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ABSTRACT 

The typical approach for generating nonlinear waves in physical models involves employing first- or second-order wave 

theory, requiring a large water depth at the wavemaker. When the prototype bathymetry shows a gentle slope, a large facility 

is required. However, practical constraints often make this unfeasible, leading to the use of steep transition slopes to obtain 

sufficient water depth at the generator. Incorporating a transition slope may generate unwanted free waves beyond the 

transition point, significantly impacting the wave parameters. The presence of these free waves causes the response of the 

tested structure to deviate from that found in the prototype. This paper offers guidelines for using transition slopes effectively 

while avoiding the generation of undesired free waves after the transition point. 
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1 INTRODUCTION 

When studying wave transformation and hydraulic response in physical and numerical models, it is important to 

reproduce the conditions in nature as closely as possible. For coastal structures this often involves replicating highly nonlinear 

irregular waves in intermediate or shallow waters, and then the model layout demands particular attention, which forms the 

central focus of the present work. In physical models, the waves are usually produced using a moving paddle based on a given 

wavemaker theory. No analytical wavemaker solution exists for highly nonlinear irregular waves in intermediate and shallow 

water. Thus first- or second- order wavemaker theory is usually used, but this requires a quite large depth at the wavemaker 

to be valid, see Eldrup and Lykke Andersen (2019). For this reason, it is necessary to shoal the waves from a larger water 

depth in the physical models. In physical models the length of the foreshore is however limited by the length of the facility. 

Thus, replicating a prototype with a gentle uniform seabed and highly nonlinear waves is not possible unless a long flume is 

available. This is because the water depth needed at the wavemaker is determined by first- or second-order wavemaker theory 

to be valid. The same criteria apply to numerical models, but here the length of the foreshore is only restricted by the 

computational capacity. If the length of the physical facility is insufficient to replicate a prototype situation with a gentle 

seabed slope, alternative methods need to be employed to simulate the prototype conditions, as illustrated in Figure 1. The 

three alternative methods are: 

Method 1:  Hybrid modelling, where the output from a numerical model is used to drive the wavemaker in the physical 

model. The wave generation may then be based on shallow water wavemaker theory with a dispersion 

correction as proposed by Zhang et al. (2007); 

Method 2:  A steeper transition slope close to the wavemaker is used to give sufficient water depth for first- or second-

order wavemaker theory to be valid; 

Method 3:  Using first- or second-order wavemaker theory in a depth where it is not valid. 

Method 1 makes it possible to generate nonlinear intermediate and shallow water waves in a relatively short wave flume 

with the correct foreshore. The main limitation of that method is that wave breaking in the numerical model domain may not 

be correctly reproduced. Nonetheless, creating waves that break on the wavemaker is a situation that should be avoided if 

possible. During the last five years, Method 1 has been the preferred solution at Aalborg University for the generation of 

nonlinear waves in shallow water. Most other laboratories have preferred one of the other two alternatives.  

Method 2 avoids free waves being generated at the wavemaker, but the wave transformation over a composite slope is 

quite different from a uniform slope. In the case of using a transition slope, Frostick et al. (2011) recommend that the length 
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of the foreshore after the transition slope is minimum 3-5 times the local wavelength as this ensures a correct wave shoaling 

and wave breaking on the foreshore. However, using a transition slope might also result in free waves being generated after 

the transition from a steep to a gentler slope, which has been shown by many researchers, such as Grue (1992) and Beji and 

Battjes (1993; 1994). The effect of these free waves has lately gained more attention, and studies have shown that they lead 

to the generation of freak waves, see Trulsen et al. (2020), Li et al. (2021) and Zhang et al. (2023). In the present paper further 

guidance on the use of transition slopes and the consequence on the generated waves is provided. 

Method 3 uses a wavemaker theory outside its applicability range, and thus, free unwanted waves are generated at the 

wavemaker. The free waves cause deviations of the spectral energy along the foreshore as the free waves change from being 

out of phase with the bound waves at the paddle to being in phase at some distance from the wavemaker. These free waves 

can significantly influence the response of the structure, and Orszaghova et al. (2014) found that for their test cases, the 

overtopping volumes were between 25 and 83% higher when using first-order generation methods outside its applicability 

range compared to second-order generation methods. Eldrup and Lykke Andersen (2019) showed in a few examples the 

consequences of these free waves on the surface profile. 

