
Computational Thinking Dashboard: For learners in Jupyter notebooks

Bhoomika Agarwal

TU Delft, Netherlands

bhoomika10@gmail.com

ABSTRACT
Computational Thinking (CT) - the process of thinking like
a programmer or computer scientist - is a skill that that has
the potential to transform the way students learn at
educational institutions in different domains and different
grade levels. With the increasing integration of CT in
classrooms, there is a growing need for CT assessment
tools to evaluate the acquisition of CT skills. This research
develops a framework for CT assessment that detects user
micro-interactions in a university-level self-paced Python
beginners course integrated into Jupyter notebooks. The
users can improve their learning with the help of feedback
via CT dashboards as part of this framework. A user
evaluation study was conducted which showed that this
framework can be used to improve the acquisition of CT
skills via programming. The main contributions of this
framework are the mapping between CT skills and user
micro-interactions and development of the CT dashboards
to help the user self-regulate their learning of
programming. The framework developed can be easily
integrated into any course that teaches Python
programming using Jupyter notebooks and is yet to be
extended to other programming courses.

KEYWORDS
computational thinking, programming education, python,
jupyter notebook

1. INTRODUCTION
With the rapid integration of computers and technology
into our daily lives in the 21st century, we are amid the
technology revolution. While it is not yet necessary to learn
to program or code, most of us use computers on a daily
basis. We need to learn to think like them to get the best of
this revolution. This process of thinking like a programmer
or a computer scientist is called Computational
Thinking(CT). As per the National Research Council of the
National Academy of Sciences in the United States of
America, CT is a skill that everyone should acquire, not
just programmers (National Research Council et al., 2010)
(National Research Council et al., 2011).

Computational Thinking is a concept that lacks an agreed-
upon definition (Tang et al., 2020)(Brennan & Resnick,
2012)(Barr & Stephenson, 2011)(National Research
Council et al., 2011). Brennan & Resnick, (2012) defined
CT with respect to design-based learning activities in
Scratch - a block-based programming language - in terms
of three dimensions: computational concepts,
computational practices, and computational perspectives.

The concept of Computational thinking was brought to the
limelight in 2006 when Wing, (2006) suggested that
thinking computationally was a fundamental skill for
everyone, not just computer scientists, and argued for the
importance of integrating computational ideas into other
subjects in school. Computational thinking has been shown
to be a valuable skill for other domains and disciplines such
as mathematics and science. Multiple studies have looked
at CT skills as a transfer skill and how it can be
applied in other domains (Weintrop et al., 2016)(Pei et al.,
2018)(Leonard et al., 2018)(Jaipal-Jamani & Angeli, 2017).

A majority of the cross-disciplinary research makes use of
visual and block-based programming languages. This
graphical representation of code makes it easier to learn the
basics of programming, especially for K-12 students and
makes it suitable for integrating it into curricula in other
domains. On the downside, the functionality of block-based
programming language is limited by the available blocks
and they do not offer the flexibility that text-based
programming languages provide. Tang et al., (2020) show
that a majority of studies related to CT are focused on
elementary and middle school grade levels and emphasize
on the need for more studies for high school and college
students so that the complete development trajectory for
CT skills in students can be mapped.

While Computational thinking (CT) is being integrated into
curricula rapidly, there is a need for methods to assess and
evaluate learning of CT concepts (Hadad & Lawless,
2015)(Tang et al., 2020). The lack of an agreed-upon
definition of CT, lack of assessment mechanisms for CT
and lack of usage of CT in classrooms are the major
roadblocks in the integration of CT into curricula(Lyon &
Magana, 2020). Owing to the advantages of a combination
of assessments, my research will use a combination of a
portfolio assessment and an adapted version of the survey
scale developed by Kılıç, Göko ̆glu, and Öztürk, (2021) to
assess the programming-oriented CT skills of
undergraduate students. By using this combination, the
attitudes of the users towards CT skills can be measured
using the scale and a holistic view of the users’ CT skills
can be gained through the portfolio assessment.

