
The TACTIDE EU STEM project : TeAching Computational Thinking
with Digital dEvices

Marc Jansen1,3, Nardie Fanchamps2, Marcelo Milrad3, Marcus Specht4, Ali Hamidi3

1 University of Applied Sciences Ruhr West, Germany

2 Open University Nederland, The Netherlands

3 Linnaeus University, Sweden
4Delft University of Technology, The Netherlands

marc.jansen@hs-ruhrwest.de, nardie.fanchamps@ou.nl, marcelo.milrad@lnu.se, m.m.specht@tudelft.nl, ali.hamidi@lnu.se

ABSTRACT
One major challenge the educational community is facing
relates to how to effectively integrate computational
thinking (CT) concepts and ideas into a particular school
curriculum. Acquiring CT-skills by means of STEM offers
rich opportunities within students´ education which may
lead to learning gains. Previous research has shown that, to
maximize the appeal and potential of CT learning
environments, a precondition must be set first. The materials
used must invite problem-based, inquiry-based and self-
discovery learning, must be used without creating
misconceptions and, above all, must give students the
opportunity to acquire knowledge that can be directly
transferred to everyday practice in an accessible manner. All
the above puts demands on teachers who carry out learning
and teaching in these environments. The EU funded
TACTIDE project has tried to incorporate relevant
curricular components into a coherent task, implementing
assignments and challenges across different subjects and
curricula of three different European countries. Based on the
analysis of each national curricula, common topics have
been identified and sub-scenarios have been developed.
These sub-scenarios have been conceived to promote the
integration between the topics mediated by CT. To achieve
this objective, a greenhouse scenario has been
conceptualized and designed towards teaching CT, by the
use of microcontrollers such as the BBC micro:bit and the
Calliope Mini, as an overarching STEM-topic. Using
available sub-scenarios, a Moodle-course for teachers was
developed for daily school activities to which other subjects
in the core curriculum were interconnected in order to
integrate CT skills and abilities. Scalability across different
school levels and heterogeneous groups of learners,
especially focusing prior knowledge, have been considered
important design elements.

KEYWORDS
Computational thinking, teachers, curriculum, STEM,
learning scenarios

1. INTRODUCTION
The emergence and application of new technologies in
everyday life requires specific knowledge and skills.
Through STEM-education these skills could be acquired, as
STEM educational scenarios offer opportunities for an
integrated subject matter approach combined with the use of
digital tools. Previous research has shown that for
maximizing the attractiveness and possibilities of novel

learning environments, a precondition must be set first. The
used materials should invite problem-based, inquiry-based
and self-discovery learning, should be used without creating
misconceptions and, above all, should give students the
opportunity to acquire knowledge that can be transferred
directly to everyday practices in an easily accessible way.
The latest sets demands on teachers providing these
environments. New forms of STEM education also more and
more stress the importance of students´ digital literacy and
the development of computational thinking skills.

Computational thinking is a way of approaching and solving
problems using concepts from computer science and
primarily involves the ability to reason, plan and solve
problems (Wing, 2006). It refers to operationalised concepts
such as parallel thinking, pattern recognition, completion,
debugging, sequencing, and abstract reasoning that are
needed to systematically approach a problem (Basawapatna,
Koh, Repenning, Webb, & Marshall, 2011; Lee et al., 2011).
Computational thinking involves the process in which
problem definition, solution expression and implementation
with evaluation recur in the process of programming (Yadav,
Hong, & Stephenson, 2016), and can contribute to
understanding and solving complex programming problems
(Voskoglou & Buckley, 2012). Computational thinking
encompasses in general two main directions: computational
concepts and computational practices (Grover & Pea, 2017).
CT concepts include: logic & logical thinking, algorithms &
algorithmic thinking, patterns & pattern recognition,
abstraction & generalization, evaluation, and automation.
CT practices refers to: problem decomposition, creating
computational artefacts, testing & debugging, iterative
refinement, collaboration, and creativity.

A challenging discussion for promoting computational
thinking education is how the acquisition of these skills can
be integrated in the curriculum and how other subjects in the
core of the curriculum are linked to this. The TACTIDE
project has explored how to integrate relevant curricular
components into a coherent educational activity by linking
them to the creation of a greenhouse which integrates tasks
and challenges from different subjects and across the
curricula of three different European countries.

