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ABSTRACT
Computational Thinking (CT) - the process of thinking like 
a programmer or computer scientist - is a skill that that has 
the potential to transform the way students learn at 
educational institutions in different domains and different 
grade levels. With the increasing integration of CT in 
classrooms, there is a growing need for CT assessment 
tools to evaluate the acquisition of CT skills. This research 
develops a framework for CT assessment that detects user 
micro-interactions in a university-level self-paced Python 
beginners course integrated into Jupyter notebooks. The 
users can improve their learning with the help of feedback 
via CT dashboards as part of this framework. A user 
evaluation study was conducted which showed that this 
framework can be used to improve the acquisition of CT 
skills via programming. The main contributions of this 
framework are the mapping between CT skills and user 
micro-interactions and development of the CT dashboards 
to help the user self-regulate their learning of 
programming. The framework developed can be easily 
integrated into any course that teaches Python 
programming using Jupyter notebooks and is yet to be 
extended to other programming courses. 
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1. INTRODUCTION
With the rapid integration of computers and technology 
into our daily lives in the 21st century, we are amid the 
technology revolution. While it is not yet necessary to learn 
to program or code, most of us use computers on a daily 
basis. We need to learn to think like them to get the best of 
this revolution. This process of thinking like a programmer 
or a computer scientist is called Computational 
Thinking(CT). As per the National Research Council of the 
National Academy of Sciences in the United States of 
America, CT is a skill that everyone should acquire, not 
just programmers (National Research Council et al., 2010) 
(National Research Council et al., 2011). 

Computational Thinking is a concept that lacks an agreed-
upon definition (Tang et al., 2020)(Brennan & Resnick, 
2012)(Barr & Stephenson, 2011)(National Research 
Council et al., 2011). Brennan & Resnick, (2012) defined 
CT with respect to design-based learning activities in 
Scratch - a block-based programming language - in terms 
of three dimensions: computational concepts, 
computational practices, and computational perspectives. 

The concept of Computational thinking was brought to the 
limelight in 2006 when Wing, (2006) suggested that 
thinking computationally was a fundamental skill for 
everyone, not just computer scientists, and argued for the 
importance of integrating computational ideas into other 
subjects in school. Computational thinking has been shown 
to be a valuable skill for other domains and disciplines such 
as mathematics and science. Multiple studies have looked 
at CT skills as a transfer skill and how it can be 
applied in other domains (Weintrop et al., 2016)(Pei et al., 
2018)(Leonard et al., 2018)(Jaipal-Jamani & Angeli, 2017).  

A majority of the cross-disciplinary research makes use of 
visual and block-based programming languages. This 
graphical representation of code makes it easier to learn the 
basics of programming, especially for K-12 students and 
makes it suitable for integrating it into curricula in other 
domains. On the downside, the functionality of block-based 
programming language is limited by the available blocks 
and they do not offer the flexibility that text-based 
programming languages provide. Tang et al., (2020) show 
that a majority of studies related to CT are focused on 
elementary and middle school grade levels and emphasize 
on the need for more studies for high school and college 
students so that the complete development trajectory for 
CT skills in students can be mapped. 

While Computational thinking (CT) is being integrated into 
curricula rapidly, there is a need for methods to assess and 
evaluate learning of CT concepts (Hadad & Lawless, 
2015)(Tang et al., 2020). The lack of an agreed-upon 
definition of CT, lack of assessment mechanisms for CT 
and lack of usage of CT in classrooms are the major 
roadblocks in the integration of CT into curricula(Lyon & 
Magana, 2020). Owing to the advantages of a combination 
of assessments, my research will use a combination of a 
portfolio assessment and an adapted version of the survey 
scale developed by Kılıç, Göko ̆glu, and Öztürk, (2021) to 
assess the programming-oriented CT skills of 
undergraduate students. By using this combination, the 
attitudes of the users towards CT skills can be measured 
using the scale and a holistic view of the users’ CT skills 
can be gained through the portfolio assessment. 