LA dashboards are learning tools that can help learners and
teachers harness the power of LA use it to improve their
learning (Jivet et al., 2020). Schwendimann et al., (2016)
define LA dashboards as “a single display that aggregates
different indicators about learner(s), learning process(es)
and/or learning context(s) into one or multiple
visualizations”. By making the learner aware of their

181818181818767676767676

77

CTE-STEM 2022 DOI: 10.34641/ctestem.2022.469

CTE-STEM 2022

progress and triggering self-reflection, LA dashboards can
help users regulate their own learning (Jivet et al., 2017).
Online learning provides flexibility and accessibility to
students through increased learning opportunities, access to
learning resources and opportunities for collaboration
(Broadbent & Poon, 2015). The downside of online
learning is that its success relies heavily on independent
learning and the students’ autonomous engagement in the
course (Broadbent & Poon, 2015). SRL strategies can help
learners to gain and retain knowledge methodically and
systematically (Broadbent & Poon, 2015). My research
aims to regulate the learning process and direct the student
learning process with knowledge and feedback in the form
of an SRL dashboard that includes the sense-
making factors and support for action for SRL.

2. DESIGN AND IMPLEMENTATION

2.1. The Python Programming Course
The CT assessment framework is integrated into the Python
basic programming. This course is a self-paced course to
teach Python programming without any pre-requisite
knowledge to university students. It is comprised of 4
modules – Variables, Control flow, Code Organization,
Basic plotting. The course is based on Jupyter notebooks to
allow for active leaning and experimentation and uses
nbgrader for releasing the exercises. The code in these
notebooks is runnable, producing output, and can be
modified by the student, to learn all the details and study
the effects of changes and variations.

2.2. Adapted definition of CT
For this research, an adapted definition of Computational
Thinking(CT) that combines those by Brennan and
Resnick, (2012) and Yeni and Hermans, (2019) is used.
Brennan and Resnick, (2012) define CT for Scratch with 3
key dimensions: “computational concepts (the concepts
designers employ as they program), computational
practices (the practices designers develop as they program),
and computational perspectives (the perspectives designers
form about the world around them and about themselves)”.
Yeni and Hermans, (2019) adapt this definition to Python
by modifying the CT concepts list to one that is better
suited to Python. Visualization, also referred to as
‘Simulation’ or ‘Modelling’ is an important CT concept
that is missing in the above definition(Hambrusch et al.,
2009)(Weintrop et al., 2016)(International Society for
Technology in Education & Computer Science Teachers
Association, 2011)(Yuen & Robbins, 2014). Thereby my
research adds ‘Visualizations’ to the list of CT concepts
proposed by Yeni and Hermans, (2019). Thereby, the
revised list of CT concepts used in my research is: data
structures, operators, conditionals, sequences, loops,
visualization.
Brennan and Resnick, (2012) identify 4 CT practices as
part of their CT definition in the form of micro-
interactions: being incremental and iterative, testing and
debugging, reusing and remixing, abstracting and
modularizing. My research uses these 4 CT practices and
detects them through the user’s micro-interactions.

2.3. CT Concepts mapping
This research uses 7 CT concepts and maps them to the 4
learning modules in the Python basic programming course.
This mapping is used for the design of the module-wise
dashboards. The CT concepts are mapped to the learning
modules as shown in Table 1.

Table 1. CT Concepts Mapping
Module CT concepts

Variables Data, Operators
Control Flow Loops, Conditionals

Code Organization Sequences, Functionals
Basic Plotting Visualization

2.4. Micro-interactions
Micro-interactions are the small-scale interactions that the
user does with a platform such as keypresses, mouse button
presses, copy and paste, etc. They can be useful to track the
user behavior in real-time and provide feedback about their
learning process. Micro-interactions can be aggregated and
grouped to provide learning indicators that can help users
with self-regulation of their learning process Matcha et al.,
(2020). This research collects micro-interaction data and
processes them to form indicators of CT skills. There are
two sources of the micro-interaction data - LogUI and
notebook metadata.