 

 

Figure 1. Sketch of prototype and three methods for wave generation in a short flume. 

2 PRESENT STUDY 

The present paper aims to provide improved guidance on wave generation of nonlinear waves in short flumes using 

transition slopes, as shown for Method 2 in Figure 1. It is well-established that Method 1 can closely replicate the prototype 

situation, provided that the used numerical model accurately represents the transformation and that waves do not break on the 

wavemaker. Method 3 generates unwanted free waves that result in deviations from the prototype conditions, which can lead 

to incorrect model responses and wave parameters along the foreshore. Consequently, this study aims to assess how the wave 

parameters achieved through Method 2 compared to those in the prototype situation with a uniform slope. This investigation 

will provide insights into the conditions under which Method 2 is suitable and when it is not. This will lead to guidance on 

maximum slope angles, transition depths and lengths of transition slopes. 

The wave transformation is accurately reproduced in numerical models and thus the present study is solely based hereon. 

Firstly, regular waves are generated and analysed to describe the nonlinear wave transformation at a transition slope and the 

generation of free waves after the transition. Secondly, irregular waves are studied, and a larger range of seabed configurations 

are studied in order to describe when the unwanted free waves generated after the transition slope are significant.  

In summary, this study seeks to provide guidance on generating highly nonlinear intermediate and shallow water waves 

within a relatively short wave flume by application of transition slopes, i.e. Method 2 in Figure 1.  

3 REGULAR WAVES 

The initial focus is on examining the transformation of regular waves shoaling along a transition slope to a horizontal 



 

 

3 

bathymetry. This investigation aims to show the processes involved when waves propagate across varying transition slopes 

and into a very gently sloping foreshore. In the present case the gentle foreshore is represented by a horizontal seabed which 

allows a separation of the free and bound wave components. Eldrup and Lykke Andersen (2020) numerically studied the 

shoaling and de-shoaling of regular waves, where they observed the release of free waves when the bathymetry slope changed. 

For gentle slopes the shoaling and de-shoaling of the wave components could be accurately described using stream function 

wave theory by Fenton and Rienecker (1980). However, as the bathymetry slope became steeper and the nonlinearity of the 

waves increased, the stream function wave theory deviated from the numerical results. During shoaling on steeper foreshores, 

the nonlinear waves get a steep front and gentler rear slope (positive atiltness). During de-shoaling on steeper foreshores free 

waves are released. Eldrup and Lykke Andersen (2020) also studied a bathymetry consisting of a 1:30 transition slope 

followed by a horizontal section. In this horizontal section, they observed that the released free wave components interacted 

and generated bound super and subharmonics. Their study on this layout was limited to one wave condition.  

The release of free waves is studied numerically using the MIKE 3 Wave FM numerical model developed by DHI using 

the model domain shown in Figure 2. Regular waves are generated at a depth of hdeep = 1.5 m using a relaxation zone and 

stream function wave theory. The length of the relaxation zone is 2Ldeep where Ldeep is the linear wavelength in the generation 

zone. Different regular wave conditions are generated, i.e. wave heights Hdeep = 0.05, 0.10 and 0.15 m and wave periods T = 

2, 3, 4 and 5 s, see Table 1. After the relaxation zone, a horizontal section with a length of Ldeep was used before the foreshore 

started. The foreshores tested were α = 1000, 100, 30 and 10. After the foreshore, a horizontal section was present with a 

length of 30Lshallow, where Lshallow is the linear wavelength at the depth hshallow = 0.5 m. After the horizontal section, a sponge 

layer with a width of 6Lshallow was used to absorb the waves. In total, 48 simulations with regular waves were performed.  

The horizontal discretisation was Δx = Lshallow / Ncell where Ncell is the number of cells per wavelength in the shallow end. 

For the shortest waves with T = 2 s, a horizontal resolution of Ncell = 100 was found adequate, while the remaining wave 

periods had Ncell = 150. The vertical resolution of the model was found to be adequate for all wave periods when using 10 

layers (Nσ = 10). The varying time step was based on a maximum CFL criteria equal to 0.8. These values correspond well to 

the study by Andersen et al. (2024), where a convergence study was conducted comparing physical and numerical model tests 

with regular wave propagation for breaking and non-breaking conditions.  

 

 
Figure 2. Setup of the numerical wave flume for regular wave tests. 

