
Proceedings of 15th International Marine Design Conference (IMDC-2024)
June 2-6, 2024

Amsterdam, the Netherlands

Closing the Gap between Early and Detailed Ship Design
Models

Herbert J. Koelman1,*, Bastiaan N. Veelo1, Ludmila Seppälä2 and Paul Filius2

ABSTRACT

Conventionally, ship design and engineering are segregated activities, carried out with different software

packages that thus each have their own place, qualities and tools. And consequently, a different data

model. As a report on ongoing work to bridge that gap, this paper first explores existing neutral data

models and standards employed or considered in maritime applications and concludes that none of these is

directly applicable. It continues with describing the requirements and derived abstract data model of the

SEUS project and its design and engineering applications. A graph database is identified as a potentially

useful tool for SEUS data modelling, and a hands-on experiment confirms this presumption.

KEY WORDS

Ship design methodology; Data models; Digital transition.

INTRODUCTION

In the ship design process, the transition from early conceptualisation to detailed design marks a critical juncture — a

“tipping point” that involves a change of stakeholders. Early design models emphasize the vessel's fundamental

characteristics, naval architectural and functional aspects. Detailed design and production design delve into the intricacies of

layout and deal with the generation of production and construction data. This dichotomy in focus leads to disparities in the

tools employed and necessitates the alignment of data models.

This paper explores data standards in maritime applications, data models of two particular software systems — PIAS (by

SARC) and CADMATIC — and the direction for integrating these models in the SEUS3 project. SEUS aims at creating a

high Technological Readiness Level solution to provide a set of computational tools for shipbuilding, incorporating data

flows while the design matures and providing a comprehensive toolset for different stakeholders of the overall shipbuilding

process, with access to a single source of true data. However, conventional neutral models or industry standards have not

generally demonstrated their suitability for this task, so the research question addressed in this paper is to find a data model

for shipbuilding which provides coherence of the data generated along the life cycle. Critical for SEUS are its anticipated

impacts — such as a) platform solution for PLM, b) facilitation of digital transformation and c) integration of early design

into the overall design process, see Gaspar et al. (2023) —many of which require software integration between design and

engineering. However, it is not the first time in the history of mankind that such an endeavor is undertaken, so in the next

section the applicability of existing maritime product data standards is investigated.

DATA STANDARDS FOR MARITIME APPLICATION

The authors share a combined 100+ years of experience in developing maritime software, where aspects of interfacing and

(software) collaboration have played an important role, from time to time. In that context, we have regularly been surprised

1 SARC, Bussum, The Netherlands.
2 CADMATIC, Turku, Finland.

* H.J.Koelman@sarc.nl.

3 See acknowledgement at the end of this paper for SEUS project details.

Submitted: 13 February 2024, Revised: 8 April 2024, Accepted: 1 May 2024, Published: 19 May 2024
©2024 published by TU Delft OPEN Publishing on behalf of the authors. This work is licensed under CC-BY-4.0.
Conference paper, DOI: https://doi.org/10.59490/imdc.2024.837 e-ISSN: 3050-4864

by the surprise of others when we have been asked why we don't just use one of the many existing data exchange standards.

By way of a (late) response, this will be addressed later in this section. First, however, a brief overview of potentially

applicable standards is given, without seeking to be complete.

An Outline of Potentially Applicable Neutral Models and Data Standards

The obvious idea of a neutral model is demonstrated in Figure 1, where without specific provisions the eight independent

computer programs A..H need 8 x 7 = 56 interfaces to share their data, while some kind of centralized format only requires

eight interfaces.

Figure 1: The neutral model saves on interfaces (from Gielingh (2008)).

The paradigm of the neutral model is reflected in several neutral file formats which are used for this purpose. The search for a

recent overview of the popularity of the various (file) standards for product information did not yield anything, so we fall

back on the survey in Srinivasan (2008). The most frequently used data exchange standards appear to be DXF, IGES and ISO

10303 — commonly known as STEP, STandard for the Exchange of Product model data — with a combined utilization of

60%. The remaining 40% cannot be considered to be suitable for generic exchange of 3D data, for example PDF is listed,

very useful, but ‘just’ a document format. Although quite widely used for data transfer, DXF is merely a drawing exchange

and not specifically suitable for the exchange of product model data. IGES dates back to 1980, and, as its name suggests —

Initial Graphics Exchange Specification — is more aimed at the exchange of 3D shape than of a product model. Although

e.g. in Kirkwood and Sherwood (2020) STEP is recommended above IGES, the latter is still widely in use, for example for

exchanging the shape of a ship hull in IGES types 126 or 128, which encode for NURBS curve or surface representation.

This demonstrates a phenomenon that shall be encountered in a broader sense later: IGES contains a wide range of some

hundred types, for all kinds of mathematical representations of shape, such as lines, curves, planes, surfaces and solids. So,

the producer of a computer program that produces an IGES file is free to choose a few favorite representations, there is no

need to support all (actually, nobody does).

This leaves STEP as perhaps the most viable alternative for product data exchange, a conclusion which is drawn in many

papers, e.g. Kim et al. (2008) where it is proposed to use STEP not only for the exchange of 3D shapes, but to extend it to

design intent (e.g. parameters, features, constraints and history). Furthermore, STEP specializes in specific areas of industry

for so-called Application Protocols (APs), with maritime application AP215 (Ship Arrangement, see ISO (2004a)), AP216

(Ship Moulded Form, ISO (2003)) and AP218 (Ship Structures, ISO (2004b). Incidentally, there is a short related anecdote to

tell: when we ordered the STEP standard from the Netherlands Standardization Institute, a whole package arrived, but

without AP215, 216 and 218. On enquiry, they maintained that these had since expired. Fortunately, the purchase could be

made at ISO in Switzerland, but the exact status is now not entirely clear to us. Anyway, multiple researchers have

formulated a preference for STEP for maritime application, e.g. Whitfield et al. (2011) and Shiplys (2019). Qin et al. (2017)

report on some shortcomings of STEP, and they propose some improvement by combining it with Web Ontology Language

(OWL) methods.