Table 2. Micro-interactions mapping.
Micro-
interaction

Action Source CT practice

focusin +
focusout

Time spent
on a cell

LogUI BII

keystrokes Additions LogUI BII

Cell run count -
Notebook
metadata

TD

Errors in output Errors
Notebook
metadata

TD

copy Copy LogUI RR
paste Paste LogUI RR

Add functions -
Notebook
metadata

AM

Module import -
Notebook
metadata

AM

LogUI is a framework-agnostic client-side JavaScript
library developed by Maxwell and Hauff, (2021) for
logging user interactions on webpages. Jupyter notebook
stores its cells as an array of JavaScript Object
Notation(JSON) objects. This contains metadata about the
number of cell runs, errors, cell source and more. This
research uses LogUI integrated into Jupyter notebooks
together with Jupyter notebook metadata to detect micro-
interactions such as the time spent on a cell, copy and
paste. These micro-interactions are then aggregated to
learning paramaters as shown in Table 2. The four CT
practices defined by Brennan and Resnick, (2012) are:
Being Incremental and Iterative(BII), Testing and
Debugging(TD), Reusing and Remixing(RR), Abstracting
and Modularizing(AM). For example, the number of copy-
paste actions can indicate reuse of code in learning. These
micro-interactions are then used as input for a global SRL
dashboard.

76

78

CTE-STEM 2022

2.5. CT Dashboards
Dashboards are tools that support both students and
teachers by helping them make sense of the learning
analytics data such that it can be used to improve the
learning process (Jivet et al., 2020). Dashboards can be
used to trigger learners to think about the effort invested in
learning and the subsequent outcomes of these activities
(Jivet, 2016). Dashboards are used in this research to
provide feedback to students per module and about how the
micro-interaction data can be used to improve the learning
process. In this way, the students can regulate their learning
process themselves. As the course is in Jupyter notebooks,
the dashboards are also integrated into Jupyter notebooks
so that the user does not have to use any additional tools or
environments.

2.5.1. CT concepts dashboard

Figure 1. Module-wise CT Concepts dashboard
The user is provided feedback for self-regulated learning
via Computational Thinking(CT) concepts dashboards per
module. This dashboard uses metadata tags for the cells
and checks the completion using certain conditions.
Additionally, the user is provided with actionable
suggestion for iterative self-regulated learning, as shown in
Figure 1. Figure 1 shows the dashboard for the module
‘Code Organization’, covering 2 CT concepts – Sequences
and Functionals. The progress of each concept is shown by
a progress bar. This progress is computed by the ratio of
the number of cells tagged with a concept that have been
completed by the user against the ratio of the total cells
tagged with a concept, scaled to a CT concept score of 1-
10. The color of the progress bar is red if the progress is
less than 60% of this ratio, as can be seen for the concept
Functionals. The user is advised to revisit the module if the
progress bar is red or else proceed to the next one. This
way, the user can track their progress and can decide their
next step based on quantitative data.

2.5.2. CT practices dashboard
The micro-interactions of the user are tracked using LogUI
and notebook metadata and are mapped to the CT practices,
as per Table 2. These are shown in 4 sections
corresponding to the CT practices and each micro-
interactions is displayed module-wise. A screenshot of the
dashboard for one of the CT practices is shown in Figure 2.

