
How the Pre-service Teachers Associate Computational Thinking with
Programming? A Case Study of an Introductory Programming Course in Teacher

Education
Megumi IWATA1*, Jari LARU2*, Kati MÄKITALO3*

1,2,3 Faculty of Education, University of Oulu, Finland
megumi.iwata@oulu.fi, jari.laru@oulu.fi, kati.makitalo@oulu.fi

ABSTRACT
There is a growing interest among educators to integrate
computational thinking into basic education. Computational
thinking is a complex concept and difficult to understand
especially for those who have limited theoretical knowledge
about this concept and no background in the computer
science. Question arises, whether we reach the high-standard
learning goals without comprehensive understanding of
computer science. Therefore, there is a need to study
computational thinking and how it should be introduced to
pre-service teachers with little knowledge and experience in
computer science and programming. This study aims to
explore pre-service teachers’ understanding of
computational thinking in the context of an introductory
programming course. We focus on to what extent the pre-
service teachers recognize computational thinking during
the course and how they associate their conceptual
understanding of computational thinking with the concrete
programming practices. We undertake in-depth analysis of
five pre-service teachers who were novices in programming.
The assignments and the survey after the course are analysed.
The preliminary results show that sequencing from
unplugged activities to computerized activities and project
work helps the pre-service teachers recognized
computational thinking. Understanding of the relationship
between computational thinking and programming was
diverse. Some explained that computational thinking helps
understanding the code. This study provides insights of how
computational thinking should be introduced along the way
of learning programming.

KEYWORDS
Computational Thinking, Programming, Teacher Education,
K-12 Education, Case Study

1. INTRODUCTION
Programming is a difficult subject for novices. Selby (2015)
explains the learning difficulties of programming, which
indicates the lack of ability to understand how a
computational model works, to master reading, tracing and
writing code, and to understand high-level concepts, such as
design. Learning programming requires thinking and
metacognitive skills, knowledge and information from
multidisciplinary fields (e.g., Durak, Yilmaz, & Yilmaz,
2019; Selby, 2015; Li, 2016).

Wing (2006) states CT is a skillset for everyone. She defines
that CT “is the thought processes involved in formulating
problems and their solutions so that the solutions are
represented in a form that can be effectively carried out by
an information-processing agent” (Cuny, Snyder, & Wing,
2010, as cited in Wing, 2010, p.1). Later Aho (2012)

redefines CT as the thought processes involved in
formulating problems so that “their solutions can be
represented as computational steps and algorithms” (p. 832).

While programming is a process to solve certain problems
with computing, CT involves not only programming but also
views which reflect benefits provided by computing for
solving problems (Kukul & Karatas, 2019). Indeed Wing
(2006) claims that CT is not programming but more like
conceptualizing. Understanding such concept may be more
challenging for those who have limited knowledge in
computer science and experience in computer programming.

To advance CT education, developing teachers’ ability is
considered as a key factor (Kong, Abelson, & Lai, 2019). In
teacher education, teachers not only obtain programming
skills, but also understand CT and practice pedagogy to
effectively foster CT. Despite the increasing interest in CT
and programming among educators, the previous study
found that many teachers had little understanding of CT
skills and how they could develop CT skills in the practice
(Sands, Yadav, & Good 2018). There is a need to develop
teacher education to equip pre-service teachers with ability
to think computationally to be able to integrate CT into
education (Yadav, Gretter, Good, & McLean, 2017).

This study aims to explore how the pre-service teachers
associate CT with programming in the context of an
introductory programming course in teacher education.
There has been less emphasis on how CT can help learning
programming compared to how CT can be developed
through programming. To achieve the aim, we set the
following research questions: 1) To what extent do the pre-
service teachers recognize CT in the introductory
programming course? 2) In what ways do the pre-service
teachers associate CT with programming?

