
A Robotic-based Approach for CT Development: Challenges of Teaching

Programming Concepts to Children and the Potential of Informal Learning

Rafael ZEREGA1*, Ali HAMIDI2*, Sepideh TAVAJOH3*, Marcelo MILRAD4*

1,2,3,4 Faculty of Technology, Linnaeus University, Sweden
rafael.zerega@lnu.se, ali.hamidi@lnu.se, st222yd@student.lnu.se, marcelo.milrad@lnu.se

ABSTRACT
In many countries worldwide, Computational thinking (CT)
is now considered as a fundamental skill for dealing with
the challenges of the 21st century society. One of the most
common ways of imparting CT knowledge in K-12
education is by teaching programming and coding, as it
requires applying a set of concepts and practices that are
essential for thinking computationally. However, learning
to program can be challenging and it may take time to
develop these skills in the context of school activities. Thus,
complementing formal K-12 education with after-school or
other types of informal learning activities aimed at fostering
CT concepts and practices among young students can be an
alternative approach to develop these skills. During the
summer of 2021, we carried out a series of workshops in the
context of a summer camp taking place at a public library,
organized by a local municipality in southern Sweden.
These workshops (with a total teaching duration of 20 hours
in one week) consisted of activities where children aged 11-
14 had to assemble wheeled robots and then program them
using a visual language to make them execute different
types of tasks and challenges. The outcomes of our study
show that roughly one third of the participants managed to
program the robots with code that made use of CT core
concepts, such as conditionals, loops, and logical operators,
among others. The rest of the children did not manage to
successfully apply these concepts and thus they could only
manage to program sequential linear scripts. We argue that
learning to program and understanding some of the main CT
concepts, which are for the most part very abstract, is a
process that takes time and thus, extracurricular activities
can be an effective method to complement formal education
and help young students develop their CT and programming
skills.

KEYWORDS
Computational Thinking, Computational Concepts,
Computational Practices, Programming, Informal learning.

1. INTRODUCTION
Computational Thinking (CT) is a thought process focused
on problem-solving that is deemed by many researchers and
policymakers as a fundamental skill for dealing with the
challenges of the 21st century society. Wing (2006) brought
CT to public attention explaining the essence of this concept
and advocating for its inclusion in the K-12 curricula.
Grover & Pea (2018) argue that CT comprises a set of
concepts and practices that are required for formulating a

problem and expressing its solution effectively. Lu &
Fletcher (2009) are more emphatic about the relevance of
teaching CT in schools and argue that it should be taught to
every student along with the other three R’s (reading,
writing and arithmetic). As a result of all this advocacy, an
increasing number of countries around the world have
started to impart knowledge related to digital competence,
CT, and programming, as part of their K-12 curricula.
Although some authors argue that CT is not solely about
programming (Grover & Pea, 2018; Wing, 2006), learning
algorithm design to program a computer, a robot or any
other computerized machine is an essential skill when
attempting to solve a problem through a computational
solution, which is one of the main goals of CT (Grover &
Pea, 2013).
However, to grasp the true nature of CT and to be able to
program a computational artifact, there is a set of concepts
and practices that must be understood (Brennan & Resnick,
2012; Grover & Pea, 2018). Some of these concepts are
relatively abstract; concepts like algorithmic thinking and
sequences, using conditionals, applying loops to repeat a
given set of actions and storing data in variables, to mention
just a few, could at first be somewhat difficult to fully grasp.
Regarding CT main practices such as problem
decomposition, iterative refinement, as well as testing and
debugging, among others, the situation is not much
different. For instance, some studies suggest that novice
programmers in K-12 education face difficulties when
attempting to detect and debug errors in their code (Carter,
2015; Haduong & Brennan, 2018). Similarly, other studies
have focused on some of the common misconceptions
regarding programming concepts and the difficulties that
young students encounter when starting to learn how to
program (Grover & Basu, 2017). Yet another study from
Sanders & McCartney (2016) identified a few thresholds
programming concepts that tend to be problematic for
novice young programmers. Learning the basics of
programming can therefore pose several challenges and that
is why some authors suggest that this knowledge should be
imparted at a very early age. Some scholars advocate for
introducing children to CT and programming concepts as
early as kindergarten education (Fessakis et al., 2013;
Sullivan & Bers, 2016). Furthermore, Lu and Fletcher
(2009) argue that students that have been introduced to CT
at an early age tend to show higher probability of
successfully learning more advanced programming later.

