-a-glance/fleet/ships/9780873/cma-cgm-t-roosevelt
https://www.dcms.uscg.mil/Our-Organization/Assistant-Commandant-for-Acquisitions-CG-9/Programs/Surface-Programs/National-Security-Cutter/
https://www.dcms.uscg.mil/Our-Organization/Assistant-Commandant-for-Acquisitions-CG-9/Programs/Surface-Programs/National-Security-Cutter/
https://www.steamshipauthority.com/about/vessels


of 100 samples for 200 generations. The initial population consisted of randomly selected designs from the dataset. For
each test case, the optimization algorithm constrains the design parameters to be within 2% of the beam target, 1% of the
depth target, and ≥ 99% of the volume target, while also constraining the design with the forty-nine feasibility constraints
to maintain design feasibility. The target draft is held constant, so t∗ is scaled appropriately for each design at each genera-
tion during optimization. This provides a buffer for the optimization algorithm to find low-drag designs around the test case
targets. In this study, the two objective functions were the total resistance of a hull and the total resistance coefficient of a
hull, which were evaluated using the total resistance coefficient regression model, PCT

at the test case’s target speed. By
leveraging the same regression model in both optimization and diffusion generation, we can directly compare the ability of
each design method to produce low-drag designs. The optimization is expected to exploit the regression model, likely find-
ing local minima and not a true minimum. This will be seen as a significant loss in accuracy when comparing predictions
from the regression model to the original total resistance simulation. With the combined use of parallelized CPU compu-
tation (Intel Core i9-13900K) and GPU (NVIDIA GeForce RTX 4090), this optimization is performed in approximately 80
minutes per test case.

RESULTS

This section contains the results of the studies described in the Methods Section. The first subsection provides error mea-
surements of diffusion-generated samples meeting the principal dimensions from the five test cases. The second subsection
provides the results by generating low-resistance designs using the conditional diffusion model and the design optimization
algorithm.

Targeted Design Sampling with Conditional Diffusion Model

For each design test case, 512 samples were generated with the full model, and 512 samples were generated with only fea-
sibility guidance,∇Xt

fϕ(y|Xt). The feasibility rate and adherence to principal dimensions in each test case are provided in
Table 5.

Test Case Model Feasibility Rate Volume Error Beam Error Depth Error
Mean Std. Mean Std. Mean Std.

Supercarrier Full Model 67.77% -3.17% 8.83% 2.03% 2.98% -2.14% 1.82%
∇Xtfϕ Only 88.28% 2.53% 5.97% 1.46% 4.94% -1.65% 1.82%

Kayak Full Model 86.91% 0.05% 4.52% -0.50% 2.75% -0.45% 1.77%
∇Xt

fϕ Only 95.70% 0.62% 3.50% 0.40% 3.55% 0.06% 1.63%

NeoPanamax Full Model 71.09% -2.89% 5.63% 1.41% 3.60% -0.44% 1.69%
∇Xt

fϕ Only 92.19% 2.26% 4.66% 0.18% 3.74% -0.01% 1.70%

Frigate Full Model 91.99% -0.87% 6.60% 0.22% 8.06% -0.31% 2.44%
∇Xt

fϕ Only 94.53% 0.83% 6.93% 1.65% 10.27% 0.19% 1.93%

ROPAX ferry Full Model 58.98% -16.73% 7.57% -4.74% 6.78% -1.02% 1.86%
∇Xt

fϕ Only 88.48% -2.80% 5.52% 0.38% 7.37% -0.34% 2.15%

Table 5: This table provides the design feasibility rate and principal dimension errors relative to each test case for
diffusion-generated samples using the full model and with feasibility guidance only.

The general trend among these test cases is that designs sampled with feasibility guidance only have higher feasibility rates
and have tighter adherence to the test case’s principal dimensions compared to hulls generated with the full model. This
trend is seen in all five test cases. Generated hull designs within a 5% error tolerance will be selected for further design
analysis. This tolerance is a reasonable margin for large ship hull designs. A ship’s displacement can easily vary by this
much through changes in cargo, fuel, water, etc. Sampling with only feasibility guidance yields, on average, 58.3% of hulls



generated within a 5% volume error across the five test cases. Sampling with the full model gives 37.0% of total samples
within a 5% volume error tolerance. This measure was calculated with Equation 11 for each design test case.