LA dashboards are learning tools that can help learners and 
teachers harness the power of LA use it to improve their 
learning (Jivet et al., 2020). Schwendimann et al., (2016) 
define LA dashboards as “a single display that aggregates 
different indicators about learner(s), learning process(es) 
and/or learning context(s) into one or multiple 
visualizations”. By making the learner aware of their 
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progress and triggering self-reflection, LA dashboards can 
help users regulate their own learning (Jivet et al., 2017). 
Online learning provides flexibility and accessibility to 
students through increased learning opportunities, access to 
learning resources and opportunities for collaboration 
(Broadbent & Poon, 2015). The downside of online 
learning is that its success relies heavily on independent 
learning and the students’ autonomous engagement in the 
course (Broadbent & Poon, 2015). SRL strategies can help 
learners to gain and retain knowledge methodically and 
systematically (Broadbent & Poon, 2015). My research 
aims to regulate the learning process and direct the student 
learning process with knowledge and feedback in the form 
of an SRL dashboard that includes the sense- 
making factors and support for action for SRL. 

2. DESIGN AND IMPLEMENTATION

2.1. The Python Programming Course 
The CT assessment framework is integrated into the Python 
basic programming. This course is a self-paced course to 
teach Python programming without any pre-requisite 
knowledge to university students. It is comprised of 4 
modules – Variables, Control flow, Code Organization, 
Basic plotting. The course is based on Jupyter notebooks to 
allow for active leaning and experimentation and uses 
nbgrader for releasing the exercises. The code in these 
notebooks is runnable, producing output, and can be 
modified by the student, to learn all the details and study 
the effects of changes and variations. 

2.2. Adapted definition of CT 
For this research, an adapted definition of Computational 
Thinking(CT) that combines those by Brennan and 
Resnick, (2012) and Yeni and Hermans, (2019) is used. 
Brennan and Resnick, (2012) define CT for Scratch with 3 
key dimensions: “computational concepts (the concepts 
designers employ as they program), computational 
practices (the practices designers develop as they program), 
and computational perspectives (the perspectives designers 
form about the world around them and about themselves)”. 
Yeni and Hermans, (2019) adapt this definition to Python 
by modifying the CT concepts list to one that is better 
suited to Python. Visualization, also referred to as 
‘Simulation’ or ‘Modelling’ is an important CT concept 
that is missing in the above definition(Hambrusch et al., 
2009)(Weintrop et al., 2016)(International Society for 
Technology in Education & Computer Science Teachers 
Association, 2011)(Yuen & Robbins, 2014). Thereby my 
research adds ‘Visualizations’ to the list of CT concepts 
proposed by Yeni and Hermans, (2019). Thereby, the 
revised list of CT concepts used in my research is: data 
structures, operators, conditionals, sequences, loops, 
visualization. 
Brennan and Resnick, (2012) identify 4 CT practices as 
part of their CT definition in the form of micro-
interactions: being incremental and iterative, testing and 
debugging, reusing and remixing, abstracting and 
modularizing. My research uses these 4 CT practices and 
detects them through the user’s micro-interactions. 

2.3. CT Concepts mapping 
This research uses 7 CT concepts and maps them to the 4 
learning modules in the Python basic programming course. 
This mapping is used for the design of the module-wise 
dashboards. The CT concepts are mapped to the learning 
modules as shown in Table 1.  

Table 1. CT Concepts Mapping 
Module CT concepts 

Variables Data, Operators 
Control Flow Loops, Conditionals 

Code Organization Sequences, Functionals 
Basic Plotting Visualization 

2.4. Micro-interactions 
Micro-interactions are the small-scale interactions that the 
user does with a platform such as keypresses, mouse button 
presses, copy and paste, etc. They can be useful to track the 
user behavior in real-time and provide feedback about their 
learning process. Micro-interactions can be aggregated and 
grouped to provide learning indicators that can help users 
with self-regulation of their learning process Matcha et al., 
(2020). This research collects micro-interaction data and 
processes them to form indicators of CT skills. There are 
two sources of the micro-interaction data - LogUI and 
notebook metadata. 