Table 1 shows the tested wave parameters for each Case. The waves have a wave steepness from 0.1-2.4% calculated 

with the wave height at the generation point Hdeep and the deep water wavelength L0 = T2g/(2π) with g = 9.82 m/s2. The waves 

are generated in transitional and shallow water as hdeep/L0 varies between 0.01 and 0.24. 

Table 1: Regular wave conditions. 

Case 

Deep water 

wave height, 

Hdeep [m] 

Wave period, T 

[s] 

Deep water 

wave steepness, 

s0 = Hdeep/L0 

[%] 

Relative water 

depth at 

generation, 

hdeep/L0 

Relative water 

depth at 

transition, 

hshallow/L0 

RA1 0.05 

2 

0.8 

0.24 0.08 RA2 0.10 1.6 

RA3 0.15 2.4 

RB1 0.05 

3 

0.4 

0.11 0.04 RB2 0.10 0.7 

RB3 0.15 1.1 

RC1 0.05 

4 

0.2 

0.06 0.02 RC2 0.10 0.4 

RC3 0.15 0.6 

RD1 0.05 

5 

0.1 

0.04 0.01 RD2 0.10 0.3 

RD3 0.15 0.4 
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Figure 3 shows at a given instance the variation of the surface elevation along the long horizontal section after the 

transition slope. Results are only shown for α = 1000, 100 and 10 for Case RA2 and Case RD2. In Case RA2, a consistent 

wave height is observed with no modulations after the 1:1000 transition slope, and only slight modulations after the 1:100 

transition slope. However, noticeable small modulations are evident after the 1:10 transition slope. For Case RD2, larger 

modulations are observed for all transition slopes. For the 1:1000 transition slope, minor modulations are now observed. For 

the other transition slopes, the modulations become more pronounced, and the wave field shows significant irregularities. 

Thus, an increase in wave nonlinearity and transition slope increases the modulation of the surface elevation along the 

horizontal section. 

 

 

Figure 3. Surface elevation on the horizontal section for Case RA2 and Case RD2. 

Figure 4 shows the results of a one-dimensional Fast Fourier Transform (1D FFT) on the surface elevation data in the 

temporal domain. The FFT is performed for time series in every grid cell along the horizontal section after the transition slope. 

The figure shows the magnitudes of the primary component as well as the second and third order superharmonics.  The 

standard deviation of these amplitudes for each harmonic is shown in the upper right corner of each plot. Both the amplitudes 

and the standard deviations are normalised with Hdeep. The variations in amplitude along the horizontal section explain the 

modulations observed in the surface elevation shown in Figure 3. In Case RA2, minimal variation is observed for the three 

harmonics, with only minor variations in the second harmonic for the 1:10 transition slope. For Case RD2, minor variations 

are observed for the 1:1000 transition slope, while significant variations are observed for all harmonics in the remaining 

slopes. 

 

Figure 4. Amplitude of harmonics along the horizontal section. 
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The variation in amplitudes shown in Figure 4 is caused by multiple components having the same frequency but different 

wavelengths. One way to extract these wavelengths or wavenumbers at the different frequencies is to use a two-dimensional 

Fast Fourier Transform (2D FFT). The 2D FFT is applied to the surface elevation data in the temporal and spatial domain 

along the horizontal section after the foreshore. Figure 5 shows the spectral density as a function of frequency and 

wavenumber. The textbox shows the ratio of released energy Efree to total energy Etotal for each harmonic, where the free 

energy has wavenumbers that are not multiples of the primary wavenumber at f1 and lie outside the black lines. The total 

energy is the entire energy for the given frequency. The figure shows that Case RA2 with a 1:1000 transition slope has no 

free energy for f1 and f2 while there is 1% free energy at f3. For the 1:10 transition slope, there is 7% free energy at f2 and 19% 

free energy at f3, but it should be noted that the energy at that frequency is insignificant compared to the wave height, see 

Figure 4. For Case RD2 with a 1:1000 transition slope, there is 1% free energy at f2 and f3, while a substantial amount of free 

energy is observed for f1, f2 and f3 in the case of a 1:10 foreshore. 

 

 

Figure 5. Spectral density as function of wave frequency and wavenumber. The box in each plot shows the ratio Efree/Etotal for the 

first three harmonics. 