2.6. Integration and Reproducability
The framework created for CT assessment in this research
can be integrated and reproduced easily for any Python
beginners course that uses Jupyter notebooks. The detailed
instructions can be found on the Github repository
(Agarwal, 2021). The steps to reproduce this CT
assessment are:

1. Setup a LogUI server following the documentation
(Maxwell and Hauff, 2021)
2. Add metadata tags to the course cells
3. Add the code for logging the micro-interactions into
each notebook
4. Add the LogUI client files and configure the LogUI
server link and authorisation token (follow LogUI client
instructions)
5. Add the CT concepts dashboards to the modules and the
overall CT practices dashboard (user ID to be configured
here)

Figure 2. Global CT Practices dashboard

3. METHODS
To test the effectiveness of the Computation Thinking
Assessment (CTA) framework developed, a user evaluation
study was conducted for a period of length of 20 days.

25 participants signed up via an open call for participation,
out of which 48% of the participants (12 participants)
completed the study. Among the 13 participants who
dropped out, 5 logged in but did not make much progress
due to time constraints while 8 of them did not log in to the
JupyterHub server at all. Only the 12 participants who
completed the course are considered for further results and
conclusions, thereby setting the sample size to 12. All the
participants are in the age range 20-30 years. As part of the
call for participation, the participants were asked to report
their prior Python programming experience on a scale of 1-
10, with 1 signifying ‘no knowledge’ and 10 signifying
‘master’. 2 of the participants have moderate prior Python
programming experience while 10 of them have no
knowledge to little knowledge. Based on these
characteristics, the user evaluation study considered
participants who are beginners to Python programming at
the university level from different domains.

The user begins by filling in the pre-evaluation sur-
vey and logging in to the JupyterHub server. They then
fetch the modules from the server as assignments and
complete the learning modules one at a time. The CT
concepts dashboard is to be viewed after each module and
provides feedback about whether the progress is
satisfactory and if the module needs to be repeated. Once
the user completes all the modules, they view the global
CT practices dashboard for further overall feed-
back. Following that, the user fills in the post-evaluation

79

CTE-STEM 2022

survey to assess their CT skills after learning basic
programming.

An experimental design is used to measure the
improvement in CT skills of participants before and after
taking the Python basic programming course with the CTA
framework integrated. Both these surveys have the same 24
questions with a five-point Likert scale (1=Strongly
Disagree, 2=Disagree, 3=Neutral, 4=Agree, 5=Strongly
Agree). The scores between the two surveys are compared
to see the change in CT skills. The self-reported CT skills
of users before and after taking the course are the
dependent variable. A within-subjects design is chosen to
measure the change in CT skills of each participants before
and after taking the Python basic programming course.
Based on this experimental design, the null hypothesis H0
and alternate hypothesis for the experiment H1 respectively
are: H0 = There is no difference in the CT skills users
before and after taking the course, H1 = There is a
difference in the CT skills of users before and after taking
the course.

The survey used is an adapted version of the survey created
by Kılıç, Göko ̆glu, and Öztürk, (2021). This survey is used
as it has been designed to evaluate the programming-
oriented CT skills at the university level. As my research
associates programming concepts with CT skills, it was
necessary to find a survey scale that measures this
correspondence same. This survey was found to be the
best-suited to this purpose.

4. RESULTS
This research aims to answer the research question: How
can computational thinking be assessed through detection
of user micro-interactions in a university-level self-paced
Python beginners course integrated into Jupyter
notebooks?
 To answer this research question, the results of the study
are analysed under 3 research sub-questions :
1. RQ1: Did the users acquire Computational Thinking
(CT) skills in the form of both CT concepts and CT
practices?
2. RQ2: Was there a significant improvement in the self-
reported CT skills of users after taking the Python basic
programming course?
3. RQ3: How do the self-reported survey responses
correspond to the actual user micro-interaction data?

