
The Effect of Unplugged Programming and Visual Programming on

Computational Thinking in Children Aged 5 to 7

Lisa BOSGOED1*, Nardie FANCHAMPS2
1OBS De Graswinkel, Netherlands

2Open University, Netherlands

lisabosgoed@hotmail.com, nardie.fanchamps@ou.nl

ABSTRACT
This research focuses on the development of computational
thinking (CT) among one-hundred and eight primary school
pupils in the Netherlands aged five to seven years. It
compares the use of unplugged programming and visual
programming with on-screen output. In addition to the
effect of using different programming environments, this
research also establishes whether age differences and prior
knowledge of programming have an additional influence.
By means of a pretest-posttest design, using the validated
quantitative instrument TechCheck, possible differences
between the development of CT in both experimental
groups and a control group could be objectively determined.
To this end, pupils from both experimental groups have
applied during five programming sessions of forty-five
minutes each either unplugged story introduced smart
games or used the plugged-in programming environment
ScratchJr. Our results show a significant difference in CT
development between unplugged programming and visual
programming with on-screen output. Moreover, unplugged
programming had a more positive effect on the
development of CT compared to the control group than
visual programming with on-screen output. A moderating
effect could be attributed to age differences and prior
knowledge of programming. This may provide an
additional explanation regarding the identified impact and
significant differences found.

KEYWORDS
Unplugged programming, computational thinking, smart
games, primary education

2. INTRODUCTION
In recent decades, society has changed through various
technological developments from an industrially oriented
society to a mostly digitally focused knowledge community
(Organization for Economic Co-operation and
Development [OECD], 2008). To cope with this change,
21st century skills provide educational direction so that
people can continue to develop in a focused way in order to
function optimally. Computational thinking (CT) is an
essential skill for making this transition. CT can be
described as a set of problem-solving skills based on
fundamental concepts from computer science and can be
seen as a fundamental skill that is required in many
everyday activities (Wing, 2006). The skill of CT can be
promoted by different programming environments.
However, little is known about the extent to which the
differences and deviating characteristics of various
programming environments can contribute to the
development of CT skills (Brackman et al., 2017; Rose et

al., 2017). We distinguish between a) plugged-in
programming in which programming skills can be acquired
by entering instructions and commands into a computer via
graphical or tactile user interfaces using textual, visual or
tactile programming languages resulting in on-screen
output or tactile output; and b) unplugged programming
where skills related to programming can be acquired
without the use of a computer or digital processing agent.
Results from previous research show that different design
aspects of learning environments can have an effect on
learning outcomes. For example, the extent to which the
working memory is strained depends on prior knowledge
and the way information is represented (concrete, iconic or
symbolic) (Paas & Van Merriënboer, 2020). In addition, the
children’s development in each successive phase also plays
a prominent role, from learning by physically manipulating
perceptible objects to mental manipulation of more abstract
or visual information (Sigelman & Rider, 2012).

3. PURPOSE OF THE STUDY
The aim of this study is to explore the effect that the type of
programming environment and the associated characteristic
differences have on the development of CT in young
children. The research question is as follows: “Is there a
measurable difference in effect on the development of
computational thinking between unplugged programming
and visual programming with on-screen output in children
aged 5 to 7, controlling for age and prior knowledge of
programming?”

4. METHOD
A quantitative, quasi-experimental study was conducted to
determine the potential effects of the type of programming
environment on the development of CT. Various schools
were approached to participate in the study.
To determine the effect, a pretest-posttest design was
applied. Children were non-randomly assigned into three
research groups: unplugged programming, visual
programming with on-screen output and a control group.
Due to the COVID-19 pandemic, one school participated as
the control group to reduce the number of contacts. As a
pre- and posttest measurement, TechCheck was used as a
validated instrument to determine the level of CT. As an
intervention, children from both experimental groups were
offered five programming lessons. Children from the
control group participated in programming lessons after the
study.

5. MATERIALS
To answer the research question, various unplugged smart
games and ScratchJr, a plugged-in programming
environment, were used to promote programming skills