All these standards aim at a model for shape, with some ambition to grow towards product modelling. They have evolved

into extensive books covering all kinds of pre-considered variations, more or less like a dictionary of a human language.

Some considered that too limited, because life-cycle support, explicit semantics and relationships between entities are

missing. This awareness has gradually led to a new standard, ISO-15926, see ISO (2005), from which a readable overview is

presented on https://15926.blog/. The latter reports a twofold goal, a) global semantic interoperability and b) archiving,

collecting and integrating plant life-cycle information. This terminology already reveals that this standard is leaning towards

process plants, which might limit the applicability in the ship design area. Nevertheless, in the ship-borne integrated piping

system as reported in Koelman (2024) the underlying data structure was inspired by ISO 15926. Another maritime

https://15926.blog/

connection is that in a Dutch maritime research program from a decade ago, “Integraal Samenwerken”, a pilot with ISO

15926-11 (see ISO (2023)), was commenced — with the keywords “triple” and “Gellish” — but that did not proceed.

Another interesting industrial standard that has a wider scope than just the product and its shape, is ISO 81346, see ISO

(2022). Here the multifacetedness of a product is addressed by assigning different aspects to a product, where each aspect can

have its own hierarchy and taxonomy. An example is given in Figure 2, which shows three aspects: a) the constructional

relations with the components, b) the functional relations and c) the spatial relations (e.g. the location). The application is not

limited to these three; other aspects may also be considered, such as financial or logistical. As argued in Leclerc et al. (2022),

this framework fits very well with a Systems Engineering approach, a method that is expected to enhance the productivity of

the maritime sector (see the acronym MBSE in Maritiem Masterplan (2023)).

Figure 2: Different aspects of an object (from ISO (2020)).

The discussed standards relate to properties of a product in the design and construction phase. An emerging field is to include

operational data as well, where a significant contribution is delivered by sensor data. This application is targeted by ISO

19848 (see ISO (2023)), which has been used by Fonseca et al. (2022) for an experiment with a digital twin of a scale model

of a ship. Another emerging standard is the XML-based Open Class 3D Exchange (OCX) (see Zerbst (2023)), however, this

is at the edge of our area of applicability, as expressed on https://3docx.org/: “The OCX is a vessel-specific standard

addressing the information needs by the classification society”.

This ends a somewhat impressionistic overview of data standards and neutral data formats. A follow-up section discusses

applicability and pitfalls, but first the data flow in a typical maritime project is outlined.

Data Flow and Growth in a Typical Maritime Project

Kirkwood and Sherwood (2021) contains an interesting approach to simplify the sustained integration between CAD and

CAE. This is motivated by the CAE application being a FEM analysis, and indeed such a representation may contain

somewhat less detail than the original CAD model. However, in the maritime world CAE is predominantly seen as the

precursor to production, which implies that data is becoming both more detailed and richer. For example, a watertight

transverse bulkhead in a ship. In the first instance, this is just a line on a GA plan (or a plane in a 3D CAD model) with the

intrinsic property that it is watertight, so it could act as a separator between tanks or compartments. This limited information

is sufficient for producing tank capacity tables and damage stability computations. Later in the design process, this bulkhead

data is extended with details of plate thicknesses, panels, beams, stiffeners, and perhaps paint details or manufacturing

logistics; augmented with data that can be derived, such as weight, centroids and cost. And this all belongs to the bulkhead

that started as a line in a GA plan. Consequently, when in a design update the bulkhead is shifted one frame position, some of

https://3docx.org/

these properties have to change correspondingly. In a sense this issue is an instantiation of Figure 2, because functional,

constructional, financial and logistical aspects are included, each with their own taxonomy and/or codification system. But it

is also a matter of Level Of Detail (LOD), for example when at the stage of the General Construction Plan only the main

structural elements are included, which are extended with brackets and welds in the final production preparation stage. If one

would have the desire to shape such a system in a third generation (3G) programming language — only in RAM, without

considering permanent storage and interfacing — a structure with arrays, classes and pointers connecting the different

entities, could do the job. This is depicted in Figure 3, where:

• The bulkhead is part of subsystem “bulkheads” (which in turn could be part of the system “hull structure”).

• Each bulkhead contains a GUID4/UUID5, which acts as unique and permanent identifier (what is called a Virtual

Persistent Identifier in Kirkwood and Sherwood (2021)). A unique identifier from another source (e.g. from a supporting

data management system) might be an alternative for the GUID.

• Each bulkhead contains three types of subclassed information:

1. Topology and geometry.

2. References to compartments on both sides (in the system “compartments”).

3. List of panels.

• The CAD system manages 1 and 2, never “sees” 3.

• The CAE system uses 1 and 2 and manages 3.

Please understand that this 3G solution is only presented to elucidate the process around and with the data. Practical

considerations, such as the lack of a common 3G programming language, prevent its actual implementation.

Figure 3: A class-based example of a data structure around a bulkhead, suitable for integrated CAD and CAE

This example illustrates the continuously increasing completeness of information over the whole design and engineering

process. This observation is somewhat contrary to the notion of design phases — concept, preliminary, contract and detail —

of which it was once useful to distinguish between. The demise of the notion of distinct phases can be witnessed in practice,

for example the typical ‘preliminary design’ requirement of sufficient damage stability is greatly influenced by the presence

and position of pipes, valves and ventilation openings; details that are typically addressed in later moments of the design

process. Also in literature this trend can be observed, for example a recent state-of-the-art report on ship’s design

methodology, Erikstad and Lagemann (2022), counts zero entries of the words “design stage”. Yet, the title of the present

paper addresses a gap, which is not a gap between design phases, but between models. The early design model is a bit more

holistic — including non-material aspects such as simulation results — but smaller in size than the detailed model. Bridging

the gap between models does imply that the connected tools should be unified for all design activities, indeed the objectives

in the earliest stage of the ship design will differ from the later stages, as eloquently motivated in Andrews (2018).