Table 2. Micro-interactions mapping. 
Micro-
interaction 

Action Source CT practice 

focusin + 
focusout 

Time spent 
on a cell 

LogUI BII 

keystrokes Additions LogUI BII 

Cell run count - 
Notebook 
metadata 

TD 

Errors in output Errors 
Notebook 
metadata 

TD 

copy Copy LogUI RR 
paste Paste LogUI RR 

Add functions - 
Notebook 
metadata 

AM 

Module import - 
Notebook 
metadata 

AM 

LogUI is a framework-agnostic client-side JavaScript 
library developed by Maxwell and Hauff, (2021) for 
logging user interactions on webpages. Jupyter notebook 
stores its cells as an array of JavaScript Object 
Notation(JSON) objects. This contains metadata about the 
number of cell runs, errors, cell source and more. This 
research uses LogUI integrated into Jupyter notebooks 
together with Jupyter notebook metadata to detect micro-
interactions such as the time spent on a cell, copy and 
paste. These micro-interactions are then aggregated to 
learning paramaters as shown in Table 2. The four CT 
practices defined by Brennan and Resnick, (2012) are: 
Being Incremental and Iterative(BII), Testing and 
Debugging(TD), Reusing and Remixing(RR), Abstracting 
and Modularizing(AM). For example, the number of copy-
paste actions can indicate reuse of code in learning. These 
micro-interactions are then used as input for a global SRL 
dashboard.  
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2.5. CT Dashboards 
Dashboards are tools that support both students and 
teachers by helping them make sense of the learning 
analytics data such that it can be used to improve the 
learning process (Jivet et al., 2020). Dashboards can be 
used to trigger learners to think about the effort invested in 
learning and the subsequent outcomes of these activities 
(Jivet, 2016). Dashboards are used in this research to 
provide feedback to students per module and about how the 
micro-interaction data can be used to improve the learning 
process. In this way, the students can regulate their learning 
process themselves. As the course is in Jupyter notebooks, 
the dashboards are also integrated into Jupyter notebooks 
so that the user does not have to use any additional tools or 
environments.  

2.5.1. CT concepts dashboard 

Figure 1. Module-wise CT Concepts dashboard 
The user is provided feedback for self-regulated learning 
via Computational Thinking(CT) concepts dashboards per 
module. This dashboard uses metadata tags for the cells 
and checks the completion using certain conditions. 
Additionally, the user is provided with actionable 
suggestion for iterative self-regulated learning, as shown in 
Figure 1. Figure 1 shows the dashboard for the module 
‘Code Organization’, covering 2 CT concepts – Sequences 
and Functionals. The progress of each concept is shown by 
a progress bar. This progress is computed by the ratio of 
the number of cells tagged with a concept that have been 
completed by the user against the ratio of the total cells 
tagged with a concept, scaled to a CT concept score of 1-
10. The color of the progress bar is red if the progress is
less than 60% of this ratio, as can be seen for the concept
Functionals. The user is advised to revisit the module if the
progress bar is red or else proceed to the next one. This
way, the user can track their progress and can decide their
next step based on quantitative data.

2.5.2. CT practices dashboard 
The micro-interactions of the user are tracked using LogUI 
and notebook metadata and are mapped to the CT practices, 
as per Table 2. These are shown in 4 sections 
corresponding to the CT practices and each micro-
interactions is displayed module-wise. A screenshot of the 
dashboard for one of the CT practices is shown in Figure 2.  

2.6. Integration and Reproducability 
The framework created for CT assessment in this research 
can be integrated and reproduced easily for any Python 
beginners course that uses Jupyter notebooks. The detailed 
instructions can be found on the Github repository 
(Agarwal, 2021). The steps to reproduce this CT 
assessment are: 

1. Setup a LogUI server following the documentation
(Maxwell and Hauff, 2021)
2. Add metadata tags to the course cells
3. Add the code for logging the micro-interactions into
each notebook
4. Add the LogUI client files and configure the LogUI
server link and authorisation token (follow LogUI client
instructions)
5. Add the CT concepts dashboards to the modules and the
overall CT practices dashboard (user ID to be configured
here)

Figure 2. Global CT Practices dashboard 

3. METHODS
To test the effectiveness of the Computation Thinking 
Assessment (CTA) framework developed, a user evaluation 
study was conducted for a period of length of 20 days. 

25 participants signed up via an open call for participation, 
out of which 48% of the participants (12 participants) 
completed the study. Among the 13 participants who 
dropped out, 5 logged in but did not make much progress 
due to time constraints while 8 of them did not log in to the 
JupyterHub server at all. Only the 12 participants who 
completed the course are considered for further results and 
conclusions, thereby setting the sample size to 12. All the 
participants are in the age range 20-30 years. As part of the 
call for participation, the participants were asked to report 
their prior Python programming experience on a scale of 1-
10, with 1 signifying ‘no knowledge’ and 10 signifying 
‘master’. 2 of the participants have moderate prior Python 
programming experience while 10 of them have no 
knowledge to little knowledge. Based on these 
characteristics, the user evaluation study considered 
participants who are beginners to Python programming at 
the university level from different domains. 