4.1.1. RQ1: Did the users acquire CT skills in the form
of both CT concepts and CT practices
To analyse the acquisition of self-reported CT skills, the
post-evaluation survey was used. The count of each of the
options of the Likert scale was aggregated per question for
the 12 completed users, as shown in Figure 3. Following
this, the mean (taken by encoding the Likert option values)
and standard deviation (SD) was computed per question to
get the final score per question, shown in Figure 3. Then,
the average value of the mean for the CT concepts
questions(15-24) and CT practices questions(1-14) was
computed and was found to be 4.35 and 4.27 respectively.
The standard deviation for the CT concepts questions(15-
24) and CT practices questions(1-14) are both found to be
in the range of 0.53-1.13, signifying a short deviation from

the average value. Based on these values, it can be
concluded that the users acquired CT skills in the form of
both CT concepts and CT practices. As the self-reported
survey questions pertain directly to the acquisition of
Python programming skills, the value of the mean and SD
also imply an improvement in Python programming skills
of the user.

Figure 3. Mean and SD values per question

4.1.2. RQ2: Was there a significant improvement in the
self-reported CT skills of users after taking the Python
basic programming course?
To analyze the significance of the change in CT skills
before and after the Python basic programming course, a
statistical approach is used by conducting a paired t-test for
the population. The paired t-test was done by considering
the average of the responses in the
pre-evaluation survey for each user and the average of the
responses in the post-evaluation survey for each user as the
pair of dependent variables. The null hypothesis H0 and
alternate hypothesis H1 respectively are: H0 = There is no
difference in the self-reported CT skills users before and
after taking the course, H1 = There is a difference in the
self-reported CT skills of users before and after taking the
course.

The significance level α is set to a value of 0.05. If the two-
tailed p − value < 0.05, the null hypothesis H0 is rejected.
As seen in Figure 3, the p-value is less than α. Thereby, the
null hypothesis H0 is rejected for the group - showing a
significant improvement in self-reported CT skills. Based
on the above results, it can be concluded that there is a
significant change in the self-reported CT skills of users
before and after taking the course.

4.1.3. RQ3: How do the self-reported survey responses
correspond to the actual user micro-interaction data?
To answer RQ3, the average scores of the increase in self-
reported CT skills were computed and compared to the user
micro-interaction data and dashboard usage data.

As can be seen from Figure 5, the change in CT skills
reported by the users roughly corresponds to the user
micro-interaction data. For example, User 1 reports a high
change of 3.4 and 3.2 in CT concepts and CT practices and
this is reflected accordingly in the high values of the
average CT concepts dashboard scores and runs and the

80

CTE-STEM 2022

values of the CT practices dashboard. On the other end of
the spectrum, low self-reported scores correspond to low
values in the micro-interaction data. An example of such a
user is User 2. From the data in Figure 5, it can be seen that
User 4 reports a low change in the CT skills. This user has
a good prior knowledge of the Python programming
language(5 out of 10) and thereby did not gain much added
value from the course. This user also scores highly on the
CTC_DB_avg, signifying a good knowledge of the
programming constructs and spend quite less time on the
course, as is seen in the low ‘Time spent’ and ‘Cell runs’ in
the CTP_DB_avg. Based on the correspondence between
the self-reported survey responses and the actual user
micro-interaction data, it can be concluded that they reflect
quite strongly on each other, thereby implying honest
responses to the survey questions.

Figure 4. Paired t-test result

Figure 5. User micro-interaction scores and survey response
changes

5. CONCLUSION
This research aimed to answer the research question - How
can computational thinking be assessed through detection
of user micro-interactions in a university-level self-paced
Python beginners course integrated into
Jupyter notebooks? To answer this research question, a
framework for computational thinking (CT) assessment
using detection of micro-interactions was developed and
integrated in a university-level self-paced Python beginners
course in Jupyter notebooks. A user evaluation study is
conducted to show that this framework can be used to
improve the acquisition of CT skills via an improvement in

Python programming skills. To assess CT, a combination
of a survey and portfolio assessment method are used in
this research. The portfolio assessment is done by detecting
user micro-interactions and using them as indicators of CT
- providing a holistic view of the users’ CT skills. As the
portfolio assessment cannot capture the users’ attitudes
towards learning and affective outcomes, a survey is used
before and after the programming course to assess these.
The results show an improvement in CT skills of the users
and an accurate assessment of the same through this
framework. The results of the user evaluation study show
that the developed framework for computational thinking
(CT) assessment using detection of micro-interactions can
be easily integrated in a university-level self-paced Python
beginners course in Jupyter notebooks and this framework
is effective in improving CT skills among users. In
addition, a mapping of CT skills to the micro-interactions is
developed in this research and this is used to create CT
dashboards that provide feedback for self-regulation to
users.