Finally, there is the issue of bidirectional vs. unidirectional flow of data traffic. The ideal with a neutral model has always

been that all connected applications are able to read and write from the central storage, as depicted by the bidirectional arrows

in Figure 1, at the right. If the information involved is simple, such as an isolated number, then bidirectionality is easy to

achieve. However, if complex logic or functionality is involved, then it can happen that not all applications are able to

perform modelling changes. For example, the duality between compartments and bulkheads & decks can be managed by one

4 https://en.wiktionary.org/wiki/GUID
5 https://en.wikipedia.org/wiki/Universally_unique_identifier

https://en.wiktionary.org/wiki/GUID
https://en.wikipedia.org/wiki/Universally_unique_identifier

application only, while others can read and use that information without the need for specific tools to address that duality.

Another example is hull shape modelling, where one parent application has the specific modelling tools, acting upon a parent

representation, while other representations — such as STL, VRML, X3D and 3D-wireframe — at each design change are

instantaneously derived and stored in neutral form. Ready to be used by other applications, without them having the tools for

shape changes. If different applications are geographically dispersed then unidirectionality might be a bit awkward, but when

two applications are open in two windows on the same monitor then it is neither unnatural nor time consuming that only one

of the two can be used to make hull shape changes. It might even offer an advantage when an HVAC engineer is not able to

change the shape of the bulbous bow.

Applicability of Neutral Models and Data Standards in Ship Design and Engineering

At this point, the paper suffers from self-plagiarism, because what follows is an anecdote that one of the authors surely must

have told hundreds of times over the past 20 years. As reported by Owen (1997), STEP has aimed at ‘completeness’, which

led inevitably to ‘conversion’. This is illustrated by nine different representations of a circular arc in 2D, e.g. a) centre +

radius + start angle + finish angle, b) center, radius, start point, end point, or c) polyline. If an application should want to

support all these representations, and it uses one of them internally, then that implies eight conversion algorithms being

required. From which item a) can be done with simple math, but item c) already requires some numerical analysis, which

may result in round-off errors.

A similar example can be found in STEP AP 216, Ship Moulded Form, which supports three alternative representations:

offset table, wireframe and surface. So, if a computer program internally applies a NURBS surface representation, and it

receives a STEP file in offset tables, then it should be able to convert. Which is no trivial task in this example, see Koelman

and Veelo (2013).

These are examples of the ‘variation in representations’, which are also addressed in the seminal paper by Gielingh (2008).

There it is concluded that while we aimed for the nirvana of Figure 1, due to the large variation in representations, in practice

only a subset is supported, leading to a situation of all kinds of ad hoc representation conversions, as depicted in Figure 4,

regardless whether these representations are stored or communicated by DXF, IGES or STEP. This is the fate of any neutral

model. One way or another underlying representations have to be converted, unless the world (or a workable subset of the

world) decides to use a single representation for each and every entity.

Figure 4: From theory (left) to practice (right); the neutral model doesn’t really exist, from Gielingh (2008).

Another issue with standards, such as IGES, DXF and conventional STEP, is that each only contains geometric data as stated

by Qin et al. (2017): “A well-known problem of STEP AP 203/AP 214 neutral file-based exchange method is that this

method is limited to exchange geometric data, where those nongeometric data related to design intent, such as construction

history, parameter, constraint, and features, are completely lost after the exchange”. A practical issue of conventional neutral

formats is that it does not always work properly, so that their usage may lead to errors and information loss, see Gielingh

(2008) on STEP files read into an application and subsequently identified: “significant differences between these files were

found: some entities disappeared, others appeared, and others were changed”. This observation was confirmed recently in

Kurylo et al. (2023).

In particular STEP AP 215 is quite extensive, but still does not cover everything:

• It supports a single permeability per compartment, while in practice intact and damaged permeabilities will differ.

• Three types of block coefficients are specified, but not the one based on the design waterline length, as required for

Holtrop’s resistance prediction. It is questioned why include such derived information as the block coefficient in a

standard? Each application should be capable of dividing a volume by length, breadth and draught, specifically in the

variant that is relevant for that particular application.

• The height of the sounding pipe is included, but not its shape.

• A tank total volume and corresponding Center of Gravity is included, but not its free surface or a complete tank table

provided. Again, here the question is why is easily derivable information stored?

• Although some relationships between entities are supported, there is no generic support for explicit dependencies and

relationships between entities.

So, it can be concluded that STEP AP 215 is on the one hand too extensive, while on the other hand not complete. Probably,

that will be the fate of any global neutral model. Furthermore, it can considered to be a dictionary, not an ontology.

Nevertheless, a lot of effort has been put into developing this standard, and many parameters and entities have been given a

name and meaning, so why not use it, at least as inspiration?

The attractive feature of ISO 81346 (ISO, 2022) is that it addresses the multifacetedness of an object explicitly, but it defines

a framework more than that it provides an implementable solution. Furthermore, it includes a standard on the coding of the

location of objects, however, this is tailored to modeling buildings and is not directly applicable to ships.

Building Information Modelling (BIM) standards have not been discussed in the section on neutral models, because of the

large volume, complexity and diversity of standards, national and international. The authors have not studied BIM in detail,

yet BIM ISO standards 23386 and 19650 appear to be quite high-level, providing more of the general structure than relevant

details. It seems that for many different fields of application this is further elaborated on a national or regional scale, (see

www.etim-international.com/, which contains article codings, for example: electrotechnical, HVAC and plumbing

components). Although these components are vital in the ship’s outfitting phase, their relationship with the design and

engineering activities is relatively limited.