ηEVt∗
= ηfeaseΦ

(
+5%− µEVt∗

σEVt∗

)
− Φ

(−5%− µEVt∗

σEVt∗

)
(11)

In the equation, ηEVt∗
is the percentage of samples within a 5% volume error tolerance. This metric relies on the feasibility

rate, ηfease, and the Gaussian cumulative distribution between +5% and -5% error given the mean (µEVt∗
) and standard

deviation(σEVt∗
) of volume error.

Drag Reduction with Guidance During Sampling

For each design test case, hull designs were optimized using NSGA-II to minimize the total resistance while satisfying the
principal dimensions of the test case. After optimization, the total resistance of the 100 optimized hulls was calculated with
the Michell Integral. The minimum total resistance calculated with the Michell Integral is listed in Table 6 for each test
case. Similarly, the total resistance was calculated for the feasible hull designs among the 512 designs generated for each
test case. The feasible hull designs were sorted into groups with volume errors less than 1%, 5%, and 10% relative to the
target volume for each design test case. Then, the number of hulls with a total resistance less than the optimized minimum
total resistance was collected. The number of these low resistance samples within each volume error tolerance is listed in
Table 6. The final column in Table 6 lists the minimum total resistance among the diffusion-generated designs within a 5%
volume error tolerance for each design test case. These results will be further analyzed in the Discussion Section.

Test Case NSGA-II Min. RT Model Number of Low RT Hulls with EVt∗ Sample Min. RT ∆RT
[N] ≤ 1% ≤ 5% ≤ 10% [N]

Supercarrier 7,332,137.7 Full Model 0 5 11 4,883,089.3 -33.4%∇Xt
fϕ Only 0 1 1

Kayak 11.18 Full Model 8 50 56 6.98 -37.6%∇Xtfϕ Only 1 2 2

NeoPanamax 3,931,834.1 Full Model 37 157 239 1,220,057.3 -69.0%∇Xtfϕ Only 5 23 28

Frigate 1,177,601.3 Full Model 30 130 178 874,617.0 -25.7%∇Xt
fϕ Only 26 87 114

ROPAX ferry 2,512,677.3 Full Model 1 9 41 206,537.0 -91.8%∇Xt
fϕ Only 42 208 307

Table 6: This table lists the number of feasible, diffusion generated hull designs having a total resistance less than the min-
imum total resistance found through optimization. The number of hulls with low resistance increases as the volume error
tolerance is increased. The final column lists the reduction in total resistance seen by a hull within a 5% volume error gen-
erated by C-ShipGen.

In general, as the volume error tolerance is loosened, more diffusion-sampled hull designs will have lower total resistance
than the optimized hull design. This trend is seen in samples generated using the full model and among samples generated
using only classifier guidance. Additionally, for four test cases, the full diffusion model produces low resistance designs
within a 5% volume error tolerance at a rate of 1.5x to 25x more frequently than without using performance guidance. In
addition, the full diffusion model generated hulls with at least 25% less total resistance than the NSGA-II generated hulls
while still aligning to the principal dimensions of each design test case. For the ROPAX test case, the diffusion model with
only classifier guidance created low-resistance designs with much higher success than the full diffusion model. Further
analysis of the test cases can be found in the Discussion Section.

To illustrate the diversity of designs generated by the diffusion model, a two-dimensional principal component analysis



(PCA) was performed with the design parameters from the training dataset, the diffusion-generated designs, and the NSGA-
II sampled designs. The PCA was fitted with the training dataset. Figure 5 shows this PCA. The diffusion-generated sam-
ples maintain a high degree of diversity. This is expected as the diffusion model is trained to randomly generate designs
that match the statistics of the training data. The optimized designs, however, are clustered around a single location on the
PCA plot, suggesting these samples have low diversity.