44

CTE-STEM 2022 DOI: 10.34641/ctestem.2022.451

CTE-STEM 2022_International Teacher Forum

(such as algorithms, loops and conditionals). All
programming activities and games were carried out in
collaboration. Children were offered one programming
activity or game per lesson. Three-dimensional board
games (e.g. Robot Turtles, Little Red Riding Hood and
Sleeping Beauty) were used as unplugged smart games,
where problems must be solved by applying sequential,
manual steps (Brackman et al., 2017). In Robot Turtles, for
example, players first need to arrange cards, which are
included in the game, with written or pictographic
commands such as “forward”, “backward”, “left”, “right”
and “jump”. Then they have to move their turtle manually,
according to the instruction, to receive a diamond.
ScratchJr, as a plugged-in environment, is designed to teach
young children programming within a two-dimensional
environment (Rose et al., 2017). Instructions on the screen
are created via graphical user interfaces by the drag-and-
drop method. Instructions are created using blocks, which
can be dragged from a library, that are pictographically
displayed and represent commands. In the main program,
these can be structured sequentially and in parallel. To
apply a constructed instruction, the play button is pressed.
ScratchJr offers various design aspects that allow children
to create interactive animations, games and storylines. To
determine the level of CT in the pretest and posttest,
TechCheck was used. TechCheck has been validated in a
group of 5- to 9-year-olds who participated in a study of
visual programming with tangible output (Relkin et al.,
2020). Results from the classical theory test and item
response test show reliability and validity (α = .69).
TechCheck measures CT as one construct using 15 multiple
choice questions, which have a strong pictographic
character. Furthermore, TechCheck do not distinguish
between CT skills such as algorithmic thinking, problem
decomposition or pattern recognition.

6. FINDINGS
Table 1 displays the results from the pretest and posttest.
From this data it can be deduced that the posttest
measurements show a higher average score and a lower
standard deviation than the pretest measurements. Children
from all experimental groups answered more questions
correctly in the posttest than in the pretest. However, no
significant differences were found between any groups
F(2.105) = 1.863; p = .160. Comparing the averages (M)
regarding the development of CT, the unplugged
programming group had a higher mean score than the group
that programmed using a visual environment with on-screen
output and the control group.

Table 1. Means and Standard Deviations of CT
Pretest Posttest

Unplugged
programming (n = 33)

11.48 (1.91) 12.21 (1.90)

Visual
programming (n = 37)

9.05 (3.15) 9.08 (2.99)

Control group (n = 38) 11.32 (3.04) 11.42 (2.46)

After correcting means, significant differences were found
between unplugged programming and visual programming
with on-screen output, controlling for age (p = .008) and
prior knowledge of programming (p = .042), as shown in
Table 2.

Table 2. Means for Development of CT
Before
correction

Covariate
age

Covariate
prior
knowledge

Unplugged
programming

.73 .98 .90

Visual
programming

.03 -.20 -.22

Control group .11 .11 .20

Note. Covariate age groups unplugged: 5 years (n = 2), 6
years (n = 17), 7 years (n = 14); visual: 5 years (n = 12), 6
years (n = 18), 7 years (n = 7); control: 5 years (n = 7), 6
years (n = 20), 7 years (n = 11). Covariate prior knowledge
unplugged: none (n = 0), few (n = 2), many (n = 31); visual:
none (n = 9), few (n = 14), many (n = 14); control: none (n

= 3), few (n = 2), many (n = 33).

7. CONCLUSION
Our research indicated that unplugged programming can
play a prominent role in the development of CT, where age
differences and prior knowledge of programming are of
characteristic influence. In total, age has a moderate effect
on the development of CT (ƞ² = .09) and prior knowledge
has a small-to-moderate effect (ƞ² = .06). To generalise
from our findings, more research is needed with larger
groups.

8. REFERENCES
Brackman, C. P., Román-González, M., Robles, G.,

Moreno-León, J., Casali, A., Barone, D. (2017).
Development of computational thinking skills through
unplugged activities in primary school. WiPSCE ’17:

Proceedings of the 12th workshop on primary and

secondary computer education (pp. 65-71). Association
for Computing Machinery. https://dl.acm.org/doi/10.
1145/3137065.3137069

Organisation for Economic Co-operation and Development.
(2008). 21st century learning: Research, innovation and

policy: Directions from recent OECD analyses.

Sigelman, C. K., & Rider, E. A. (2012). Life-span human

development (7th ed.). Belmont: Wadsworth.
Paas, F., & Van Merriënboer, J. J. G. (2020). Cognitive-load

theory: Methods to manage working memory load in the
learning of complex tasks. Current directions in

Psychological Science, 29(4), 394-398. https://doi.org/
10.1177/0963721420922183

Relkin, E., De Ruiter, L., & Bers, M. U. (2020). TechCheck:
Development and validation of an unplugged assessment
of computational thinking in early childhood education.
Journal of Science Education and Technology, 29(4),
482-498. https://doi.org/10.1007/s10956-020-09831-x

Rose, S. P., Habgood, J. M. P., & Jay, T. (2017). An
exploration of the role of visual programming tools in the
development of young children’s computational thinking.
Electronic Journal of e-Learning, 15(4), 297-309.
https://doi.org/10.34190/ejel.15.4.2368

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.111825

45