For all conducted simulations, the ratio of the total Efree/Etotal for the three harmonics is shown in Figure 6. The figure 

shows the influence of the transition slope, wave steepness, and relative water depth. It can be observed that waves with low 

relative water depths at the transition release more free energy than waves with a large relative water depth. Moreover, 

increasing the wave steepness while maintaining a constant relative water depth, results in a higher release of free energy. 

The gentlest transition slope of 1:1000 shows less than 1% of the energy is released, while the steepest transition slope shows 

up to a 52% release of free energy. Thus, it can be concluded that waves in shallow water with significant changes in 

bathymetry slope can lead to a significant amount of energy being released. 
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Figure 6. Relative amount of free energy released as function of wave steepness, relative water depth and transition slope.  

The free wave energy that is released may lead to generation of freak waves, see Trulsen (2018). He describes that a 

sudden change in the equilibrium state of the sea causes the release of free waves. The change in the equilibrium might be 

caused by a sudden change in meteorological conditions, significant changes in currents, bathymetries, or sudden appearances 

of a ship in the wave field. Thus transition slopes may cause free waves and generate large extreme waves when the free 

waves are in phase with the bound components. Changes in parameters such as atiltness, wave skewness, and the distribution 

of velocity profile are just some parameters that could indicate that the waves have a new equilibrium state. Adeyemo (1968) 

describes that the atiltness of the waves increases for steeper seabed slopes and for decreasing relative water depth h/L. On 

the other hand, the skewness increases as the seabed slope becomes gentler and when h/L decreases. So, when the wave has 

to make a significant change in one of these parameters due to a different equilibrium state, then free waves are released. 

4 IRREGULAR WAVES 

The study with regular waves demonstrated how steep transition slopes might generate unwanted free higher harmonic 

energy. This forms the basis for the present study of irregular waves. Trulsen et al. (2020) conducted physical model tests, 

where irregular waves shoaled on a foreshore with a slope of 1:3.8, transitioning to a horizontal section. After the foreshore, 

they observed that both kurtosis and skewness were changed significantly, caused by the generation of free waves. They 

observed that the free waves lead to the generation of freak waves, which are characterised either by H > 2H1/3 or having a 

crest elevation ηc > 1.2H1/3. Hence, employing a transition slope in model tests requires careful consideration, as it may 

generate extreme waves higher than on a uniform slope. The occurrence of such waves could result in inaccurate model 

response. 

New numerical model tests were performed in order to study the release of free waves in an irregular sea state further. 

The layout of the numerical model is shown in Figure 7. Irregular waves are generated with a relaxation zone with a width of 

two peak wavelengths Lp,deep calculated using linear wave theory with hdeep = 1.5 m and the peak wave period Tp. Following 

the relaxation zone, a horizontal section of 2Lp,deep was present. From here, two different layouts were employed, one with a 

uniform foreshore slope and another with a transition slope followed by the foreshore. At the end of the foreshore, there is a 

horizontal section of two wavelengths Lp,shallow calculated using linear wave theory with hshallow = 0.5 m. A sponge layer with 

a width of 6Lp,shallow is used to absorb waves at the end of the model. The layout with the transition slope is modeled with 

transition slopes α = 5, 10, and 20, and transition water depths htrans = 1.25, 1.00, and 0.75 m. The foreshore slopes used in 

both models are β = 250, 100, 50, and 30. The generated waves have a deep water wave height of Hm0,deep = 0.10 m and wave 

periods of Tp = 2, 3, 4, and 5 s, see Table 2. Approximately 1,000 waves were generated following a JONSWAP spectra with 

a peak enhancement factor of γ = 3.3. In total, 16 irregular wave simulations with a uniform slope and 144 simulations with 

a transition slope were performed. 

The models utilised a horizontal resolution of Ncell = Lp,shallow /Δx = 200 and a vertical resolution of Nσ = 10 layers. The 
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variable time step was based on a maximum CFL criterion of 0.8. 

 

 
Figure 7. Setup of the numerical wave flume for irregular wave tests. 

Table 2 shows the tested wave parameters for each wave case. The waves have a wave steepness from 0.3-1.6% 

calculated with the wave height at the generation point Hm0,deep and the deep water wavelength L0p = Tp
2g/(2π) with g = 9.82 

m/s2. The waves are generated in transitional to shallow water. 

Table 2: Irregular wave conditions. 