With the first research question we investigate pre-service
teachers’ perceptions about CT in the introductory
programming course. With the second research question, we
aim to understand how the pre-service teachers relate
conceptual CT with practical programming. The findings of
the study can provide views on how CT should be introduced
for programming novices along the way of learning
programming.

2. PROGRAMMING AND CT
Previous literature review revealed the distinct emphasis on
programming among the CT related literature (Saqr, Ng,
Oyelere, & Tedre, 2021). Moreno-León, Román-González,
and Robles (2018) claims that there are two main strategies
to develop CT: unplugged activities and computerized
activities. Unplugged activities include logic games, cards,
puzzles to get to know computer science concepts.

68

CTE-STEM 2022 DOI: 10.34641/ctestem.2022.467

CTE-STEM 2022

Appropriate unplugged approach may help learning process
of novices. For instance, Looi, How, Longkai, Seow, and
Liu (2018) conclude that unplugged activities can possibly
help understand key concepts of computing and develop CT.

Computerized activities, such as programming, expose
students to CT using computer sciences concepts (Lye, &
Koh, 2014). Dural and colleagues (2019) point out that
thinking skills and knowledge in different fields required in
the processes is considered as a basic strategy for developing
CT and computer-based problem-solving process. Li (2016)
suggests the close relationship between CT and
programming course. CT should be the goal for the
programming course because the focus is broader, problem-
solving, and thinking skills not limited to programming
language. The programming course can provide a practical
carrier to the cultivation of CT ability because 1)
programming is the best way to express CT, 2) programming
course may include thinking methods of CT and 3) practices
in programming course can provide opportunity to train CT
(Li, 2016). Inquiry-based pedagogical approach includes
problem solving and requires thinking skills, creativity and
provides the platform for adapting theory to practise
(Häkkinen, Järvelä, Mäkitalo-Siegl, Ahonen, Näykki, &
Valtonen, 2017, Iwata, Laru, & Mäkitalo, 2020).

3. METHODS
This is a case study in which we explore pre-service teachers’
experiences in an introductory programming course.
3.1. Participants
The participants are five pre-service teachers (Pre-service
teacher A-E), who participated in the course (see Table 1).
Pre-service teacher A, B and C were from primary teacher
education program, and Pre-service teacher D and E were
from subject teacher education program.

Table 1. Demographics of the Participants.
Pre-service

teacher
Study in

university
Teaching

experience
Programming

experience
A 1 year None None
B 1 year None None
C 3 years 1 year None
D 4 years 1 year None
E 1 year 1 year None

3.2. Introductory Programming Course
The introductory course entitled “programming in basic
education” is an optional course at the pre-service teacher
education. This course corresponds to 5 ECTS 1 and is
estimated as 133.5 hours of study including 20 hours of
lectures, 30 hours of exercises, as well as self-study.

The main contents of the course included: 1) familiarizing
oneself with collaborative problem-solving in the context of
programming, 2) familiarizing oneself with the contents
related to programming in the basic education curriculum,
3) practicing the basics of computational thinking, 4) getting
to know different programming tools and environments for
beginners, and 5) understanding the basics of automation
with robotics tools. The tools used in the course were divided

1 European Credit Transfer and Accumulation System (ECTS)

into five topics: 1) unplugged programming, 2) visual
programming, 3) tinkering, 4) programming for games, and
5) robotics. In the spring 2021, 12 pre-service teachers
participated in the course, which was organized as mixture
of distance and face-to-face lessons (hybrid learning)
because of the covid-19.

In the course, collaborative inquiry learning method was
used as an approach to provide pre-service teachers
experience on this kind of pedagogy. Assignments (group or
individual) were given in each topic. Examples of the
assignments were: Create a coding project using the tool;
Plan a small learning activity using the coding tool. Pre-
service teachers engaged in the project work, where they
created learning materials for robotics programming
activities with BBC micro:bits. The pre-service teachers
were divided into two groups and created the learning
materials consisted of multiple programming tasks.
Pedagogically they were challenged by adding structure to
adjust difficulties, examples and hints to help students
proceed, and guiding questions to encourage reflection.