12

CTE-STEM 2022 DOI: 10.34641/ctestem.2022.456

mailto:rafael.zerega@lnu.se
mailto:ali.hamidi@lnu.se

CTE-STEM 2022

There is, nevertheless, a limited number of hours in the
school curricula that can be dedicated to imparting these
new subjects and therefore finding other instances to teach
CT and programming to young students could be an
effective way to help students learn programming concepts
and practices. Informal learning activities addressing CT,
such as after-school workshops can be an effective manner
to complement K-12 formal education and let children
acquire additional knowledge in this subject (Ker et al.,
2021). In this paper we argue that informal learning
activities can offer students the possibility to further explore
and test programming concepts and practices, allowing
them to deepen their understanding of these matters in a
friendly environment and without the stress normally
associated to formal education as extracurricular activities
are not subject to evaluation in form of official grades. To
test the potential of informal learning to foster and develop
CT skills among young students we conducted a series of
workshops during one week with a group of young students
aged 11-14 that had little or no previous experience in
programming. These workshops were conducted at the
main public library in a city in southern Sweden. We used
educational robots, Engino ERP1, that the children had to
assemble and then program so that they would execute a
series of tasks and challenges. Considering all the above, we
defined two research questions that guided this study: (1)
What are the main challenges when teaching CT concepts
and practices to youngsters with little or no previous
programming experience? (2) What is the potential of

informal learning spaces as an alternative for
complementing the teaching of CT and programming

concepts provided by formal K-12 education?

The rest of this paper is organized as follows: in section two
we provide a background regarding the relation between CT
and programming. Section three provides a description of
the methodology used for this study. Section four presents
the main results and lastly, section five ends this paper
presenting our discussions and conclusions on the results.

2. THE ROLE OF PROGRAMMING IN CT
Many countries around the world are currently in the
process of modifying their K-12 educational curricula to
develop so called digital competences (Heintz et al., 2017)
and therefore CT has increasingly gained more attention.
CT was originally coined by computer scientist, Seymour
Papert in his book “Mindstorms: Children, computers and
powerful ideas” (1980). Papert was one of the pioneers of
constructionism, a constructivist learning theory where
students create knowledge by exploring, constructing, and
testing. This is the reason why building plays a central role
in constructionism. CT derives from this learning theory
and consequently one of its main objectives is to design and
build systems (Wing, 2006). Cuny et al., (2010) further
developed the definition of this concept by explaining that
CT is a thought process required to formulate a problem and

1 https://www.engino.com/w/

to express its solution in an effective way so that it can be
carried out by an information processing agent (such as a
computer or even a person). Being able to instruct or
program a computerized system is, therefore, a fundamental
skill within CT (Grover & Pea, 2018; Kynigos & Grizioti,
2018).
To fully understand the relevance of programming within
CT it is necessary to analyze how programming relates to
CT and computer science (CS) as a whole. As can be
observed in Figure 1, CT and CS are two fields of study that
overlap only partly. In other words, CT is not solely about
CS (and vice versa). Programming (coding) lies in the
intersection between these two worlds and thus it is an
important component of CT (Angevine et al., 2017).
Although Wing (2006) argues that CT is an approach to
problem-solving that is considerably broader than mere
programming, she later clarifies and further develops this
concept by explaining that CT is a thought process involved
in formulating a problem and its solution so that this
solution will be effectively carried out (Wing, 2011). CT
means, therefore, using computer-based solutions to solve
real-world problems and consequently programming is an
essential skill necessary for applying CT.

Figure 1. The relationship between Computer Science,
Computational Thinking and coding (Angevine et al., 2017)

When considering the importance of programming and
algorithm design within CT it is then necessary to consider
what different authors call the concepts and practices of CT
(Brennan & Resnick, 2012; Grover & Pea, 2018). Other
authors use different terms such as CT skills (Mills et al.,
2021) and when examining carefully all these terms it is not
rare to find some authors using them interchangeably.
However, regardless of the exact term used to refer to these
different dimensions of CT, there is something that they
have in common: they are all directly or indirectly related
to the process of programming and building algorithms.
Being able to have a good understanding of what these
concepts and practices are all about is therefore essential to
understand the process of designing algorithms and
programming computerized devices. In this study we aim to
analyze how the participants of the workshops mentioned
earlier managed to make use of these CT concepts and

13

https://www.engino.com/w/

CTE-STEM 2022

principles when they were assembling and programming
robots.