After sampling, all feasible diffusion-generated designs and NSGA-II generated designs were simulated with the total resis-
tance simulation. This was done to compare the regression model accuracy to the simulation data. Figure 6 shows the total
resistance of each hull using both regression and simulation plotted against each other for the supercarrier design test case.
The red dashed line shows perfect regression, meaning that the regression predicts the exact simulation. The generated sam-
ples show high accuracy with the regression, except for a few outliers. This is expected as the diffusion-generated samples
statistically resemble the training dataset. This dataset was used to train both the regression model and the diffusion model.
Because diffusion-generated designs will statistically resemble the training data, they should have higher accuracy with the
regression model. The hull designs created through optimization are significantly under-predicted compared to the total re-
sistance calculated with the simulation. As mentioned in the methods section, this result was expected as the optimization
algorithm exploited the regression model to find a minimum in the model that does exist in the simulation. This trend is
seen across optimized hulls from the other four test cases, shown in Figure 8.

To further visualize the resistance across the diffusion-generated samples, a kernel density estimate (KDE) of the distribu-
tion of the simulated total resistance is shown in Figure 7. Also included in the plot is the minimum simulated total resis-
tance among hulls sampled with NSGA-II. The KDE shows that approximately fifteen percent of diffusion-generated sam-
ples for this design test case will have lower total resistance than samples generated with NSGA-II using the same surrogate
model for drag prediction. This relative trend also appears with the other four test cases shown in Figure 9.

The optimized designs from the ROPAX ferry design test case exhibit the worst regression-simulation similarity among
the test cases. The regression prediction for the optimized ROPAX ferry was off by nearly a factor of 10 compared to its
simulation-calculated resistance. Further analysis of the error in simulation prediction is in the Results Section.

To exhibit some of the diffusion-generated hull designs, Figure 10 showcases the station lines of hulls from each test case.
The Figure showcases the hull design sampled among the 512 with the minimum resistance within the 5% volume error
tolerance for each design test case. The total resistance of these hulls is listed in Table 6.

DISCUSSION

This section provides a discussion of the results of the study. The first subsection analyzes the diffusion model’s ability to
satisfy the principal characteristics from the design test cases. The second subsection discusses the study on generating low-
resistance designs. A third subsection discusses the ROPAX design case study compared to the other design test cases. The
final subsection discusses the limitations of the C-ShipGen model in designing real-world hulls.

Targeted Sample Generation

The study’s findings underscore the effectiveness of the conditional diffusion model in generating feasible designs that
closely adhere to design requirements. The tolerance to the user-defined principal characteristics decreases when perfor-
mance guidance is implemented with the model during sampling. Performance guidance reduces the diffusion model’s abil-
ity to generate hulls within a 5% volume error tolerance by 36%. The next subsection will discuss how performance guid-
ance produces low-resistance hull designs more frequently while maintaining the 5% volume error tolerance.

While not every individual design meets the entirety of the specifications provided by a user during sampling, the diffusion
model proves to be a computationally inexpensive tool for producing samples closely aligned with intended principal di-



Figure 5: Two-dimensional principal component analysis
of the hull parameterization shows the relative distribution
between dataset hull designs, diffusion-generated hull de-
signs, and optimized hull designs for the supercarrier test
case. The optimized hulls have much less design diversity
than the diffusion-generated designs.

Figure 6: Comparison of total resistance between sim-
ulation and regression for hull designs produced for the
supercarrier design test case. The optimized designs have
lower regression accuracy than the diffusion-generated
designs.

mensions. This characteristic makes it particularly advantageous for early-stage design processes, where loosely following
requirements allows for design exploration. The diffusion model produces many diverse designs for further in-depth design
analysis. With an efficient down-selection process, many useful hull designs are quickly identified within a user-desired tol-
erance with C-ShipGen.