CT was introduced to the pre-service teachers in the
beginning of the course and pointed out throughout the
course along with learning of different topics. The
programming skills by the National New Literacy
Development Program (Uudet Lukutaidot2) was used as a
main framework in this course. Uudet lukutaidot is a joint
program of the National Audiovisual Institute and the
Ministry of Education in Finland. The framework describes
programming related skills in three categories and nine
subcategories. CT is one of the categories, which includes
the four subcategories: logical thinking and information
processing, problem solving and modelling, programming
concepts and structure, and programming practices. This
framework was chosen because it provides practical
information for the teachers such as age-appropriate
pedagogy and instructions. In addition, Brennan and
Resnick’s (2012) three dimensions of CT elements were
explained by the teacher. The frameworks were provided as
a foundation for the pre-service teachers so that they can
recognize and practice CT by themselves while working on
the course assignments and the project.

3.3. Data Collection and Analysis
The data for this study includes a survey filled by the pre-
service teachers after the course and the assignments and the
materials produced during the course. The survey included
16 questions about their experience during the course. CT
was mentioned in the survey questions, such as “CT was
clearly part of this course” and “I understand how
programming and CT are related”. The survey questions
were answered with the five-point Likert scale followed by
the further questions to ask the reasons of the choice.

The data was in Finnish which was later translated into
English. The data was analysed inductively. First, the
researchers read the data and familiarized themselves with
the data. Then the researchers marked the parts of the data
which were related to the research focus of the study. Those

2 https://uudetlukutaidot.fi/ohjelmointiosaaminen/

69

CTE-STEM 2022

parts were categorized by themes. Processes of modifying
the themes and dividing the data into themes were repeated.

4. RESULTS
4.1. Learning CT through Practicing Programming
Four out of five pre-service teachers agree that CT was
clearly part of the course. However, the results indicate that
pre-service teachers perceive CT differently in the course.

In the survey, two pre-service teachers indicate that CT was
well visible in the topic of unplugged programming. Various
activities and web resources for unplugged programming
were presented to the pre-service teachers in the beginning
of the course. The answers in the survey indicate that the
structure, which starts with unplugged exercises and
continues with visual programming, robotics and project
work, can deepen understanding of CT. Two pre-service
teachers’ answers in the survey are as follows.

I think computational thinking was visible throughout the
course. The course began with unplugged programming,
which led to connecting with computational thinking. The
exercises in the course were multifaced and developed
computational thinking in different ways. For example, nice
board games and apps (Scratch Jr + Scratch) led to solving
problems piece by piece. (Pre-service teacher A)

I think computational thinking came up right at the
beginning of the course when we program each other like a
robot (unplugged). Immediately, such exercises provoked to
think about computational thinking, which we then deepened
through games, robotics, and project work. (Pre-service
teacher D)

The assignment, where the pre-service teachers reflected on
how CT was visible in the unplugged activities, shows the
their understanding of CT and unplugged programming. Pre-
service teacher A answered in the assignment as follows:
“the student creates step-by-step instructions using simple
commands and a repeat structure”; “the student recognizes
the errors in the instructions and tries out solutions to correct
them”; “the student develops precise and detailed
instructions for using repeat and conditional structures”.

The project work was explorative and ill-structured problem
solving, where the pre-service teachers may apply CT. Pre-
service teacher E expresses that she recognized CT in the
problem-solving process during the project work.

Producing the content of project work required
computational thinking; in particular, the content team had
to think and come up with a wide range of problems and
tasks, assess their difficulties, arrange these challenges to
create meaningful entities, and consider possible different
initial levels [of programming] to find meaningful things for
everyone. When doing things, I did not notice, but after
looking at it, I can see how the thought process has
progressed and find the features of computational thinking
there. (Pre-service teacher E)

The results indicate that pre-service teachers have various
levels of understanding of CT through programming
practices. The below quote shows that pre-service teacher C
think that CT was not visible enough in the course.