There are 2 main limitations of this research. Firstly, the
results of the micro-interactions logging and the dashboard
are not available to the user in the form of the global CT
practices dashboard at all points of time. As the logging
library - LogUI - is still in the development phase, it does
not currently have the functionality to stream or access the
user interaction logs in real time. This could cause issues in
scaling as the number of users increases. The LogUI
development team is currently working to resolve this issue
and implement this functionality. The second limitation is
that the assessment of self-regulated learning - Motivated
Strategies for Learning Questionnaire (MSLQ) (Pintrich et
al., 1991) - could not be fully integrated in this research
owing to the time constraints of the user evaluation study.
MSLQ is a self-reported questionnaire used to assess the
cognitive view of motivations and learning strategies in a
college course. Adding the MSLQ validation would help
assess the self-regulated learning among students through
this course. Owing to this limitation, the self-regulation
aspect of this CT framework could not be fully assessed in
this research.

In conclusion, a framework to assess CT skills was
developed for a university-level self-paced Python
beginners course and micro-interaction data was used to
provide feedback to improve the acquisition of CT skills by
the user. This framework can be integrated easily into other
courses that teach CT skills through Python programming
using Jupyter notebooks. While the user evaluation study
conducted validates the CT assessment framework
developed for a basic programming course, the results
might differ for an advanced programming courses and
courses that do not teach programming. Future work aimed
at testing the applicability of this framework to other non-
programming courses and to advanced programming
courses should be carried out to validate the results of this
CT assessment framework to them. In addition, integration
of the MSLQ validation framework would enable
validation of the complete theoretical design of this CT
assessment framework.

81

CTE-STEM 2022

6. REFERENCES
National Research Council & Others. (2010). Report of a

workshop on the scope and nature of computational
thinking. National Academies Press.

National Research Council & Others. (2011). Report of a
workshop on the pedagogical aspects of computational
thinking. National Academies Press.

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020).
Assessing computational thinking: A systematic review
of empirical studies. Computers & Education, 148,
103798. doi:10.1016/j.compedu.2019.103798

Brennan, K., & Resnick, M. (2012). New frameworks for
studying and assessing the development of computational
thinking. Proceedings of the 2012 annual meeting of the
American educational research association, Vancouver,
Canada, 1, 25.

Barr, V., & Stephenson, C. (2011). Bringing
Computational Thinking to K-12: What is Involved and
What is the Role of the Computer Science Education
Community? ACM Inroads, 2(1), 48–54.
doi:10.1145/1929887.1929905

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33–35.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,
Trouille, L., & Wilensky, U. (2016). Defining
computational thinking for mathematics and science
classrooms. Journal of Science Education and
Technology, 25(1), 127–147.

Pei, C. (yu), Weintrop, D., & Wilensky, U. (2018).
Cultivating Computational Thinking Practices and
Mathematical Habits of Mind in Lattice Land.
Mathematical Thinking and Learning, 20(1), 75–89.
doi:10.1080/10986065.2018.1403543

Leonard, J., Mitchell, M., Barnes-Johnson, J., Unertl, A.,
Outka-Hill, J., Robinson, R., & Hester-Croff, C. (2018).
Preparing teachers to engage rural students in
computational thinking through robotics, game design,
and culturally responsive teaching. Journal of Teacher
Education, 69(4), 386–407.

