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ABSTRACT
This paper presents our review and synthesis of the
literature on STEM classification, and our results for a
novel approach towards understanding, categorizing, and
tracking STEM attributes in the workplace. We found two
deficiencies in the way STEM is traditionally discussed,
which we attempt to address in this work. The first is that
the key components of STEM tend to be discussed
holistically in the literature, rather than discretely as
Science, Technology, Education, and Mathematics. The
second is that our ability to track changes in S.T.E.M.
concentrations in the workplace, both geographically and
temporally, is underdeveloped. Further, we have found that
this second deficiency is due, in part, to how STEM
occupations are categorized; i.e., “STEM” tends to be a
binary designation, rather than measured on a continuum
for each job, and each component of S.T.E.M. It is also
due to the lack of a “gold standard” measurement of the
quantity of S.T.E.M. for all occupations. Here, we present
a novel approach for machine learning algorithms using a
“bag of words” method. These algorithms are trained on a
small selection of Standard Occupational Classification
(SOC) occupations, using ratings for each component of
S.T.E.M. as the exemplars on which to train (SOC 2019).
Recognizing that such a classification scheme is new, and
that one of the goals of this project is to solicit Subject
Matter Expert (SME) feedback, the resultant model of
S.T.E.M. measurements across these occupations is
designed to easily incorporate multiple distinct models and
alternative approaches.
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1. INTRODUCTION
This report is one part of a greater research effort started
through the U.S. Department of Education (DOE), Office
of Career, Technical, and Adult Education (OCTAE) to
create a STEM Index to quantify the elements of S.T.E.M.
(i.e., science, technology, engineering, and math) in the
North American Industry Classification System (NAICS),
the Standard Occupational Classification system (SOCs),
and possibly to the level of individual jobs. This statistical
model will be designed to be applied to government
employment and industry datasets to provide STEM
educators and administrators information related to the
amount of Science, Technology, Engineering, and Math

within a range of occupations included in both SOCs and
NAICS. One of the most valuable applications of this
STEM index will be the future ability to match state and
local programs and course completions to quarterly
regional Bureau of Labor and Statistics (BLS) economic
activity, thus allowing greater alignment between course
offerings and regional in-demand jobs. (Note: our paper
follows the standard nomenclature of using “STEM” when
speaking about programs and initiatives holistically, and
“S.T.E.M.” when referring to the individual component.)

One key finding from our literature review is that the
STEM categories are not generally broken down into
composite classifications. Further, all occupations tend to
be categorized as either STEM or not, based on broad
definitions, and in a binary manner, rather than by
quantifying the amount of STEM knowledge needed for a
job or determining a list of required STEM skills and
competencies. With the current classification method,
some occupations will be included when they should not
be, while others are excluded even if they have a
significant STEM component. “Broad groupings can only
give broad estimates and are not useful for targeted
workforce policy. [...] Problematic in the current discourse
on the value and impact of STEM discipline-related skills
is the use of the STEM acronym to encompass a wide
variety of different concepts in instances where a more
precise or appropriate term is needed” (Siekmann &
Korbel, 2016).

Finally, the current classification scheme itself resists
timely updates. To assign classifications across such a
comprehensive list of occupations is quite labor intensive.
And there is a significant need to be able to compare data,
both “across agencies and organizations,” as well as over
time, in order to “maximize the comparability of data”
(SOC, 2019). This hampers our ability to make systemic
changes in the classification and quantification of the
STEM content across occupations.

Another pattern that we have found, not only in the STEM
literature, but also found in many STEM-focused education
websites, program initiatives, and advocacy resources, is a
general trend towards defining STEM more broadly, rather
than with more precision. That is, there is a marked
tendency to discuss STEM skills holistically; and to
promote STEM education, training, and directed resources
by listing many that are more correctly classified as
“foundational” skills. Foundational not just for STEM
occupations, but for a wide variety of non-STEM
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occupations as well. These are skills such as: creativity,
organization, communication and teamwork, problem
solving, and critical thinking. These skills remain far from
unique to STEM occupations. Further, in some STEM
resources, even more general traits and habits are discussed
in this context, such as: persistence, flexible thinking,
empathy, engagement, and metacognition (Costa, 2008;
Asunda & Weitlauf, 2018).