2. STATE OF THE ART
The application of programmable tangibles and artefacts is
a playful integration of developing problem-solving skills
and computational thinking. The application of robotics in
STEM-contexts requires students to apply logical reasoning

64

CTE-STEM 2022 DOI: 10.34641/ctestem.2022.466

CTE-STEM 2022

in programming environments. It also demands systematic
thinking, for the right choice of sensors and actuators, to
program a robot that can anticipate the physical environment
(Fanchamps, et al., 2019). Programmable robots harbour the
potential to develop computational thinking skills because
the visually observable output makes the results of
programming interventions concrete and tangible (Catlin &
Woollard, 2014; Sapounidis, Demetriadis, & Stamelos,
2015; Slangen, 2016). When users can test the effect of
programming actions in authentic situations, they are better
able to critically review and assess their programming
actions (Slangen, Keulen, & Gravemeijer, 2011). Because
programmable robots can be used to obtain immediate
feedback on the consequences of code, they function as
direct manipulation environments (DMEs) (Jonassen, 2006;
Rekimoto, 2000). Direct manipulation environments
(DMEs) involve users in constructing mental models of
phenomena. Users are challenged to directly manipulate
parameters and variables in the environment. Many DMEs
reinforce the sense of operating with concrete objects.
DMEs allow users to reason, predict, and hypothesise,
analyse and test through active participation (Jonassen,
2006; Slangen et al., 2011). Robots are concrete and physical
DMEs and can be controlled by programming using
actuators and sensors (Jonassen, 2006; Rekimoto, 2000).
They provide a potentially rich context for learning,
understanding and practising programming and robotics
concepts and for developing (general) problem-solving and
computational thinking skills (CT).

The ability to anticipate changing environmental conditions
by means of sensor observations and the computer program
to be constructed, is a strategy to obtain an increased
proficiency in computational requirements (Kim & Kim,
2003). To anticipate changes in the environment by means
of sensor use requires a different program than performing
programming tasks in an unchanging, predictable
environment. By making use of sense-reason-act (SRA)
programming, a programmed artefact or simulation of
reality can react to changes in its surroundings. SRA-
programming can be described as the process in which
external, sensor-based observations (sense) are entered into
a microprocessor, so that these observations can be
compared with internal pre-set conditions (reason) which
infers executing desired programming actions (act)
(Fanchamps et al., 2019). The ability to anticipate changing
conditions in the task design by means of sensor-based
observations requires a different programming approach in
comparison to linear solutions (Dragone et al., 2005). SRA-
programming involves the functional understanding and
application of complex programming concepts such as
nested loops, conditionals and functions (Jansen, Kohnen-
Vacs, Otero & Milrad, 2018; Slangen, 2016). Being able to
respond to changes in the task design by means of SRA-
programming can ensure that users' computational thinking
ability develops at a higher level (Riedmiller & Gabel,
2007).

To teach computational thinking, teachers and designers
should develop curricula to prepare and further enhance
children’s computational thinking competencies
(Fanchamps et al., 2020). This by reinforcing the application
of CT concepts and practices in the classroom. For learners,

practicing and applying computational thinking concepts
and approaches in contexts both within and outside of
programming is an important prerequisite for acquiring
skills that are required and applicable in other school
subjects. For teachers this demands an adapted and tuned
pedagogy to be able to integrate the cognitive and affective
dimensions of deeper learning underlying computational
thinking. For a thorough implementation of STEM in
education and curriculum integration, the methodology of
subject integration is proposed (Kelley & Knowles, 2016).

3. TEACHING CT ACROSS DIFFERENT
SUBJECTS

To develop an integrated approach across different subjects
and the implementation in the different partner countries, the
curricula (grades 6-9) from Germany, The Netherlands, and
Sweden have been compared to see which potential subjects
could be integrated into a multidisciplinary course in CT
concepts in order to enforce learning. To achieve this, an
identification of the different courses was created after
which for each country a tick was placed to show the
presence of these subjects. In different stages of education,
the amount and selected subjects may differ. Therefore, the
age group of 12-15 year-olds was chosen as the starting
point. In the analysis of the learning outcomes for this age
group the common subjects and objectives between the
different countries have been identified. This led to common
objectives in mathematics, biology and physics. From the
courses analyzed languages, creative, and social studies did
not meet the requirements for creating a CT course. These
courses could not be selected as they are not widely
supported within all three countries. This left the STEM
(Science Technology Engineering and Mathematics)
subjects as the final choice.

Despite the macro-level strategy adopted by the different
countries which are involved in this study in terms of how to
integrate CT into the curriculum, there are numerous
possibilities to put CT into practice. One possible
opportunity is the integration of several subject matters
within the context of designing and implementing a
greenhouse scenario in connection to STEM. Indeed, our
designed scenario bonds CT and STEM in a context where
physical and digital tools are integrating and interacting with
each other. Designing, creating, and experimenting in areas
that are interesting for students are three crucial elements for
such integration (Brennan & Resnick, 2012; Zerega et al,
2021). The students involved in these learning activities will
be encouraged to use their creativity to design a portable
indoors greenhouse. They will conceptualize their ideas and
then create their designing thoughts in practice. Moreover,
they will learn and share their knowledge during both the
design, implementation, and experimentation phases.
Moreover, students will learn some central environmental
facts by observing, thinking, experimenting, and testing
them during the various activities.