In my opinion, the tasks and exercises of the course “forced”
a different way of thinking and helped to develop
computational thinking. However, there was little emphasis
on thinking in the lessons, for example, and the perception
of such thinking was not noticed until after the course. (Pre-
service teacher C)

4.2. Relationship between Programming and CT
All five pre-service teachers show confident in
understanding the relationship between programming and
CT. Pre-service teacher D and E state that CT is behind
practices in programming, such as problem solving, logical
thinking and creative process. Pre-service teacher D explains
that “It [CT] is about thinking, developing, problem solving
like an IT expert or a computer would do. When you
program, you get a certain kind of ‘sense of control’ about
creating something new, more effective, and meaningful”.
Pre-service teacher E explains the connections between CT
and programming practices as below.

Computational thinking is part of programming. It involves
basic notions of programming, logical reasoning, and
problem solving. Computational thinking is behind all
programming activities, influencing action, thinking, and
creation. Understanding a problem, finding a solution to it,
and putting the solution into practice are all computational
thinking and its outcome. Computational thinking thus
serves as a kind of basis for all other programming activities.
(Pre-service teacher E)

Two pre-service teachers mention that CT can be developed
by programming. “Computational thinking can be taught
through programming, for example, engaging in unplugged
programming or programming with devices allows you to
practice and develop computational thinking skills” (Pre-
service teacher A).

Pre-service teacher B and C explain that CT helps to
understand programming. With understanding of CT and
programming concepts, the pre-service teachers may better
understand programming practices including the meaning of
the code. Pre-service teacher B wrote in the survey that
“recognizing sequences and understanding the purpose of
commands, these aspects combine computational thinking
and programming” (Pre-service teacher B). Pre-service
teacher C explained in the survey as follows.

Computational thinking allows general understanding of
programming and makes it easier to understand how
programming works. In particular, computational thinking
is emphasized when looking at, for example, the operation
and meaning of commands in programming. A logical
mindset and the ability to perceive repetitive “rules” make
it easier to understand how programming works. (Pre-
service teacher C)

The assignments to read and remix others’ code gave the
pre-service teachers opportunity to practice using CT as a
help to understand the code. In the assignment of visual
programming, the pre-service teachers remixed existing
Scratch projects. Using a Scratch game that adds a point
when a character is clicked, pre-service teacher B remixed
the game by adding a new character that reduces a point
when it is clicked. In addition, she made two characters have

70

CTE-STEM 2022

conversation. To do so, she needed to understand the code
of the original character and make modifications in the code.

These are the preliminary results, which indicates that the
pre-service teachers understood the meaning of CT and
programming practices differently through this course.
Further, more detailed perception on how pre-service
teachers built their understanding about CT through
different exercises will be presented at the conference.

5. DISCUSSION AND CONCLUSION
This study aims to explore how pre-service teachers
associate CT with programming in the context of the
introductory programming course. The course provided
opportunities to practice CT through different programming
assignments. Such opportunities can cultivate CT (Li, 2016)
and encourage to think computationally, which is the first
step for pre-service teachers to integrate CT (Yadav et al.,
2017). We note three main findings from the preliminary
results that can be used to improve the approaches to
introducing CT along the way of learning programming.
First, the pre-service teachers’ perceptions on how CT
relates with programming differ. One of the reasons is that
relationship between CT and programming was not
explained explicitly by the teacher but the pre-service
teachers were expected to build understanding by
themselves. Second, the results indicate that sequencing the
learning topics from unplugged activities to computerized
activities and project work, where all these learnt issues must
be adapted, helps pre-service teachers to understand
programming and acknowledge CT in relation to
programming practices and a bigger picture of problem
solving. Third, the results demonstrate that CT can help to
understand programming. The pre-service teachers used CT
to overcome the inability that causes the difficulties of
learning programming, such as understanding how a
computational model works, and mastering reading, tracing,
and writing code, as Selby (2015) described.