TOWARDS THE SEUS DATA MODEL

At this point the conclusion is that of all the existing models and standards, none is directly usable for our purposes.

Although, precise purposes have not so far been explicitly formulated, and thus this is addressed in the next subsection.

Requirements for the SEUS Purpose

Minimum requirements can be derived from the analysis and discussion above, and consist of:

• A dictionary of the names and implicit relationships between entities. Although it is perhaps a bit premature to mention a

solution at this stage, STEP AP215 provides a useful basis for this, without necessarily needing to adopt everything in it,

and with the knowledge that it will need to be extended here and there.

• Support for explicit relationships between entities.

• Support for variations in representations. Since these are uni-directional an object may be defined by one parent

application, which derives from each design change other child representations, which are read-only for the other

applications of the system.

• Support for multifacetedness, so an entity can be part of multiple taxonomies or other data structures.

Furthermore, there is a feature that, very strictly speaking, is not minimally required, but which could be extremely useful in

practice: that of support for functions, in addition to data. A function is a procedure, a subroutine, a piece of processing

software that can be called by all connected applications, implemented as DLL, API or Remote Procedure Call (RPC6). The

advantage of such a tool has been discussed in Koelman et al. (2015), under the name “request/reply”.

Finally, there are some desirable features that are not strictly necessary, but could prove to be useful:

• A tool for documenting the essence and properties of entities and relations. This may be done in a common text editor,

typically Word, however, that is not the most user-friendly tool, and for the tabular and reference work at hand, its

usefulness is even less. Preferably, the documentation tool is integrated with the data management tool because they both

deal with data, structures and relations, either to be understood by a human or by the computer.

• Explicit support for data integrity and authorisation.

• Aspects of system performance, such as processing speed and limits in data sizes. However, this is considered to be self-

evident, and it is a bit premature to start quantifying it at this point, but it should not be forgotten in the end.

The ambition of the SEUS project extends beyond the design and engineering phases, which means another similar

endeavour to find the data model links for operational data and engineering. This phase is not included in the present paper

6 https://en.wikipedia.org/wiki/Remote_procedure_call

http://www.etim-international.com/
https://en.wikipedia.org/wiki/Remote_procedure_call

although the approach can be applied to it in later stages of the project. In PDM terms, the focus of this paper extends to

linking “as designed” and “as engineered” data models, with a potential to extend to “as build” and “as in operation”. Hence

focusing now on the data models links, means applying later on a similar approach to digital twin platform solutions where

different applications can form digital threads.

A First Experiment with Graph Databases

Although it is possible to implement a shared data format that can represent the relations depicted in Figure 3 on the basis of

XML or JSON, that would be a laborious undertaking, because every element would need its own GUID and relations would

need to be expressed in those terms. It would require a lot of cooperation, extensive formal specifications as well as data

validation. The resulting text files would be very substantial and difficult to interpret by human designers, so the advantage of

it being in natural language text would diminish. An alternative to sharing data in files is to share a database.

A traditional relational database consists of tables of rows and columns, where each row represents one data entry, and each

property of that entry sits in its dedicated column. This enforces the need for the data to be structured: each column contains

only data of a particular type and meaning, and each entry in the table has the same number and types of properties. Relations

between entries are encoded as a property containing a reference to another row, possibly in another table; this is called a

foreign key. An example would be a table of users and a table of orders, where each order has a reference to a user that

placed the order. This encodes a “one to many” relation, where a user can place multiple orders. To collect all orders that

were placed by a particular user, the entire column must be searched for matches with the user’s key. Because foreign keys

are subjected to the rigid structure of this database format, relational databases aren’t very well suited to model systems with

many relations or arbitrary relations, such as social networks and financial systems.

A different type of database has emerged that allows modeling completely unstructured data, the so-called graph databases.

Different approaches exist, but common to them all is that a graph database describes nodes of information and how various

nodes connect to each other. As such, the term “graph” refers to topology and discrete mathematics, not graphics. Depending

on the application, a graph database can yield higher performance than can a relational database, it can be easier to query and

it gives more freedom in conceptualising a system. Another aspect that is gaining relevance is that a graph may be easier to

train using AI than a collection of tables, because semantics are expressed more clearly.

It is important to note that in the end there it is not necessary to use a graph database. A graph database gives the freedom and

flexibility that is important for solution exploration. If the experiment is successful, this will to some extent demonstrate that

it is implementable. Preferably, there is a concept that can be filled in by the PLM software of the SEUS consortium partner

Contact Software.

In early 2024, the popularity ranking site db-engines.com had 41 graph database management systems (graph DBMS) in its

ranking, and 13 additional DBMS capable of representing graphs as secondary model. Many of these build on open-source

implementations, with some of them offering additional commercial services, which are seen to be more attractive than

purely commercial solutions. Without the desire or need to do an exhaustive evaluation of all of these, the following graph

DBMS have been considered: Neo4j, NebulaGraph, Memgraph, ArangoDB, Redis, GraphDB and Virtuoso. We have

installed and programmed against both Neo4j and ArangoDB, after which the latter came out as the more appropriate DBMS.

ArangoDB is performance oriented with features that allow some structuring of the data where that is desired. Nodes and

edges in the graph are functionally equivalent to JSON documents, which can include arrays. Relations between nodes can be

encoded as edges, which are just like nodes but with mandatory “from” and “to” properties containing node identifications.

Edges allow the application of typical graph algorithms such as “shortest path” and facilitate validity guarantees that prevent

dangling edges. Alternatively, relations may be encoded by having references as a property of the nodes themselves. In this

way, ArangoDB offers a mix between graph database and document store.