Optimization versus Diffusion Models for Design Generation

Optimization represents a powerful approach to design exploration but has strong advantages and disadvantages. One key
strength is the optimization’s ability to generate samples within tighter tolerances to user-defined targets. Additionally, the
optimization process excels at producing feasible designs with low resistance. On the other hand, design optimization for
each test case can be slow and computationally expensive. For NSGA-II, increasing the population size increases the time
complexity of the algorithm by O(N2). Increasing the number of objectives increases its time complexity by O(N) Deb
et al. (2002). Optimization is limited by the diversity of samples and the computational complexity arising from increasing
the number of samples. This inhibits design space exploration in early-stage design. Finally, as seen in the results, opti-
mization exploits regression models, which leads to a loss in accuracy of the optimized design’s prediction versus ground
truth performance calculated with simulation. In this instance, the loss in accuracy of the total resistance regression surro-
gate model compared to the simulation leads to sub-optimal hull designs compared to those generated with the C-ShipGen
model.

The diffusion model presents a contrasting set of advantages and challenges. The computation to generate designs is signif-



Figure 7: Kernel Density Estimate (KDE) of the distribution of the simulated total resistance across the diffusion-generated
samples for the supercarrier test case. The distribution shows that some of the generated samples have a total resistance less
than the minimum total resistance found using the total resistance prediction as a surrogate model with NSGA-II.

icantly faster, allowing more design space exploration and discovery over-optimization methods. Increasing the number of
generated samples increases the time complexity of C-ShipGen by O(N). Increasing the number of objectives increases the
time complexity of C-ShipGen by O(N). Secondly, this diffusion model produces new designs without model retraining,
which allows significant flexibility in its use. This flexibility permits hull design across all scales of real-world displace-
ment hulls within a large range of typical operating speeds. This flexibility is thanks to the diversity of the samples in the
training data. Thirdly, leveraging the total resistance regression model during the diffusion sampling process is particularly
advantageous. The regression model and the diffusion model were trained with the same dataset. Since the diffusion model
is trained to generate designs with statistical similarity to the training dataset, the regression model has high prediction ac-
curacy for diffusion-generated designs. This similarity between the training data and sampled designs is why C-ShipGen
saw a significant improvement in total resistance among generated samples compared to NSGA-II using the same total re-
sistance regression model. This trend was seen across the five design test cases in Figure 6 and Figure 8. This accuracy did
not hold in optimization-generated designs. In addition, the diffusion model better leveraged the regression model in sam-
pling. This is shown through the proportion of designs in each test case with lower total resistance than the samples gener-
ated with NSGA-II using the same regression model. Figure 7 and Figure 9 show that depending on the test case, roughly
fifteen percent or more of the diffusion-generated samples will have a lower total resistance than samples generated using
NSGA-II. However, the diffusion model has its own set of limitations. One major flaw is that the generated design needs
to be sorted and filtered to identify low-resistance hull forms that meet the input conditioning within a desired tolerance.
Additionally, while the diffusion model facilitates rapid design exploration, it does not provide a guarantee of finding an
optimal solution, introducing an element of uncertainty into the design process.

Additionally, the diffusion model with performance guidance produces designs within a specified tolerance less frequently
than the diffusion model without performance guidance, and even less frequently than optimization. Despite this compro-
mise in tolerable design generation, these designs demonstrate a notable reduction in drag compared to their counterparts
without performance guidance. Implementing performance guidance produces low resistance designs at a rate of 1.5x to
25x than the model without the implementation. The simultaneous benefits of lower drag and decreased feasibility highlight
the nuanced impact of performance guidance on design outcomes.



Figure 8: Comparison of total resistance between simulation and regression for hull designs produced for the other design
test cases. The total resistance of optimized designs is less accurately predicted by the regression model than the diffusion-
generated designs.

Analysis on ROPAX Ferry Design

Despite the general success of the other design test cases, the ROPAX ferry design proved difficult for the diffusion model,
the regression model, and the optimization algorithm. This design test case was inspired by a real-world ferry operating in
the State of Massachusetts in the United States. This particular hull has a significantly higher length-to-draft ratio, beam-
to-draft ratio, and block coefficient compared to other design test cases. These comparisons are also true compared to hulls
in the training data. As this design is different than most of the training data, the outcomes of the test case were expected
to be poorer. This is particularly true with the total resistance prediction model. The regression model had completely in-
accurate predictions of total resistance for the NSGA-II generated samples. The diffusion-generated designs also had poor
regression accuracy as well. A third consideration with this particular design that is outside the project’s scope is that the
resistance simulation itself is also highly inaccurate for this design. Michell’s integral relies on the assumption that the hull
is a slender body (Michell, 1898). The ROPAX design is not necessarily slender compared to the other hulls. A new simu-
lation method is needed to reasonably calculate the drag on a hull design like this one.