Jaipal-Jamani, K., & Angeli, C. (2017). Effect of robotics
on elementary preservice teachers’ self-efficacy, science
learning, and computational thinking. Journal of Science
Education and Technology, 26(2), 175–192.

Hadad, R., & Lawless, K. A. (2015). Assessing
computational thinking. In Encyclopedia of Information
Science and Technology, Third Edition (bll 1568–1578).
IGI Global.

Lyon, J. A., & J. Magana, A. (2020). Computational
thinking in higher education: A review of the literature.
Computer Applications in Engineering Education, 28(5),
1174–1189.

Kılıç, S., Gökoğlu, S., & Öztürk, M. (2021). A Valid and
Reliable Scale for Developing Programming-Oriented
Computational Thinking. Journal of Educational
Computing Research, 59(2), 257–286.

Jivet, I., Scheffel, M., Schmitz, M., Robbers, S., Specht,
M., & Drachsler, H. (2020). From students with love: An

empirical study on learner goals, self-regulated learning
and sense-making of learning analytics in higher
education. The Internet and Higher Education, 47,
100758. doi:10.1016/j.iheduc.2020.100758

Schwendimann, B. A., Rodriguez-Triana, M. J., Vozniuk,
A., Prieto, L. P., Boroujeni, M. S., Holzer, A., …
Dillenbourg, P. (2016). Perceiving learning at a glance: A
systematic literature review of learning dashboard
research. IEEE Transactions on Learning Technologies,
10(1), 30–41.

Jivet, I. (2016). The Learning tracker: a learner dashboard
that encourages self-regulation in MOOC learners.
Opgehaal van http://resolver.tudelft.nl/uuid:f6c2ede4-
a4e3-4ff0-b681-b0d057854e3c

Jivet, I., Scheffel, M., Drachsler, H., & Specht, M. (2017).
Awareness Is Not Enough: Pitfalls of Learning Analytics
Dashboards in the Educational Practice. In É. Lavoué, H.
Drachsler, K. Verbert, J. Broisin, & M. Pérez-Sanagustín
(Reds), Data Driven Approaches in Digital Education
(bll 82–96). Cham: Springer International Publishing.

Broadbent, J., & Poon, W. L. (2015). Self-regulated
learning strategies & academic achievement in online
higher education learning environments: A systematic
review. The Internet and Higher Education, 27, 1–13.

Yeni, S., & Hermans, F. (2019). Design of CoTAS:
Automated Computational Thinking Assessment System.
perspectives, 23, 28.

Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., &
Hosking, A. L. (2009). A Multidisciplinary Approach
towards Computational Thinking for Science Majors.
SIGCSE Bull., 41(1), 183–187.
doi:10.1145/1539024.1508931

in Education (ISTE), I. S. F. T., & (csta), C. S. T. A.
(2011). Operational Definition of Computational
Thinking. Opgehaal van https://cdn.iste.org/www-root/ct-
documents/computational-thinking-operational-
definition-flyer.pdf

Yuen, T. T., & Robbins, K. A. (2014). A Qualitative Study
of Students’ Computational Thinking Skills in a Data-
Driven Computing Class. ACM Trans. Comput. Educ.,
14(4). doi:10.1145/2676660

Matcha, W., Gašević, D., Jovanović, J., Uzir, N. A., Oliver,
C. W., Murray, A., & Gasevic, D. (2020). Analytics of
learning strategies: the association with the personality
traits. Proceedings of the Tenth International Conference
on Learning Analytics & Knowledge, 151–160.

Maxwell, D., & Hauff, C. (2021). LogUI: Contemporary
Logging Infrastructure for Web-Based Experiments.
Advances in Information Retrieval (Proc. ECIR), 525–
530.

Pintrich, P. R., & Others. (1991). A manual for the use of
the Motivated Strategies for Learning Questionnaire
(MSLQ).

Agarwal, B. (n.d.). ct_dashboards. GitHub. Opgehaal van
https://github.com/bhoom10/ct_dashboards

82