3. METHODOLOGY
In this section we present core aspects regarding the design
of the study in terms of the workshops’ settings, the
participants, the technological equipment used for teaching
and the type of data collected for the later analysis.

3.1. Settings and Participants

This study was carried out based on a series of workshops
that took place in late June 2021. These workshops were
conducted at the main public library in a city located in
southern Sweden to kick off the summer vacation. Five
workshop sessions were held, from Monday to Friday, each
session lasted for four hours. The participants were seven
boys and two girls aged 11-14 who, although having
received education on digital competence in school, they
had little or no previous experience in programming. The
workshops were led by two tutors in charge of explaining
the topics to be learned during each session and helping the
participants in case they request assistance (see Figure 2).

3.2. Workshops Design and Theoretical Foundation

As mentioned above, for this study we conducted five
workshops, one every day from Monday to Friday. Each
workshop had a duration of four hours (a total of 20 hours
for the entire workshop series). Each student was given a
laptop computer where they could visualize the assembly
instructions and run the software required for building the
algorithms to program the robots. The activities carried out
in each of the five workshop sessions were as follows: (1)
assembling the robots, learning about the sensors and
creating simple linear algorithms, (2) using loops and
conditionals in algorithms and learning about Boolean data
type, (3) learning more about conditionals, using logic and
arithmetic operators and using Integer data type, (4) using
variables and deepening on the use of loops and
conditionals, and (5) free practice and testing what has been
learned during the workshop series.
As for the programming-related activities, the main
objective was that children would make use of the different
types of sensors (ultrasonic sensors, infrared sensors and
color sensors) and by designing algorithms they would
program the robots so that they would interact with their
surroundings and execute tasks such as, avoiding obstacles,
following the borders of a path, deciding to turn left or right
based on the clear space available on each side, among
others. To instruct the robots for executing such tasks, the
children would have to build algorithms that make use of
programming concepts such as conditionals and loops, as
well as using logical and arithmetic operators, among
others. For this purpose, at the beginning of each workshop
and before starting with the actual hands-on activities of the
day, the tutors gave a brief keynote presentation where they
introduced the students to different concepts of
programming, explained how robots interact with the

physical world and to which extent they are present in our
daily lives.
The assessment of the learning process for each workshop
session was based on observing whether the robot was
executing the task that the children had intended to program
and by analyzing the actual algorithms that they had made
using the block-based programming platform provided by
the Engino ERP.

These workshops were designed taking in consideration the
notions of constructionism, aimed at offering student-
centered activities and allowing children to explore and test
their ideas through building and collaborating with their
peers and instructors (Papert & Herel, 1991).
Constructionism, pioneered by Papert, puts the emphasis on
allowing students to generate their own knowledge by
building and experimenting while the educator plays the
role of a consultant or coach. The idea was that during the
workshop series the participants could learn about robots by
showing them through examples that robots and other types
of automated devices are increasingly present in our current
society. By giving the children the chance to assemble their
own robots and program them, so that they can interact with
the environment, the children could not only learn CT
concepts, but also get an insight on how robots work as well
as understanding what is their potential to improve our lives
and what are the risks associated with this technology.

Figure 2. Workshops at the public library

In addition, based on the ideas from Laurillard (2013), we
regarded the process of teaching as a design science. For
this study, the design of the workshop series was done
creating learning activities based on the concepts of the
TPACK (technological pedagogical content knowledge)
framework for the effective use of technological tools to
support and enhance the learning process (Mishra &
Koehler, 2006).

3.3. Educational Equipment

For this study we used a set of educational programmable
robots called Engino ERP, which is targeted to
kindergarten, elementary and secondary students
(depending on the model). Engino ERP is a line of
construction kits that use various sensors that allow the user

14

CTE-STEM 2022

to build and program robots that can interact with their
surroundings. These robots can be programmed using a
special software that offers a block-based programming
environment to let children build algorithms in a syntax-free
coding mode. The Engino ERP includes a wide range of
sensors that allow the robots to execute different types of
tasks as they measure different parameters from the
environment. For this workshop series the children worked
with three types of sensors: infrared sensor, color sensor and
ultrasonic sensor.
3.4. Data Collection and Assessment

During all five workshops the researchers took field notes,
photographs, and screenshots of the computers where the
children were building their algorithms to program the
robots. This data was analyzed using a qualitative approach
to identify which were some of the most challenging
computational concepts and principles in the process of
learning to build and program the robots. By analyzing the
children’s code and the performance of their robotic
creations we attempted to get an insight regarding how the
children managed to use fundamental programming and CT
concepts such as algorithmic sequences, conditionals,
loops, and logical operators, among others. To assess the
learning progress of the children during the workshops, we
took into consideration the CT concepts and practices
defined by Brennan & Resnick (2012).