Case 

Deep water 

wave height, 

Hm0,deep [m] 

Wave period, Tp 

[s] 

Deep water 

wave steepness, 

s0p [%] 

Relative water 

depth at 

generation, 

hdeep/L0p 

Relative water 

depth at 

transition, 

hshallow/L0p 

IRA 

0.10 

2 1.6 0.24 0.08 

IRB 3 0.7 0.11 0.04 

IRC 4 0.4 0.06 0.02 

IRD 5 0.3 0.04 0.01 

 

Figure 8 shows the wave spectra for Case IRA and Case IRD at the end of the uniform foreshore and the target wave 

spectrum at the generation zone. For Case IRA, there are only minor differences between the measured spectra and thus the 

effect from the foreshore is insignificant. The measured spectra are slightly lower than the target at the generation zone, which 

can partly be described by a shoaling coefficient close to unity. On the contrary, Case IRD has a notable impact from the 

foreshore slope, in which a steeper slope has more energy at the peak frequency and less energy at the sub- and 

superharmonics. 

 

 

Figure 8. Wave spectra showing the influence of wave steepness and foreshore slope.  
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The wave transformation along a uniform foreshore is shown in Figure 9. The figure illustrates the shoaling of the spectral 

wave height Hm0, significant wave height H1/3, average of the 1/100 wave height H1/100, and the transformation of the energy 

wave period T-1,0. 

In general, the spectral wave heights demonstrate similar shoaling regardless of the foreshore slope. However, slight 

deviations are noted on the 1:250 foreshore in Case IRA, and this is judged to be attributed to small numerical damping, which 

then accumulates over a long distance. H1/3 and H1/100 show smaller shoaling on the 1:250 foreshore for all wave cases, 

particularly for the H1/100, which is credited to stem from wave breaking that initiates earlier on gentle slopes instead of steep 

slopes, see Goda (2010). This shows wave steepness has the most significant influence on the shoaling of the waves when 

they are not breaking due to depth limitation. 

The transformation of T-1,0 proves to be more sensitive to the foreshore slope than the wave heights. For Case IRA, it is 

observed that the wave period increases as the waves shoal, with the largest increase on the gentlest slope and the smallest on 

the steepest slope. As the nonlinearity of the waves increases, the wave period experiences only a slight increase in the deeper 

part that has been tested, and then it becomes smaller than the initial value in the shallower part, except for the 1:250 foreshore 

where it only increases. This shows that both wave steepness and foreshore slope significantly influence the transformation 

of the wave period. 

 

 

Figure 9. Influence of wave steepness, relative water depth and slope of bathymetry on wave height and wave period 

transformation.  

Figure 10 shows the transformation of H1/100, representing the average of the approximately 10 highest waves for the 

present tests. The H1/100 at the different depths is normalised with the H1/100 measured before the foreshore for the uniform 

slope. The black line shows the uniform slope result, while the coloured lines show the results for the different transition 
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slopes, with the vertical line showing the transition depth between the transition slope and the foreshore. The figure shows 

that the influence of the transition slope is negligible for Case IRA but substantial for Case IRD. For Case IRD, the H1/100 is 

substantially larger some distance after the transition depth and the effect is largest for htrans = 0.75 m. Figure 10 shows only 

the results for the 1:10 transition slope, but the deviations are smaller for the 1:20 transition slope, and larger for the 1:5 

transition slope.  

 

 

Figure 10. Transformation of H1/100 along different foreshore and 1:10 transition slopes. The vertical colored lines show the 

location for where the transition slope intersects with the foreshore. 

Figure 11 shows how the transformation of T-1,0 is affected by the transition slope. As observed in Figure 9, the foreshore 

slope significantly influences the wave period, an influence that is also clear from Figure 11. When the foreshore is steepest, 

there is no noticeable impact from the transition slope. However, as the foreshore becomes gentler, the influence of the 

transition slope becomes more pronounced, especially for the most nonlinear Case IRD. Notably, in the case of a gentle 

foreshore with Case IRA, there is no local minimum, and T-1,0 only increases after the transition slope. This suggests that a 

significant change in bathymetry slope can lead to significant deviations in T-1,0 compared to a uniform slope. The deviation 

of T-1,0 increases as h/L0p decreases at the transition depth. 

Frostick et al. (2011) suggest having a minimum length of the foreshore that corresponds to 3-5 local wavelengths to 

ensure proper shoaling and wave breaking. In Case IRD with a 1:250 foreshore, it is evident that the influence of the transition 

slope, ending at h/L0p = 0.02, is seen for the remaining part of the model. The distance after the transition slope in this 

configuration is approximately 5 local wavelengths, so within the recommended distance according to Frostick et al. (2011). 