Thus, an experiment has commenced representing the case depicted in Figure 3, using ArangoDB. The source code of the

experiment is publicly available on GitHub7. Communication between the DBMS and the client program happens over

HTTP. This allows the database and the client to be at different geographical locations, which is how the experiment was

developed. Also included is an option to run the experiment in a Docker container, which simplifies reproduction and

demonstrates that network overhead can be reduced when everything runs on the same hardware. In this case the reduction

was 60 milliseconds, to under ten milliseconds per query. Evaluation of processing speed at scale is not part of this initial

7 https://github.com/seus-project/graphexperiment

https://github.com/seus-project/graphexperiment

experiment, but increasing the size of the graph to one million nodes meant the slowdown was measurable but not significant.

The VelocyPack binary transport8 was not utilised, which has the potential to increase throughput.

The main question that this experiment tried to address is how the data of the design model can be sensibly organised in a

graph database. It was noted that not all required functionality had to be covered by the database as such, because rules and

logic in the governing applications can guarantee database consistency. As the database was not filled directly by an

unauthorized system or human, nonsensical relations should in practice be prevented. Similarly, aspects of authorization can

be handled by applications.

Figure 5: Bulkhead representation.

Considering the viewpoint of the applications, the ship model can be simplified by only considering bulkheads. For design

software, a bulkhead primarily defines the partition of space and thereby determines the volumes of compartments. For

engineering software, a bulkhead is primarily a structural object. The objective of the experiment was to allow both design

and engineering software to work on the same bulkheads without getting in the way of each other. The approach that this

experiment took (Figure 5) is to start with a node that represents the abstract concept of a bulkhead, by only containing its

identity. Connected to it are separate nodes that represent specializations for design and engineering. This principle is

scalable to additional systems, such as cost estimation, construction process logistics and maintenance.

Each specialisation contains properties that are specific to that specialization and can also extend the graph with nodes that

are specific for that representation, as is shown in Figure 6.

Figure 6: Automatically generated plot of a graph database with two bulkheads and three panels per bulkhead.

8 https://github.com/arangodb/velocystream

Design bulkhead Abstract bulkhead Engineering bulkhead

GUID weight position

https://github.com/arangodb/velocystream

The source code for the experiment contained a procedure9 that synthetically generated data for a given number of bulkheads,

where each bulkhead consists of a given number of panels on the engineering side of the graph, and on the design side of the

graph the boundaries of compartments are defined. Figure 6 shows the nodes and connections for two bulkheads, three

compartments and six panels. The connections are directional, but they can be traversed in any direction. The following lines

of ArangoDB Query Language (AQL) are an excerpt of the source code that traverses the graph and lists the compartment

names together with the positions of their bounding bulkheads:

FOR c IN Design_Compartment

 FOR db IN INBOUND c Design_BulkheadAdjacentCompartment

 RETURN [c.name, db.position]

The experiment demonstrated how the output changed when one of the bulkheads was moved to a new position.

In practice, the possibilities of extending the graph with additional information are endless. The design software could

include constraints from the constraint management system (see De Koningh et al. (2011)), and any other model data that is

currently stored in separate files. The engineering software can store the panel data, such as identification number,

dimensions, and position in relation to the appropriate local coordinate system, and connections to other nodes representing

other parts and production details. Even versioning can be implemented as part of the graph, where properties of nodes aren’t

simply updated, but a new version of the complete node is pushed on top of a stack of node versions, where edges between

the versions contain the date of the change, approval by superior, etcetera.

In principle, the complete graph is traversable by both engineering client and design client. For example, when the

engineering software needs the position of a bulkhead, it could locate the abstract bulkhead, traverse to the corresponding

design bulkhead, and read out the position from there. But this requires the engineering software to have knowledge of the

topology of the design side of the graph, and it also means that the developers of the design software cannot change their side

of the graph without coordinating this with the developers of the engineering software. Interestingly, ArangoDB allows for

the installation of so-called Foxx microservices, that can be used to provide a stable API for querying potentially dynamic

subgraphs. A Foxx microservice is essentially a snippet of JavaScript that can be uploaded to the graph DBMS after which it

can be accessed at a specific URL. When a client accesses that URL, the code in the microservice is executed inside of the

DBMS, and the resulting data is returned. Among other things, a microservice can perform a graph query. This way, the

developers of a particular system are free to change the layout of their side of the graph if they adapt their microservices

accordingly, and other systems can continue using them without change, coordination, or synchronisation.

The experiment demonstrates that with 22 lines of JavaScript10, a microservice can be implemented by which the position of

a bulkhead can be queried by name: thus, http://localhost:8529/_db/seus/bulkhead_position/B1

produces the output [10]. ArangoDB’s HTTP API follows the OpenAPI specification and is integrated with Swagger 2.0,

meaning that the database server serves its own API documentation together with a web form where the API can be tested

interactively. This functionality also covers the microservices. So, the microservice can include documentation that the

returned value is the longitudinal distance in metres between the aft surface of the bulkhead and the aft perpendicular, with

positive values meaning forward, and negative values aft, of the aft perpendicular.

A microservice can also contain additional logic. Thus the weight of a bulkhead does not need to be a discrete property stored

in the engineering representation of a bulkhead, but a value that is determined dynamically, by a microservice. In an early

stage of the design, the structure of a bulkhead might still be undetermined, meaning that there are no nodes connected to it

that represent panels and stiffeners. In that case, the microservice could return an estimated weight, possibly with a low level

of confidence. But as soon as panels have been defined, the plate thickness and dimensions known, the material known, and

the stiffeners have been defined, then the weight can be calculated with a high level of confidence. When the weight of a

module is requested, the microservice can recurse into all the parts that make up the module and accumulate the weights of

the parts.