Figure 9: KDE plots of the remaining four design test cases. The plots showcase the statistical distribution of total resis-
tance among the diffusion-generated samples compared to the NSGA-II generated samples. Depending on the test case,
15% or more of the generated samples will have less total resistance than samples produced using NSGA-II with the same
surrogate model for total resistance prediction.

Limitations of Hull Design with C-ShipGen

When designing any product with generative artificial intelligence, understanding the model’s limitations will avoid neg-
ative consequences on real products designed with the model. C-ShipGen has several limitations. The first limitation of
this model is the training data. C-ShipGen and other diffusion models generate designs statistically similar to the training
data. Since C-ShipGen was trained on hulls that are not necessarily representative of real-world hull designs, C-ShipGen
generates hulls that are not necessarily representative of real-world designs. The second limitation of C-ShipGen is the sim-
ulation used to generate the total resistance training data. While the Michell integral is not the most accurate simulation for
real-world hull design, it was chosen to balance accuracy and computational cost. Creating training data with higher fidelity
and more accurate simulations will give these models data with a better representation of real-world hull designs in water.
In addition, leveraging more accurate simulations for creating training data will enhance claims of increased performance
with generative design. The third limitation of C-ShipGen in its current implementation is that it only considers total resis-
tance and volume displacement for design generation. Real ship hulls are designed considering other performance metrics
such as seakeeping, stability, general arrangements, draft limitations, and countless other considerations for hull design.



Figure 10: The five hulls depicted are diffusion-generated hulls with the minimum total resistance within the 5% volume
error tolerance for each design test case. The cross-section drawings showcase station lines for the bow on the right side
and the stern on the left side. Also included is the LOA for each design.

Therefore, hulls designed with C-ShipGen are not necessarily capable of performing safely in the real world without further
analysis. These are some of the limitations of the current implementation of C-ShipGen to create hull designs with low total
resistance.

CONCLUSION

This work generated ship hulls with low resistance using a conditional diffusion model that considers the desired princi-
pal dimensions of the hull during design generation. This diffusion model is trained on a large set of nearly 83,000 diverse
hull designs that allow for a comprehensive design space exploration with the model. In addition, a regression model was
trained to predict the total resistance of a hull with variable speed and draft. The gradients of this regression model allowed
the diffusion model to generate designs with low resistance. This regression model was also used as a surrogate model to
optimize hulls while constraining the designs to user-defined principal dimensions and design speeds. The optimization
study was performed using NSGA-II. Five design test cases demonstrated the ability of C-ShipGen to generate hull designs
across all scales of displacement hulls and many different dimensional properties found in different ship classes. Addition-
ally, C-ShipGen was able to generate designs with greater diversity than NSGA-II, while creating designs with better pre-
dictive alignment between the regression model and the simulation used in the training data. A proportion of the diffusion-
generated designs in each test also had a total resistance less than the samples generated with NSGA-II. In all five test cases,



C-ShipGen produced hull designs with at least 25% less total resistance than NSGA-II generated samples. An additional
advantage of the diffusion model is that the diversity of these designs allows for efficient design space exploration in early-
stage design.

Creating hull designs with reduced resistance will reduce the need to fuel ships, reducing the cost to operate the ship and re-
ducing its emissions. Future work with generative artificial intelligence for ship design will continue to explore the systems-
level design of ships. Training models to explore the nuanced complexity of designing a ship system can yield better effi-
ciencies and reduce costs for the marine industry. Through this work, the economic prospect of leveraging generative artifi-
cial intelligence to design ship hulls is demonstrated by C-ShipGen.
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