4. FINDINGS
This section will present the most relevant findings based
on the data collected during the workshop series. We
divided these findings into two areas: (1) physical assembly
and (2) CT and programming.

4.1. Physical Assembly

Two types of ERP sets were used during the workshop
activities in order to explore how constructing methods
influence the children in terms of their CT practices, such
as being incremental, reusing and remixing, modularizing,
testing and evaluating. The children worked with semi-built
robots that were to be completed and modified either by
following the step-by-step 3D instructions, that they had on
their computers, or by resorting to their own inventiveness.
All nine participants preferred to build the robots based on
their own inventive ideas rather than by following the
instructions. The children showed more engagement when
constructing their own creations. Several children
mentioned that building freely was more amusing than
building by following instructions. In addition, the children
tended to lose both interest and focus when they faced a
situation where the assembly process was particularly
difficult. A big challenge that the children faced in terms of
the physical assembly was to find the best way to mount and
position the sensors on the robots so that they would get an
accurate reading of the surroundings. Whereas some
children would become frustrated and annoyed when they
could not manage to position the sensors correctly to get an
accurate reading, others were particularly motivated to test

many times until they found the best way to position the
sensors.
4.2. CT and Programming

As mentioned earlier, the children participating in these
workshops had practically no previous experience doing
any type of programming. The brief keynote presentation
that took place at the beginning of every workshop in
combination with the hands-on activities allowed all the
children to get a rough understanding of what an algorithm
is. All nine children managed to design simple linear
algorithms that could instruct the robots to execute simple
tasks such as going forward, turning right, left, and
stopping. However, only four children managed to
successfully design algorithms that made use of some of the
main computational concepts, such as conditionals, loops,
and logical/arithmetic operators (see Table 1). Without
these programming concepts, the robots could only be
instructed to execute a fixed sequence of actions (linear
algorithm in Table 1), but they would not be able to interact
with the environment in any way.

Table 1. Types of Computational Concepts that the participants
managed to successfully use in their algorithms (yes means used

successfully).

Student
ID

Linear
Algorithm

Loop Conditional Logic and
arithmetic

operators

Variables

1 Yes No No No No
2 Yes Yes Yes Yes No
3 Yes Yes Yes Yes No
4 Yes No No No No
5 Yes No No No No
6 Yes Yes Yes Yes Yes
7 Yes No No No No
8 Yes No No No No
9 Yes Yes No No No

As for the use of sensors, among the children that used
sensors in their robots, the one that was used the most was
the infrared sensor. The children mentioned that it was fun
to use this sensor because it allows them to do many
different tasks with it and it was easy to set up. The other
two sensors (color sensor and ultrasonic sensor) were used
very seldom. According to the children, the color sensor
was hard to use because the calibration process to set it up
required a considerable amount of trial and error to get it
working correctly. The ultrasonic sensor, although easy to
set up because it did not require any type of calibration, was
used successfully by only one of the participants. It is
important to mention that the infrared sensor uses Boolean
data type (data that has one of two possible values:
true/false). The color and ultrasonic sensor, on the other
hand, use Integer data type (in this case positive whole
numbers and zero). According to the children, working with
Boolean data was easier and more straightforward than
working with Integer data, which may explain why only few
students managed to successfully use the color and
ultrasonic sensor.

15

CTE-STEM 2022

In the next and final section, we present our discussions and
conclusions based on the data we collected during the
workshop series. We divided it into five subsections to
make it easier to connect the discussions with the topics of
the research questions that guided this study.