What is concluded from this experiment is that a graph database has great potential in the implementation of a shared data

model. Flexibility and scalability is offered by a graph database, and the extensibility with microservices addresses to some

degree the need for documentation (taxonomy) and RPCs. Whether the ship design department and the engineering

department are working on the same model in different geographical locations, or all systems are run on the same computer,

the HTTP interface of the DBMS means that it is applicable in either situation.

9 https://github.com/seus-project/graphexperiment/blob/v0.1.0/source/app.d#L150
10 https://github.com/seus-project/graphexperiment/blob/v0.1.0/foxx/bulkhead_position.js

https://github.com/seus-project/graphexperiment/blob/v0.1.0/source/app.d#L150
https://github.com/seus-project/graphexperiment/blob/v0.1.0/foxx/bulkhead_position.js

SEUS’ DATA MODELS

The purpose of this section is to conceptualise the model of data, relations and services from SEUS. Prior to that the existing

data models of the design and engineering software suites are sketched out.

The pre-existing data model of the design software

The basis of the ship design data model is formed by the hull shape, which can have two representations. The most complete

is a solid model with closed curved surfaces, in proprietary H-Rep representation, see Koelman (2003). Another contains a

wireframe, i.e. cross sections and stem/stern & deck contours, which is sufficient for all computations. The solid/surface

model is convertible to PIAS’ wireframe, and to IGES, NURBS surface and IGES/DXF 3D curves. The wireframe model can

be converted to solid/surface, albeit with human assistance.

The space inside the hull is filled with constituting planes (bulkheads and decks) and compartments (tanks and other spaces),

which form a duality: planes shape compartments, while spaces are bounded by planes. This duality is modelled by a

proprietary method (see De Koningh et al. (2011)), which is based on Binary Space Partitioning (BSP). These constituting

planes divide the internal of the ship hull into convex spaces, which are called subcompartments. Multiple subcompartments

can be assigned to be part of a compartment. In this structure the spaces are ‘logical’ building blocks, while the compartments

are physical, i.e. they are watertight. A finer subdivision may be obtained when non-constituting planes are also taken into

account; these are not explicitly modelled, however their presence can be effectuated by modelling subcompartments by their

corner vertices, typically, but not limited to, eight. These two compartment modelling methods can be mixed, and an average

PIAS user applies the plane-based method for larger, systemic, subdivision planes, and the vertices-based method for smaller

tanks or voids. Regardless which of the two modelling methods has been used, the final compartment shape is computed by

an intersection with the ship’s hull. Although this shape is the core property of a compartment, other properties are also

stored, such as its name, permeability, design density, location and type of external openings, and location and shape of the

sounding pipe(s).

From the viewpoint of hydrostatic and (damage) stability the connections from and to compartments — such as by pipes,

internal openings and ducts — are as equally important as their shapes. This forms an integral part of PIAS’ data model, but

as this is already a topic of another paper on this conference, Koelman (2024), it is not discussed further here.

This comprises more or less the geometrical and topological ship design data, which are shared in many stages of design and

engineering. However, an accurate prediction of all kinds of technical properties — such as draught, cargo capacity, power

consumption, stability and strength — also depends on the ship’s weight and its distribution. Obviously, PIAS supports this,

basically with a long list of numbers of components, their weights, three spatial coordinates, and their aft and forward

boundaries.

The ‘design’ software is not only applied during the ship design phase, but also to produce simulation and delivery

documents. These include tables of tank capacity, assessment of (damage) stability, longitudinal strength and maneuvering

characteristics. Such reports are currently exported to ASCII, XML or Word formats, although many of these computations

can be offered in an RPC fashion.

Furthermore, all entities can be equipped with a Virtual Persistent Identifier, possibly a GUID, a concept that has attracted

our attention before. This uniquely and permanently identifies an object, which facilitates tracking and processing changes.

The pre-existing data model of the engineering software

The data model of CADMATIC Hull is based on relationships, which directly support the requirement that any change in

shape or position will directly affect another element and provide a chain reaction to others. In addition, standards such as

end shapes, holes, cutouts, lugs are included as a feature and not as their shape; and its form is recorded in a referenced

library. The body and thickness directions are also assigned as a parameter of the object and therefore the CL and reversed

frame have a direct influence on the final 2D and 3D presentations. A group of elements (plates and profiles) are recorded as

a whole in a sub-database and this part is linked to a parameterised grid definition which also indicates the x, y and z

directions or a plane definition defined as a surface. The whole (the ship) is a collection of these sub-databases, which can be

flexibly exchanged, this approach facilitates simultaneous work in large models and possibility to replicate database of the

project for several physical servers to provide seamless experience for remote work teams and users. This is the basis of the

Hull application, from which all presentations are derived, such as 2D cross-sections, 3D views, derived information, such as

weight, length and material, and production data, such as cutting, robot and bending data. All objects have their unique

GUIDs, which are used as a link for all relationships.

The CADMATIC applications are Hull, P&ID, Plant Modeller and Piping Isometrics & Spools. All the components, parts,

symbols, and design instructions are stored and managed in Library & Project Databases. These databases also include the

format control for sheets, listings, and reports. All applications use the same database, ensuring the information remains the

same throughout the design project. Access is governed by the COS (CADMATIC Object Storage, see Figure 7)

environment, where data is protected from being modified at multiple sites at the same time. Therefore, remote design teams

can work in distributed projects using a common model database without conflicts. Projects are split into blocks, general

project data, hull line subsets and 2D symbols, and these can all be saved to the COS server separately. In P&ID, the designer

describes the process schematically in 2D format using predefined symbols and metadata information. In Plant Modeller and

Piping Isometrics & Spools the process diagram is rebuilt in a 3D format to describe the ship in a realistic way using pipes,

fittings, equipment, structural components, etc.