The user begins by filling in the pre-evaluation sur- 
vey and logging in to the JupyterHub server. They then 
fetch the modules from the server as assignments and 
complete the learning modules one at a time. The CT 
concepts dashboard is to be viewed after each module and 
provides feedback about whether the progress is 
satisfactory and if the module needs to be repeated. Once 
the user completes all the modules, they view the global 
CT practices dashboard for further overall feed- 
back. Following that, the user fills in the post-evaluation 
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survey to assess their CT skills after learning basic 
programming. 

An experimental design is used to measure the 
improvement in CT skills of participants before and after 
taking the Python basic programming course with the CTA 
framework integrated. Both these surveys have the same 24 
questions with a five-point Likert scale (1=Strongly 
Disagree, 2=Disagree, 3=Neutral, 4=Agree, 5=Strongly 
Agree). The scores between the two surveys are compared 
to see the change in CT skills. The self-reported CT skills 
of users before and after taking the course are the 
dependent variable. A within-subjects design is chosen to 
measure the change in CT skills of each participants before 
and after taking the Python basic programming course. 
Based on this experimental design, the null hypothesis H0 
and alternate hypothesis for the experiment H1 respectively 
are: H0 = There is no difference in the CT skills users 
before and after taking the course, H1 = There is a 
difference in the CT skills of users before and after taking 
the course.   

The survey used is an adapted version of the survey created 
by Kılıç, Göko ̆glu, and Öztürk, (2021). This survey is used 
as it has been designed to evaluate the programming-
oriented CT skills at the university level. As my research 
associates programming concepts with CT skills, it was 
necessary to find a survey scale that measures this 
correspondence same. This survey was found to be the 
best-suited to this purpose. 

4. RESULTS
This research aims to answer the research question: How 
can computational thinking be assessed through detection 
of user micro-interactions in a university-level self-paced 
Python beginners course integrated into Jupyter 
notebooks? 
 To answer this research question, the results of the study 
are analysed under 3 research sub-questions : 
1. RQ1: Did the users acquire Computational Thinking
(CT) skills in the form of both CT concepts and CT
practices?
2. RQ2: Was there a significant improvement in the self-
reported CT skills of users after taking the Python basic
programming course?
3. RQ3: How do the self-reported survey responses
correspond to the actual user micro-interaction data?

4.1.1. RQ1: Did the users acquire CT skills in the form 
of both CT concepts and CT practices 
To analyse the acquisition of self-reported CT skills, the 
post-evaluation survey was used. The count of each of the 
options of the Likert scale was aggregated per question for 
the 12 completed users, as shown in Figure 3. Following 
this, the mean (taken by encoding the Likert option values) 
and standard deviation (SD) was computed per question to 
get the final score per question, shown in Figure 3. Then, 
the average value of the mean for the CT concepts 
questions(15-24) and CT practices questions(1-14) was 
computed and was found to be 4.35 and 4.27 respectively. 
The standard deviation for the CT concepts questions(15-
24) and CT practices questions(1-14) are both found to be
in the range of 0.53-1.13, signifying a short deviation from

the average value. Based on these values, it can be 
concluded that the users acquired CT skills in the form of 
both CT concepts and CT practices. As the self-reported 
survey questions pertain directly to the acquisition of 
Python programming skills, the value of the mean and SD 
also imply an improvement in Python programming skills 
of the user.  

Figure 3. Mean and SD values per question 

4.1.2. RQ2: Was there a significant improvement in the 
self-reported CT skills of users after taking the Python 
basic programming course? 
To analyze the significance of the change in CT skills 
before and after the Python basic programming course, a 
statistical approach is used by conducting a paired t-test for 
the population. The paired t-test was done by considering 
the average of the responses in the 
pre-evaluation survey for each user and the average of the 
responses in the post-evaluation survey for each user as the 
pair of dependent variables. The null hypothesis H0 and 
alternate hypothesis H1 respectively  are: H0 = There is no 
difference in the self-reported CT skills users before and 
after taking the course, H1 = There is a difference in the 
self-reported CT skills of users before and after taking the 
course. 

The significance level α is set to a value of 0.05. If the two-
tailed p − value < 0.05, the null hypothesis H0 is rejected. 
As seen in Figure 3, the p-value is less than α. Thereby, the 
null hypothesis H0 is rejected for the group - showing a 
significant improvement in self-reported CT skills. Based 
on the above results, it can be concluded that there is a 
significant change in the self-reported CT skills of users 
before and after taking the course.  