From the Department of Education report: STEM
Education Strategic Plan 2018: “Over the past 25 years,
STEM education has been evolving from a convenient
clustering of four overlapping disciplines toward a more
cohesive knowledge base and skill set critical for the
economy of the 21st century. The best STEM education
provides an interdisciplinary approach to learning, where
rigorous academic concepts are coupled with real-world
applications and students use STEM in contexts that make
connections between school, community, work, and the
wider world. Leaders in STEM education continue to
broaden and deepen its scope and further transcend the
fields of study beyond just a combination of the four
disciplines to include the arts and humanities. Modern
STEM education imparts not only skills such as critical
thinking, problem solving, higher order thinking, design,
and inference, but also behavioral competencies such as
perseverance, adaptability, cooperation, organization, and
responsibility.” This, as evidence that STEM is more and
more often discussed as a synthesized field rather than as
individual components; and more than just S.T.E. and M.
skills are referred to as part of the STEM curricula.

This literature review and project takes as its working
hypothesis the possibility that the pendulum has swung too
far. Perhaps what is needed is a new focus on the
individual pieces that comprise STEM; or, further, the four
components of S.T.E. and M. (The convention is, when
discussing STEM as a unified subject, the acronym is
written as a single word; conversely, when emphasis is on
the individual components, the acronym is written as
“S.T.E.M.”) This more granular focus may renew our
understanding of all the skills, abilities, aptitudes, and
competencies that go into performing STEM tasks and
occupations. By more precisely measuring the
competencies that comprise S.T.E.M., we might better
track these skills across a continuum, and determine their
changing proportions over time and across all occupations.

2. BACKGROUND
In recent years, educational and vocational professionals
have sought to define STEM core competencies in a more
holistic way. While emphasis on the sciences dates back at
least to the decade that saw the formation of both NASA
and the NSF, the acronym STEM, and the emphasis on
these four fields - Science, Technology, Engineering, and
Mathematics - emerged in the late 1990’s and early 2000’s
(Chute, 2009). Coined by Dr. Judith Ramaley, who served
as the assistant director of the Education and Human
Resources Directorate at the NSF, “STEM” was defined as
“an educational inquiry where learning was placed in

context, where students solved real-world problems and
created opportunities—the pursuit of innovation”
(Daugherty, 2013).

What’s more, there is a persistent belief that “only some
kids can really learn math and science to high levels”
(Chute, 2009). Here is Dr. Nancy Bunt, program director
of the Math & Science collaborative in the Allegheny
Intermediate Unit in Pittsburgh, PA: “There is this very
strong belief out there on the part of parents and the part of
some educators and society as a whole: If I wasn't good at
math, my kids don't have a chance of being good at math.
It's a gene thing. They'd never say that about reading.
There is an assumption that everyone needs to learn to
read.” There is even data to support the idea that a strong
emphasis on the four S.T.E.M. components, as well as their
integration into the unified “STEM” category, with
meaningful overlap and synergy, will not only increase the
number of students who pursue the sciences, but also
positively influence the number that pursue any bachelor’s
or post-secondary degree (Chute, 2009).

However, definitions of STEM in terms of what fields are
included have tremendous consequences for US (and
international) policy, funding decisions, resource
allocations, and an incredible variety of educational
initiatives and workforce development programs. Which
fields of study are included can impact anything, from
which among the millions of undergraduate and graduate
students are supported by the NSF, to who will be eligible
to receive student visas, to which programs receive extra
resources as fields of designated national interest.

Consider, for example, the STEM Educational Act of 2014.
Passed in July of that year, this act has only two stated
purposes. Aside from a few minor changes in wording of
the existing statues, this law was written solely “To define
STEM education to include computer science, and to
support existing STEM education programs at the National
Science Foundation.” And the second of these was not
really a change; rather, it was just a continuation of
previous policy: the bill states that “The Director of the
National Science Foundation, through the Directorate for
Education and Human Resources, shall continue [emphasis
added] to award competitive, merit-reviewed grants to
support” STEM learning environments, learning outcomes,
engagement, and research in STEM education.

In other words, so crucial to funding decisions, programs,
and resource allocation was explicitly adding “computer
science” and computational thinking to the standard,
government-wide definition of STEM that this act was
passed by both houses of Congress and signed by the
President, to make this inclusion clear and give it the force
of law.  Definitions matter.

As such, there is continual pressure, from stakeholders,
curriculum managers, and workforce development
programs, to include their individual fields and domains in
standard definitions of “STEM,” in order to remain
relevant (and funded). Conversely, there is pressure in the
other direction to keep STEM a semi-exclusive and useful
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definition: becoming too broad would render it nearly
meaningless. This reality has created tremendous
ambiguity in the STEM label, such that it is often defined
and redefined based on various needs, creating the situation
where there is little agreement, across all stakeholders, in a
precise definition.