This approach could also provide the opportunity for critical
thinking and developing problem-solving skills in two ways:
1) in the design and building phase of the greenhouse from
3D design and modeling to physical construction, and 2) in
programming the BBC micro:bit that is mounted in the

65

CTE-STEM 2022

greenhouse together with different sensors. For those who
are new to programming, it provides an opportunity to take
the first steps into the field and to learn basic concepts of a
programming language by using visual block coding in an
authentic setting. The focus is not on learning coding only
but also on developing computational thinking skills and
physical computing through coding the microcontrollers and
sensors. In general, by using electrical components and
simple electronics in combination with environmental
science and programming, different aspects of STEM are
explored during this proposed activity. The learning
activities and learning modules for the integrated course
have been collected in an online course which can be used
by teachers to run the course in the actual classroom.

4. IMPLEMENTATION
A greenhouse, which can be operated via a programmable
micro controller, has been used as a concrete elaboration of
a DME. The application of CT skills is requested to program
and control this greenhouse in a functional way. This
greenhouse allows for science education in the form of
growing plants and what the plants require for their growth,
fostering our precondition that a corresponding learning
scenario should invite problem-based, inquiry-based and
self-discovery learning. Using a microcontroller, a program
can be created to measure and provide the needs of these
plants. Engineering would be covered by allowing the
students to create their own model for the greenhouse.
Finally, mathematics could be covered when, for example,
the student needs to make calculations for how long it would
take to cool down the greenhouse using the fan.

The goal of this project is to provide an appealing and
challenging learning scenario in which participants build an
automated portable greenhouse, in which programmable
microcontrollers like BBC micro:bit and/or the Calliope are
used in order to monitor and control important parameters
such as temperature, humidity, soil moisture to ensure a
suitable environment for plants. The design and construction
of the greenhouse was carried out in 2 steps:

• Sketching the mini greenhouse by using a browser-
based 3D design and modeling tool (Tinkercad
app), as shown in figure 1. This will help to imagine
the final product.

• Building the greenhouse using reusable straws,
clear vinyl/PVC, and glue as shown in figure 2.

Figure 1. 3D Tinkercad design greenhouse.

Figure 2. Vinyl/PVC build greenhouse.

To control the above stated parameters physical computing
devices and sensors are combined with visual programming.
The coding part of the greenhouse project is done using the
MakeCode editor (BBC micro:bit, 2019) as described in

figure 3 depicted in the figure below:

Figure 3. Coding BBC micro:bit.

After connecting a temperature/humidity sensor, a fan blade,
a water pump, and a mini servo the following two scenarios
could be realized:

Controlling temperature: According to the temperature
measured the students can program the microcontroller to
turn the fan when the temperature exceeds above a defined
level. Similarly, the fan will be turned off automatically
when the temperature comes below the defined level. This
scenario includes specific tasks for reading sensor data from
a thermometer, using conditionals to decide on different
levels of temperature as also the use of loops for
continuously measuring and controlling a fan until the
temperature is in the target zone.

Controlling humidity: If the humidity comes either less
than the defined limit or more than the optimum range, the
fan, and the water pump will automatically turn on as well
as rotating the mini servo to open the window on top of our
greenhouse for better aeration.

In both scenarios, additional coding features and dimensions
of computational thinking can be used such as creating
functions to support working with patterns and problem
decomposition.

5. SUMMARY AND OUTLOOK
In this paper we have presented the initial results of our
efforts related to the conceptualization and development of
a couple of educational scenarios that promote the
integration between different school curriculum topics
mediated by CT. The choice of content has been guided by

66

CTE-STEM 2022

finding relevant subjects that emerged from the analysis of
school curriculum in three European countries. Educational
materials, including lessons plans, code examples, use of
sensors and microcontrollers and video tutorials have been
developed. Due to the Covid situation we have experimented
since March 2020, the educational ideas and scenarios
described above could not be validated with schools in these
three countries.

Aspects that were planned to be assessed during the
evaluation with students were related to conducting
qualitative analyzes of the overall learning experience as
well as the acceptance of this kind of learning scenarios in
the schools.

It is important to emphasize that the TPACK framework
(Mishra and Koehler, 2006) has been used to guide the
development of the scenarios. Referring to the shortage in
studies that focus on pedagogical aspects of teachers’ CT
development (Ottenbreit-Leftwich, et al., 2021), our work
pays attention to aspects related to pedagogical content
knowledge (PCK) as well as technological content
knowledge (TCK) of the TPACK framework.