4.1.3. RQ3: How do the self-reported survey responses 
correspond to the actual user micro-interaction data? 
To answer RQ3, the average scores of the increase in self-
reported CT skills were computed and compared to the user 
micro-interaction data and dashboard usage data. 

As can be seen from Figure 5, the change in CT skills 
reported by the users roughly corresponds to the user 
micro-interaction data. For example, User 1 reports a high 
change of 3.4 and 3.2 in CT concepts and CT practices and 
this is reflected accordingly in the high values of the 
average CT concepts dashboard scores and runs and the 
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values of the CT practices dashboard. On the other end of 
the spectrum, low self-reported scores correspond to low 
values in the micro-interaction data. An example of such a 
user is User 2. From the data in Figure 5, it can be seen that 
User 4 reports a low change in the CT skills. This user has 
a good prior knowledge of the Python programming 
language(5 out of 10) and thereby did not gain much added 
value from the course. This user also scores highly on the 
CTC_DB_avg, signifying a good knowledge of the 
programming constructs and spend quite less time on the 
course, as is seen in the low ‘Time spent’ and ‘Cell runs’ in 
the CTP_DB_avg. Based on the correspondence between 
the self-reported survey responses and the actual user 
micro-interaction data, it can be concluded that they reflect 
quite strongly on each other, thereby implying honest 
responses to the survey questions. 

Figure 4. Paired t-test result 

Figure 5. User micro-interaction scores and survey response 
changes 

5. CONCLUSION
This research aimed to answer the research question - How 
can computational thinking be assessed through detection 
of user micro-interactions in a university-level self-paced 
Python beginners course integrated into 
Jupyter notebooks? To answer this research question, a 
framework for computational thinking (CT) assessment 
using detection of micro-interactions was developed and 
integrated in a university-level self-paced Python beginners 
course in Jupyter notebooks. A user evaluation study is 
conducted to show that this framework can be used to 
improve the acquisition of CT skills via an improvement in 

Python programming skills. To assess CT, a combination 
of a survey and portfolio assessment method are used in 
this research. The portfolio assessment is done by detecting 
user micro-interactions and using them as indicators of CT 
- providing a holistic view of the users’ CT skills. As the
portfolio assessment cannot capture the users’ attitudes
towards learning and affective outcomes, a survey is used
before and after the programming course to assess these.
The results show an improvement in CT skills of the users
and an accurate assessment of the same through this
framework. The results of the user evaluation study show
that the developed framework for computational thinking
(CT) assessment using detection of micro-interactions can
be easily integrated in a university-level self-paced Python
beginners course in Jupyter notebooks and this framework
is effective in improving CT skills among users. In
addition, a mapping of CT skills to the micro-interactions is
developed in this research and this is used to create CT
dashboards that provide feedback for self-regulation to
users.

There are 2 main limitations of this research. Firstly, the 
results of the micro-interactions logging and the dashboard 
are not available to the user in the form of the global CT 
practices dashboard at all points of time. As the logging 
library - LogUI - is still in the development phase, it does 
not currently have the functionality to stream or access the 
user interaction logs in real time. This could cause issues in 
scaling as the number of users increases. The LogUI 
development team is currently working to resolve this issue 
and implement this functionality. The second limitation is 
that the assessment of self-regulated learning - Motivated 
Strategies for Learning Questionnaire (MSLQ) (Pintrich et 
al., 1991) - could not be fully integrated in this research 
owing to the time constraints of the user evaluation study. 
MSLQ is a self-reported questionnaire used to assess the 
cognitive view of motivations and learning strategies in a 
college course. Adding the MSLQ validation would help 
assess the self-regulated learning among students through 
this course. Owing to this limitation, the self-regulation 
aspect of this CT framework could not be fully assessed in 
this research. 

In conclusion, a framework to assess CT skills was 
developed for a university-level self-paced Python 
beginners course and micro-interaction data was used to 
provide feedback to improve the acquisition of CT skills by 
the user. This framework can be integrated easily into other 
courses that teach CT skills through Python programming 
using Jupyter notebooks. While the user evaluation study 
conducted validates the CT assessment framework 
developed for a basic programming course, the results 
might differ for an advanced programming courses and 
courses that do not teach programming. Future work aimed 
at testing the applicability of this framework to other non-
programming courses and to advanced programming 
courses should be carried out to validate the results of this 
CT assessment framework to them. In addition, integration 
of the MSLQ validation framework would enable 
validation of the complete theoretical design of this CT 
assessment framework. 
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