As limitation of the study, we acknowledge that the number
of the participants are small. We tried to understand the pre-
service teachers who were novices in programming with
multiple data sources. In future, interview methods and pre-
and post-assessments of CT may give deeper insights of the
pre-service teachers’ understanding of CT. Pedagogical
aspects should be explored more in the future studies, which
addresses diverse ways to teach unplugged activities, games,
and robotics in pre-service teacher education, to find out
efficient approaches for learning CT and programming.

6. REFERENCES
Aho, A. V. (2012). Computation and computational thinking.

The Computer Journal, 55(7), 832-835.
Durak, H. Y., Yilmaz, F. G. K., & Yilmaz, R. (2019).

Computational thinking, programming self-efficacy,
problem solving and experiences in the programming
process conducted with robotic activities. Contemporary
Educational Technology, 10(2), 173-197.

Häkkinen, P., Järvelä, S., Mäkitalo-Siegl, K., Ahonen, A. K.,
Näykki, P., & Valtonen, T. (2017). Preparing teacher
students for twenty-first-century learning practices: a

framework for enhancing collaborative problem-solving
and strategic learning skills. Teachers and Teaching:
Theory and Practice, 23(1), 25-41.

Iwata, M. Laru, J., & Mäkitalo, K. (2020). Designing
problem-based learning to develop computational thinking
in the context of K-12 maker education. K. Kori K. & M.
Laanpere (Eds.), proceedings of International Conference
on Informatics in School: Situation, Evaluation and
Perspectives, 103-106.

Kalelioğlu, F. (2015). A new way of teaching programming
skills to K-12 students: Code. org. Computers in Human
Behavior, 52, 200-210.

Kong, S. C., Abelson, H., & Lai, M. (2019). Introduction to
Computational Thinking Education. In Kong, S. C. &
Abelson, H. (eds). Computational Thinking Education.
Singapore: Springer.

Kukul, V., & Karatas, S. (2019). Computational thinking
self-efficacy scale: Development, validity and
reliability. Informatics in Education, 18(1), 151-164.

Li, Y. (2016, October 12-15). Teaching programming based
on Computational Thinking. In 2016 IEEE Frontiers in
Education Conference, Erie, PA, 1-7. IEEE.

Looi, C. K., How, M. L., Longkai, W., Seow, P., & Liu, L.
(2018). Analysis of linkages between an unplugged
activity and the development of computational
thinking. Computer Science Education, 28(3), 255-279.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and
learning of computational thinking through programming:
What is next for K-12?. Computers in Human
Behavior, 41, 51-61.

Moreno-León, J., Román-González, M., & Robles, G. (2018,
April). On computational thinking as a universal skill: A
review of the latest research on this ability. In 2018 IEEE
Global Engineering Education Conference
(EDUCON) 1684-1689. IEEE.

Sands P., Yadav A., Good J. (2018) Computational Thinking
in K-12: In-service Teacher Perceptions of Computational
Thinking. In Khine M. (eds) Computational Thinking in
the STEM Disciplines. Springer, Cham.

Saqr, M., Ng, K., Oyelere, S. S., & Tedre, M. (2021). People,
ideas, milestones: a scientometric study of computational
thinking. ACM Transactions on Computing Education
(TOCE), 21(3), 1-17.

Selby, C. C. (2015, November). Relationships:
computational thinking, pedagogy of programming, and
Bloom's Taxonomy. In Proceedings of the workshop in
primary and secondary computing education, 80-87.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2010). Computational Thinking: What and
Why? The Link Magazine. Retrieved May 4, 2022, from
https://www.cs.cmu.edu/~CompThink/resources/TheLink
Wing.pdf

Yadav, A., Gretter, S., Good, J., & McLean, T. (2017).
Computational thinking in teacher education. In Emerging
research, practice, and policy on computational
thinking, 205-220. Springer, Cham.

71