6. REFERENCES
Basawapatna, A., Koh, K. H., Repenning, A., Webb, D. C.,

& Marshall, K. S. (2011). Recognizing computational
thinking patterns. Paper presented at the Proceedings of the
42nd ACM technical symposium on Computer science
education.

Brennan, K. and Resnick, M., 2012, April. New frameworks
for studying and assessing the development of
computational thinking. In Proceedings of the 2012 annual
meeting of the American educational research association,
Vancouver, Canada (Vol. 1, p. 25).

Catlin, D., & Woollard, J. (2014). Educational robots and
computational thinking. Paper presented at the
Proceedings of 4th International Workshop Teaching
Robotics, Teaching with Robotics & 5th International
Conference Robotics in Education, Padova, Italy.

Dragone, M., O'Donoghue, R., Leonard, J. J., O'Hare, G.,
Duffy, B., Patrikalakis, A., & Leederkerken, J. (2005).
Robot soccer anywhere: achieving persistent autonomous
navigation, mapping, and object vision tracking in
dynamic environments. Paper presented at the Opto-
Ireland 2005: Photonic Engineering, Dublin, Ireland.

Fanchamps, N., Slangen, L., Hennissen, P., & Specht, M.
(2019). The Influence of SRA Programming on
Algorithmic Thinking and Self-Efficacy Using Lego
Robotics in Two Types of Instruction. International
Journal of Technology and Design Education, 1-20.
doi:10.1007/s10798-019-09559-9

Fanchamps, N., Specht, M., Hennissen, P., & Slangen, L.
(2020). The Effect of Teacher Interventions and SRA
Robot Programming on the Development of
Computational Thinking. Paper presented at the
International Conference on Computational Thinking
Education 2020, Hongkong.

Grover, S., & Pea, R. (2018). Computational thinking: A
competency whose time has come. Computer science

education: Perspectives on teaching and learning in
school, 19.

Jansen, M., Kohen-Vacs, D., Otero, N., Milrad, M. (2018).
A Complementary View for Better Understanding the
Term Computational Thinking. In: Proceedings of the
International Conference on Computational Thinking
Education. 2018.

Jonassen, D. H. (2006). Modeling with technology:
Mindtools for conceptual change. Upper Saddle River,
New Jersey, USA: Pearson Merrill Prentice Hall

Kelley, T. R., & Knowles, J. G. (2016). A conceptual
framework for integrated STEM education. International
Journal of STEM Education, 3(1), 1-11.
doi.org/10.1186/s40594-016-0046-z

Kim, D.-H., & Kim, J.-H. (2003). A real-time limit-cycle
navigation method for fast mobile robots and its
application to robot soccer. Robotics and Autonomous
Systems, 42(1), 17-30. doi:10.1016/S0921-
8890(02)00311-1

Mishra, P., & Koehler, M. J. (2006). Technological
pedagogical content knowledge: A framework for teacher
knowledge. Teachers’ college record, 108(6), 1017-1054.

Ottenbreit-Leftwich, A., Yadav, A., & Mouza, C. (2021).
Preparing the Next Generation of Teachers: Revamping
Teacher Education for the 21st Century. In Computational
Thinking in Education, 151-171, Routledge.

Riedmiller, M., & Gabel, T. (2007). On experiences in a
complex and competitive gaming domain: Reinforcement
learning meets robocup. Paper presented at the 2007 IEEE
Symposium on Computational Intelligence and Games.

Rekimoto, J. (2000). Multiple-computer user interfaces:
beyond the desktop direct manipulation environments.
Paper presented at the Conference on Human Factors in
Computing Systems, The Hague, Netherlands.

Sapounidis, T., Demetriadis, S., & Stamelos, I. (2015).
Evaluating children performance with graphical and
tangible robot programming tools. Personal and
Ubiquitous Computing, 19(1), 225-237.
doi:10.1007/s00779-014-0774-3

Voskoglou, M. G., & Buckley, S. (2012). Problem solving
and computational thinking in a learning environment.
Egyptian Computer Science Journal, 36(4), 18.

Wing, J. M. (2006). Computational Thinking.
Communications of the ACM, 49(3), 33-35.
doi:10.1145/1118178.1118215

Yadav, A., Hong, H., & Stephenson, C. (2016).
Computational Thinking for All: Pedagogical Approaches
to Embedding 21st Century Problem Solving in K-12
Classrooms. TechTrends, 60, 565-568.
doi:10.1007/s11528-016-0087-7

Zerega, R., Hamidi. A., Tavajoh, S., & Milrad, M. (2021).
A Co-design Approach for Developing Computational
Thinking Skills in Connection to STEM Related
Curriculum in Swedish Schools. In Proceedings of the
5th APSCE International Computational Thinking and
STEM in Education Conference 2021. Singapore:
National Institute of Education, pp 144-147

67