5. DISCUSSIONS AND CONCLUSIONS

5.1. The Importance and Challenges of Learning CT

Concepts

Learning to program requires being able to understand a set
of CT concepts and practices, which can be a challenging
and long process. Taking into consideration the
computational concepts defined by Brennan & Resnick
(2012), such as sequences, loops, and conditionals, we can
notice that after having completed the workshops, all nine
participants understood that an algorithm is an expression
of a sequence of individual instructions that a computerized
machine executes. Indeed, all nine children managed to
instruct the robots to execute tasks such as making it move
forward and then turn at certain points to describe, for
example, a geometrical shape (linear algorithms). However,
only three children managed to successfully design an
algorithm that would include a computational concept that
would allow the robots to use the data coming from the
sensors to be able to interact with the environment. Basic
control structures such as if-else conditionals, for loops and
while loops are fundamental computational concepts to
have a robot or other computerized machine make decisions
based on the information that is coming from the sensors.
Learning to build algorithms using these programming
concepts will not only allow the robots to interact with the
environment but it will also serve the children as a means of
exploration and a way to create and express computer-based
solutions to real-world problems. Engaging in
programming offers young students the possibility to
exercise a set of different computational concepts and
higher order thinking skills, such as reasoning, analyzing
and evaluation (Falloon, 2016).

5.2. The Challenges of Building and Debugging

Collaboratively

The results based on the workshops we conducted suggest
that teaching programming concepts poses some
difficulties. Not only was it challenging for the students to
fully understand some of the programming concepts as they
struggled when asked to explain their own algorithms, but
it was relatively hard for them to be able to identify the
origin of the problem in their code when the robot was not
able to execute the task successfully. The difficulties in
detecting and debugging errors in the code of novice
programmers are not uncommon and they occur even
among students at college level (Carter, 2015). The
situation is more evident among young students in primary
and secondary schools. Haduong & Brennan (2018) argue
that best practices of code debugging are, for the most part,
undefined in K-12 education. Not being able to fix a piece
of code can be extremely frustrating and demoralizing for

young students and therefore it is extremely important to
understand the relevance of teaching young students some
basic rules regarding how to identify and debug errors in the
code and other types of problems that may arise. The
physical assembly was too a relevant aspect of the CT
development and a challenge for the children as this activity
required them to build together, communicate and exchange
ideas, for example, when the children were discussing the
best way to position the sensors, and when they were
evaluating their construction methods and results.

5.3. The Convenience of Block-based Programming for

Novice Programmers

Programming activities that use block-based programming
for introducing children to CT and algorithm design are a
good choice as the graphical interface allows them to build
algorithms and focus on computational concepts and
practices without the need to take care of the syntax
associated with text-based programming. Mladenovic et al.
(2018) sustain that most novice programmers often focus on
the syntax of the programming language instead of the
meaning and logic of the algorithm itself, a problem that can
be overcome with visual block-based programming. For
instance, during the workshops all the participants had some
difficulties when learning about the main difference
between if-else and while as a control structure when
programming the robots to make decisions based on the data
coming from the sensors. We noticed that the children felt
very comfortable using the block-based programming
environment of the Engino ERP as they could easily switch
between different control structures (such as if-else and
while) just by dragging and dropping the respective block
elements to test different possibilities quickly and easily.

5.4. The Potential of Informal Learning Environments

for Developing CT Concepts and Practices in Children

Programming is an activity that deals with abstract concepts
and therefore one of the main challenges of teaching CT
concepts and practices to people with little or no previous
programming experience is to clarify misconceptions
regarding computational concepts such as conditionals,
loops, variables, and Boolean logic (Grover & Basu, 2017).
Based on our findings it is possible to notice that reaching a
full understanding of how to apply computational concepts
and being able to successfully use control elements like
loops and conditionals, associated with logical operators,
can be a challenging process that takes time. Extracurricular
activities like these workshops conducted at the public
library can play a relevant role as a complement to formal
education. Informal learning instances for developing CT
and programming skills give children the chance to explore
and test their computational creations in a friendly grade-
free learning environment. It is, however, essential that the
teaching activities are thoroughly designed so that the tutors
will be able to use the computational tools they have (robots
in this case) in a meaningful way and with a strong focus on
constructionism. Also, the tutors must be able to explain,

16

CTE-STEM 2022

both with words and by doing, the fundamental CT concepts
and practices to avoid some misconceptions that tend to
arise when teaching these abstract concepts to novice young
programmers. Lastly, by continuously giving examples of
robotic systems used in the real world, children become
more motivated to learn how to program robots, as they see
them as something more real and more meaningful, giving
the learning experience another level of authenticity.

5.5. Future Work

In future studies we intend to explore in which way the
programming interface of educational robots may influence
how students understand CT and programming concepts,
especially among novice programmers.

6. REFERENCES
Angevine, C., Cator, K., Roschelle, J., Thomas, S. A., Waite, C.,

& Weisgrau, J. (2017). Computational Thinking for a
Computational World.