While different applications work in a slightly different way, depending on the discipline they serve, the overall project data

is consolidated in the COS database. CADMATIC represents so called “intent-driven” CAD solution, which focuses

primarily on the shipbuilding nature of the designer’s work, see Dush et al. (2017). Each application has their own API to

serve the needs of particular integrations for design disciplines, while COS Web API serves the needs of integration with

overall project data.

Figure 7: CADMATIC Object Storage structure.

A sketch of the SEUS service warehouse

As a learned lesson, it is worth reflecting on a prior CADMATIC – PIAS interface, see Koelman et al. (2015), which

comprised a) direct communication over TCP/IP instead of a shared database, b) data synchronisation on demand, rather than

continuously and c) exchange of high-level data entities, based on STEP semantics, which means that in essence the deepest

data representations were not shared. For example, both systems had a notion of deck, which was shared, while the

underlying representation differed quite radically. As such, that software collaboration was impressive to see; with two

windows open, showing the same model in the two distinct applications, with one press of a button the changes from one was

transferred to the other. Nevertheless, the direct TCP/IP communication had one drawback: the lack of a central permanent

storage; if one of the applications was not connected the synchronisation actions from the other vaporized. This conclusion,

combined with the other analyses and experiments in this paper, led to an envisioned SEUS warehouse with the following

functions and services:

1. Storage of data and their relationships are extendable, offering varying Levels of Detail, and multiple facets (i.e. the

entities can be part of multiple taxonomies, each of a different kind and with a different purpose).

2. With data semantics based on the maritime STEP application protocols, extended where required.

3. Should this come down to a dictionary, then preferably some integrated documentation system for human use is required.

4. There is easy communication by API or RPC with this storage system, including systems of varying types, such as high-

level programming languages and scripting tools.

5. It is extended with a set of system-wide services, among which there is conversion of data representations.

6. Control of access of the data is possible.

To underline that this is not limited to data, this is called a service warehouse, in analogy with a physical warehouse, where

services are also provided, with or around the goods.

However, the world is littered with abstract plans and grand designs from the past, so how can the feasibility of this SEUS

service warehouse be assessed? The first two items combined have been a bottleneck for many years, but the experiment

described in this paper suggests that solutions exist. It is now time to sharpen this choice by also involving considerations

around SEUS project strategy, involved effort, costs and other aspects of licencing of supporting software. At present how

existing software solutions can satisfy the third and fourth requirement is being investigated.

Finally, a word on the modus operandi with this service warehouse. It will be obvious that the design and engineering

programmes will not be using the service warehouse, so synchronisation between the internal representations and the service

warehouse will be required from time to time. The question as to whether this is done automatically (at certain time

intervals), or at the instigation of the user, or even restricted to authorised users, is a practical one that it is considered can be

answered later. There may be a setting for this if necessary.

CONCLUSIONS

In this paper the background, requirements and desires for the integration of design and engineering shipbuilding program

suites have been sketched. After a survey of maritime data standards, it was concluded that none of these are directly

applicable for our purposes, mainly because they do not support the inherent multifacetedness of the design and engineering

data. The recently emerged category of graph databases might perhaps fill this gap, and as a first investigation a practical

implementation with a set of bulkheads and compartments has been created and evaluated. The results look quite promising,

although non-technical aspects, such as licensing and costs, have not yet been considered. Anyway, these experiments,

combined with an analysis of the existing data models of SEUS’ design and engineering applications, led to a sketch design

of SEUS’ central service warehouse. The considerations and experiments have shown that viable tools and methods exist to

solve significant software integration aspects. Future steps in the SEUS development are intended to be:

• Exploration of attractive alternatives for the functionality offered by graph databases.

• Addressing the integrated support for RPCs.

• The management of the (STEP-based) dictionary, or, alternatively, the integration of dictionary and warehouse software

implementation.

• The development of a second demonstration case, with piping, associated components and their connections to

equipment and compartments.

CONTRIBUTION STATEMENT

Author 1: Conceptualization; conclusions; sketch of the warehouse; literature review; PIAS background; writing. Author 2:

Graph databases research and writing; review and editing. Author 3: Conceptualization; conclusions; sketch of the

warehouse; CADMATIC background; writing. Author 4: CADMATIC background.

ACKNOWLEDGEMENTS

The SEUS project has received funding from the Horizon Europe Framework Programme (HORIZON) EU program under

grant agreement No 101096224. Info is updated at http://seus-project.eu/. This article reflects only the authors’ views, and

the European Commission is not responsible for any use that may be made of the information it contains.

REFERENCES

Andrews, D. (2018). The Sophistication of Early Stage Design for Complex Vessels. Trans RINA, Special Edition, IJME,

160, (SE 18).

De Koningh, D., Koelman, H.J. & Hopman, J.J (2011). A Novel Ship Subdivision Method and its Application in Constraint

Management of Ship Layout Design. Journal of Ship Production and Design, 27(3), 137-145.

Dusch, T., Franke, B., Grau, M. & Zerbst, C. (2017), Intent-driven CAD vs. Mechanical CAD in Shipbuilding – A review

and Solution Outline, ICCAS 2017.

http://seus-project.eu/

Erikstad, S.O. & Lagemann, B (2022). Design Methodology State-of-the-Art Report. 14th International Marine Design

Conference (IMDC), Vancouver, Canada, June 28.

Fonseca, Í.A., Gaspar, H.M., de Mello, P.C. & Sasaki, H.A.U. (2022). A Standards-Based Digital Twin of an Experiment

with a Scale Model Ship. Computer-Aided Design, 145, 103191.

Gaspar, H.M., Seppälä, L, Koelman, H.J. & Agis, J.J.G. (2023). Can European Shipyards be Smarter? A Proposal from the

SEUS Project. COMPIT’23. Drübeck, Germany, May 23-25.