The power of the STEM acronym comes, in part, from this
ambiguity, as it can mean all things to all people. As a
loosely defined and malleable concept, “STEM” gains
wider acceptance and becomes the focus of more
initiatives, more funding, and greater involvement of key
stakeholders. However, this same ambiguity, that allows
much of this national (and international) attention, also
drives misunderstandings and confusion over what, exactly,
STEM refers to. “Whether the acronym is understood and
fashionable outside these education groups is not well
known. What is known is that the acronym and associated
term is not well-defined, even within groups that make
heavy use of it” (Daugherty, 2013, citing Storksdieck,
2011).

But such ambiguity has consequences. The NSF’s “STEM
Education for the Future: A Visioning Report” from 2020
makes the point that access to STEM education varies
“across zip codes and income levels,” as well as among
underrepresented groups (Education & Human Resources,
2020). It further articulates certain key priorities, in order
to meet the challenges in STEM education and workforce
development. One of these priorities is to level the playing
field for STEM educational opportunities. And so, priority
one is to increase opportunities for those being left behind.

Related to this, another listed priority emphasizes the need
to motivate improvements across the board: to continue to
strive for advances in our national capabilities; to promote
increased invention and innovation; and to fill the demand
for the high-tech, high-quality jobs of the rapidly
approaching future. This is because, according to the
National Science Board’s Science and Engineering
Indicators 2018, Americans’ basic STEM skills have only
modestly improved over the past two decades. And, they
continue to lag behind many other countries. Further,
according to the indicators, from 2006–2015, American
15-year-olds still tended to score below the international
average in mathematics skills, and at or slightly above the
international average in science skills. These are important
areas to address.

However, having an insufficient definition of S.T.E. and
M., and not going far enough in classifying STEM
occupations vs. non-STEM occupations, means that, not
only are we not accurately measuring these problems, but
we lack the data to properly target interventions, and do not
have the means to measure or judge the success or failure
of those interventions.

What we need to do—the motivating premise behind this
project—is to move away from the binary classification of
STEM vs. non-STEM jobs, and instead focus on the level
of STEM skills and abilities that are found within all jobs.
This change in emphasis would improve measurement of

STEM skills in our workforce in a way that is more
granular, and thus provide a better understanding of which
STEM skills and competencies are increasing in demand,
so that we might better meet current and emerging
workforce needs.

Our research in this project will look specifically at novel
ways to do exactly this. The current definitions simply are
not granular enough, and are not updated frequently
enough, to allow more precisely targeted interventions. It
is our hope that not only will we be able to measure and
track a continuum of STEM-related skills needed for more
precise categories of occupations, but also to quantify the
changes in demand for these skills over time.

3. APPROACH
In order to develop a scalable, algorithmic method for
quantifying each of the S.T.E.M. components across all
occupations, two things are needed. First, we need a
ranking of S.T.E.M. content for each occupation on which
to train that algorithm. The ranking system should have
both a theoretical and valid base. Second, we need a model
to predict the rankings. Our approach to the model is that a
single model is unlikely to provide a highly accurate result
across all jobs, so we rely on a ensemble approach
(Niculescu-Mizi et al., 2009) described in section3.2. and
an initial first predictive model for the ensemble described
in section 3.3.

3.1. Rating System
When considering how much Math, or how much
Engineering, is required for a particular job, there are really
two different senses for how to quantify this requirement:
level of expertise needed to perform the job; and level of
intensity, or how much time is spent on that activity. We
chose to use “level of expertise” only in quantifying the
amount of S.T.E. or M. required. So, for example, a retail
job where one is expected to add and subtract figures all
day would still have a low level of Math required, perhaps
a 1 or a 2 on the 9-point rating scale.

Table 1. STEM Level Classification* Ratings.
Rating Education Equivalent

0
1
2
3
4
5
6
7

None
Middle School
High School
Certification

Assoc. Degree (2 yr)
Bachelor’s Degree (4 yr)

Master’s Degree
Doctoral Degree

8 Everything Above
*These designate minimum levels (or equivalent) of
knowledge acquisition via degrees and/or years of
experience.

Conversely, a job that requires Calculus and Differential
Equations knowledge would be rated high, even if the
employee was not expected to draw on those skills very
often. In this way our system quantifies the level of skill

106



CTE-STEM 2022

needed to perform the job, so that qualifications and how
they change over time are captured.