Brennan, K., & Resnick, M. (2012, April). New frameworks for
studying and assessing the development of computational
thinking. In Proceedings of the 2012 annual meeting of the
American educational research association, Vancouver,

Canada (Vol. 1, p. 25).

Carter, E. (2015). Its debug: Practical results. Journal of
Computing Sciences in Colleges, 30(3), 9–15

Cuny, J., Snyder, L., & Wing, J. M. (2010). Demystifying
computational thinking for non-computer scientists.
Unpublished manuscript in progress, referenced in
http://www. cs. cmu. edu/~
CompThink/resources/TheLinkWing. pdf.

Falloon, G. (2016). An analysis of young students' thinking when
completing basic coding tasks using Scratch Jnr. On the iPad.
Journal of Computer Assisted Learning, 32(6), 576-593.

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving
by 5–6 years old kindergarten children in a computer
programming environment: A case study. Computers &
Education, 63, 87–97.

Grover, S., & Basu, S. (2017, March). Measuring student learning
in introductory block-based programming: Examining
misconceptions of loops, variables, and boolean logic. In
Proceedings of the 2017 ACM SIGCSE technical symposium
on computer science education (pp. 267–272). Seattle,
Washington: ACM.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A
review of the state of the field. Educational researcher, 42(1),
38-43.

Grover, S., & Pea, R. (2018). Computational Thinking: A
competency whose time has come. Computer science
education: Perspectives on teaching and learning in school,
London: Bloomsbury Academic, 19-37.

Haduong, P., & Brennan, K. (2018, February). Getting unstuck:
new resources for teaching debugging strategies in scratch. In

Proceedings of the 49th ACM Technical Symposium on
Computer Science Education (pp. 1092-1092).

Heintz, F., Mannila, L., Nordén, L. Å., Parnes, P., & Regnell, B.
(2017, November). Introducing programming and digital
competence in Swedish K-9 education. In International
Conference on Informatics in Schools: Situation, Evolution,
and Perspectives (pp. 117-128). Springer, Cham.

Ker, C.L., Wadhwa B., Seow, P. S.K., & Looi, C.K. (2021).
Bringing physical computing to an underserved community in
an informal learning space. In C. K. Looi, B. Wadhwa, V.
Dagiené, P. Seow, Y. H. Kee, & L. K. Wu (Eds.), Proceedings
of the 5th APSCE International Computational Thinking and

STEM in Education Conference 2021 (pp. 101-106). Asia-
Pacific Society for Computers in Education.

Kynigos, C., & Grizioti, M. (2018). Programming approaches to
computational thinking: Integrating Turtle geometry, dynamic
manipulation and 3D Space. Informatics in Education, 17(2),
321-340.

Laurillard, D. (2013). Teaching as a design science: Building
pedagogical patterns for learning and technology. Routledge.

Lu, J. J., & Fletcher, G. H. (2009, March). Thinking about
computational thinking. In Proceedings of the 40th ACM
technical symposium on Computer science education (pp. 260-
264).

Mills, K., Coenraad, M., Ruiz, P., Burke, Q., & Weisgrau, J.
(2021). Computational Thinking for an Inclusive World: A
Resource for Educators to Learn and Lead. Digital Promise.

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical
content knowledge: A framework for teacher
knowledge. Teachers college record, 108(6), 1017-1054.

Mladenović, M., Boljat, I., & Žanko, Ž. (2018). Comparing loops
misconceptions in block-based and text-based programming
languages at the K-12 level. Education and Information
Technologies, 23(4), 1483-1500.

Papert, S. (1980). Mindstorms: Children, Computers and Powerful
Ideas (1st Edition). New York, Basic Books.

Papert, S., & Harel, I. (1991). Situating constructionism.
Constructionism, 36(2), 1-11.

Sanders, K., & McCartney, R. (2016). Threshold concepts in
computing: Past, present, and future. Proceedings of the 16th

Koli Calling international conference on computing education
research, Finland.

Sullivan, A., & Bers, M. U. (2016). Robotics in the early childhood
classroom: Learning outcomes from an 8-week robotics
curriculum in pre-kindergarten through second grade.
International Journal of Technology and Design Education,
26(1), 3–20.

Wing, J. (2006). Computational Thinking. Communications of the

ACM, 49(3), 33-36.

Wing, J. (2011). Research notebook: Computational thinking—
What and why. The link magazine, 6, 20-23.

17