Gielingh, W. (2008). An assessment of the current state of product data technologies. Computer-Aided Design, 40(7), pp.

750-759.

ISO (2003). ISO 10303. Industrial Automation Systems and Integration: Product Data Representation and Exchange. Part

215: Application Protocol: Ship Moulded Form.

ISO (2004a). ISO 10303. Industrial Automation Systems and Integration: Product Data Representation and Exchange. Part

215: Application Protocol: Ship Arrangement.

ISO (2004b). ISO 10303. Industrial Automation Systems and Integration: Product Data Representation and Exchange. Part

218: Application Protocol: Ship Structures.

ISO (2005). ISO-15926-1. Industrial Automation Systems and Integration - Integration of Life-Cycle Data For Process Plants

Including Oil and Gas Production Facilities - Part 1: Overview and Fundamental Principles.

ISO (2018). ISO 19848. Ships and marine technology - Standard data for shipboard machinery and equipment.

ISO (2022). ISO/IEC 81346-1. Industrial Systems, Installations and Equipment and Industrial Products - Structuring

Principles and Reference Designations - Part 1: Basic Rules.

ISO (2023). ISO-15926-11. Industrial Automation Systems and Integration - Integration of Life-Cycle Data for Process

Plants Including Oil and Gas Production Facilities - Part 11: Simplified Industrial Usage of Reference Data Based on RDFS

Methodology.

Kahn, M.T.H. & Rezwana, S. (2021). A review of CAD to CAE integration with a hierarchical data format (HDF)-based

solution. Journal of King Saud University - Engineering Sciences, Vol 33 (4). pp 248-258,

Kim, J., Pratt, M.J., Iyer, R.G. & Sriram, R.D. Standardized Data Exchange of CAD Models with Design Intent. . Computer-

Aided Design, 40(7), pp. 760-777.

Kirkwood, R. & Sherwood, J.A. (2021). Sustained CAD/CAE Application Integration: Supporting Simplified Models. J.

Comput. Inf. Sci. Eng. 21(1).

Koelman, H.J. (2003). Application of the H-rep Ship Hull Modelling Concept. Ship Technology Research. 50 (4), pp. 172-

181.

Koelman, H.J. (2024). Piping Layout Integrated in Ship Design and Stability Assessment. 15th International Marine Design

Conference (IMDC), Amsterdam, Netherlands, June 3-6.

Koelman, H.J., van de Zee, J. & de Jonge, T. (2015). A Virtual Single Ship-Design System Composed of Multiple

Independent Components. COMPIT’15. Ulrichshusen, Germany, May 11-13.

Koelman, H.J. & Veelo, B.N. (2013). A technical note on the geometric representation of a ship hull form, Computer-Aided

Design 45(11), pp. 1378-1381,

Kuryło, P., Frankovský, P., Malinowski, M., Maciejewski, T., Varga, J., Kostka, J., Adrian, Ł., Szufa, S. & Rusnáková, S. Data

Exchange with Support for the Neutral Processing of Formats in Computer-Aided Design/Computer-Aided Manufacturing

Systems. Appl. Sci. 2023, 13, 9811.

Leclerc, J-C., Keraron, Y., Fauconnet, C., Chauvat, N. & Zelm, M. (2022). New ways of using standards for semantic

interoperability towards integration of data and models in industry. 11th International Conference on Interoperability for

Enterprise Systems and Applications (I-ESA 2022), Valencia, Spain, March 23-25.

Maritiem Masterplan (2023). Aanvraag nationaal groeifonds (in Dutch). maritiemmasterplan.nl/wp-

content/uploads/sites/3/2023/10/230203_Maritiem-Masterplan_Verkorte-versie-zonder-appendices.pdf

Owen, J. (1997). STEP, an introduction. Information geometeers, Winchester, UK.

Qin, Y., Lu, W., Qi, Q., Liu, X., Zhong, Y., Scott, P. & Jiang, X.. (2017). Status, Comparison, and Issues of Computer-

Aided Design Model Data Exchange Methods Based on Standardized Neutral Files and Web Ontology Language File.

Journal of Computing and Information Science in Engineering. 17.

Shiplys (2019). Ship Lifecycle Software Solutions (SHIPLYS). D9.7 SHIPLYS Software and its Functionality in Relation to

Existing Standards and Potential for Inputs to Future Standards. www.shiplys.com/library/deliverables/d97-shiplys-software-

and-its-functionality-in-relation-to-existing-standards-and-potential-for-inputs-to-future-standards/

Srinivasan, V. (2008). Standardizing the specification, verification, and exchange of product geometry: Research, status and

trends, Computer-Aided Design 40(7), pp. 738-749.

Whitfield, R., Duffy, A., York, P., Vassalos, D. & Kaklis, P. (2011). Managing the Exchange of Engineering Product Data to

Support Through Life Ship Design. Computer-Aided Design 43(5), pp. 516-532.

Zerbst, C. (2023). OCX on the Way from Research to Industry Practice. COMPIT’23. Drübeck, Germany, May 23-25.

https://maritiemmasterplan.nl/wp-content/uploads/sites/3/2023/10/230203_Maritiem-Masterplan_Verkorte-versie-zonder-appendices.pdf
https://maritiemmasterplan.nl/wp-content/uploads/sites/3/2023/10/230203_Maritiem-Masterplan_Verkorte-versie-zonder-appendices.pdf
http://www.shiplys.com/library/deliverables/d97-shiplys-software-and-its-functionality-in-relation-to-existing-standards-and-potential-for-inputs-to-future-standards/
http://www.shiplys.com/library/deliverables/d97-shiplys-software-and-its-functionality-in-relation-to-existing-standards-and-potential-for-inputs-to-future-standards/