The STEM level classification was done on a 9-point scale,
with the level of rating roughly equivalent to years of
education as a proxy for knowledge requirement to perform
the job.  Table 1 is included to illustrate these rating levels.

3.2. Ensemble Approach
In order to achieve robust results, we have implemented a
workflow that includes an ensemble methodology
(Niculescu-Mizi et al., 2009, Yu et al., 2010). This
methodology recognizes that any single model might not
be highly accurate across all possible predictions, and by
combining models using weighted averages a better result
can be achieved. Our ensemble scoring methodology can
be seen in figure 1, and is available in source code made
available in our public repository
https://github.com/jcstamper/CTE-STEM.

IndexScores,t,e,m(SOC)= M1ω1 + M2ω2 + … + Mxωx

For Models [M] and Weights [ω]

whereΣω = 1

Figure 1. Ensemble workflow for weighting models.

3.3. Model Prime
We proposed and implemented an initial model for our
workflow that we named MPrime. This model uses NLP
methods in a bag of words approach from a data source that
contains job descriptions and compares word embeddings
against a weighted vector for each of the formal topics of
Science, Technology, Engineering, and Math. The vector
distance is then calculated and normalized to our ranking
scale.

For our first pass, we derived the vectors for the formal
topics from a list of topics curated by STEM experts, and
our initial data source for the job descriptions came from
O*NET.

4. RESULTS
We ran our initial model on 82 jobs exported from the
O*NET repository. Note that because we do not have a true
gold standard for our topic vectors, our weightings were
not trained in any way. Having more data from additional
models or from experts could help us better train the
models in the future. The results, however, were promising.
Although experts were able to find potential disagreements
in the results, we compared Cohen's Kappa statistic on 25
jobs classified by two experts and our system. The results
between the two experts was .55 and between the two
experts and our system were .52 and .44 respectively.
While all these values suggest a weak level of agreement, it
also shows that our values were not far off.

Figure 2. Index for SOC 27-1022, Fashion Designers, as a
pie chart visualization.

We created an interface and web portal to inspect our
results, which are available here in our web application
https://share.streamlit.io/jcstamper/cte-stem/main/AppFinal
.py. An example of selected jobs with several visualizations
can be seen in Figures 2 and 3.

Figure 3. Index for SOC 11-101, Chief Sustainability
Officers, as a bar chart visualization .

5. DISCUSSION
There are two primary stakeholders groups for robust
S.T.E. and M. classifications: employers with non-STEM
jobs, and educational institutions preparing students for the
workforce. Currently, middle and high school STEM
activities, curriculum, and specialized STEM academies
focus on STEM jobs and occupations. STEM funding and
a significant amount of school resources are directed
towards STEM. Non-STEM jobs and occupations, with no
S.T.E.M. educational requirements, potentially have key
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gaps in the curriculum that results in proficiency gaps for
entry-level employees.

With a framework established to facilitate a gold standard
for an S.T.E.M. rating system, we believe that
industry-specific subject matter experts will be able to
quickly fine tune the algorithms to provide road maps for
job candidates and educational institutions.

Future applications of the S.T.E.M. index could potentially
allow K-12 school districts to automatically match their
non-STEM career and technical education offerings to the
latest Bureau of Labors Statistics economic data for their
region to gain insights into how aligned their S.T.E.M.
curriculums are to the economic needs of their region.

6. CONCLUSIONS
The U.S. Department of Education (DOE), Office of
Career, Technical, and Adult Education (OCTAE), and
other stakeholders, have identified a need to create a STEM
Index, quantifying the elements of S.T.E.M. (i.e., science,
technology, engineering, and math) in the workforce. By
more precisely tracking required S.T.E.M. skills as they
change over time, and as differences appear across
geographic regions, we will be better positioned to respond
to education and training needs.

This is preliminary work; a first step in generating a new
STEM Index. Our goal is to create a starting point for
SMEs and stakeholders to contribute in meaningful ways,
and as such our approach for integrating alternative
methods and models is a key outcome of this project. We
hope people will inspect and scrutinize the algorithms,
ratings, approaches, and outcomes we have developed,
which are here: github.com/jcstamper/CTE-STEM. And we
also want to see other innovative approaches, and gather
additional stakeholder requirements and use-case
examples. In particular it is important to find novel ways
to utilize the vast amounts of data currently being
collected, as well as identify new data sources that need to
be developed.
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