For Case IRA with a 1:250 foreshore, it is observed that the T-1,0 approaches a similar value as the uniform slope at the end of 

the model. However, the distance for this configuration corresponds to 14 local wavelengths. 
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Figure 11. Transformation of T-1,0 along different foreshore and 1:10 transition slopes. The vertical colored lines show the location 

for where the transition slope intersects with the foreshore. 

Figure 12 shows the spectra of Case IRA and IRD on the 1:250 foreshore, both with and without a transition slope. The 

spectra for Case IRA are presented at a depth corresponding to the end of the transition slope, while for Case IRD, they are 

shown at the depth where the local minimum is identified for T-1,0 in Figure 11. In Case IRA, there is an insignificant difference 

between the spectra with and without the transition slope, with less than 8% deviation in both T-1,0 and H1/100. For Case IRD, 

the spectra show significant deviation when a transition slope is applied, leading to reduced subharmonic energy and increased 

superharmonics energy.  

When the free waves are released at the transition depth, the free and bound waves are out of phase. Due to a difference 

in their celerity, the phase of the free and bound waves will at some distance be in phase and lead to locally high waves. For 

Case IRD the spectra are shown at a distance of 2.5 local wave lengths Lp after the transition slope. This phenomenon explains 

the significant presence of superharmonics energy in the spectrum with a transition slope compared to the spectrum with a 

uniform slope. These free waves contribute to the significant differences in the wave parameters T-1,0 and H1/100, deviating by 

29% and 18%, respectively. 
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Figure 12. Influence from transition slope on wave spectrum.  

In the case of irregular waves, only a single wave height has been modelled for each wave period. Consequently, it is not 

possible to determine the extent to which the wave steepness affects the release of free waves. However, for the regular waves, 

it was observed that this factor has a significant influence when the relative water depth is small. In the irregular wave tests, 

it can be observed that as long as the transition slope ends at h/L0p > 0.060 for a foreshore with a slope of 1:250, there is an 

insignificant influence from the transition slope. For steeper foreshore slopes, such as the 1:30 slope, the transition slope 

should end at h/L0p > 0.025 to have insignificant influence on the wave parameters. 

5 CONCLUSIONS 

Transition slopes are commonly used in the generation of nonlinear waves in physical models. The purpose is to avoid 

free waves being generated because of using first- or second-order wavemaker theory in a depth where it is not valid. The 

effect of these transition slopes on the waves are studied in the present paper by numerical modelling.  

Regular wave tests were carried out to illustrate and explain the physical processes occurring as waves propagate from a 

transition slope to a horizontal section. Several regular waves, characterised by different wave heights and periods, were 

generated and shoaled on different transition slopes. The regular wave tests revealed that the transition from a steep foreshore 

to a horizontal seabed resulted in the release of free energy. The equilibrium states of the wave before and after the transition 

are different, leading to significant variations in the wave parameters such as altitness and skewness. The difference in 

equilibrium states is the underlying cause of the released free energy. Changes in the slope can induce the generation of free 

waves, with this effect becoming more pronounced as wave steepness increases and relative water depth h/L decreases. This 

also means that the more nonlinear the wave is the more pronounced are the free waves released. 

For the irregular wave tests, waves were generated with the same Hm0 but varying Tp. The baseline was a bathymetry 

with various constant slope angles. These results were compared with models with a transition slope, characterised by different 

configurations of transition slope angles and relative water depths at the transition point. Results indicated that using a 

transition slope can significantly modify the wave spectra due to the release of free waves. Just as for the regular waves, the 

effect is most pronounced when the equilibrium state of the sea undergoes substantial changes. These free waves modify wave 

parameters, causing deviations from those observed on a uniform foreshore. The presence of these free waves can lead to the 

generation of freak waves and significant deviations in parameters such as the wave period T-1,0 and wave height H1/100. The 

differences between the 1:5, 1:10 and 1:20 transition slopes were found to be minor. 

Furthermore, it was observed that these free waves can impact the sea state over a considerable distance, extending up 

to 14 local wavelengths based on the present numerical results. This distance exceeds the recommended value of 3-5 

wavelengths suggested by Frostick et al. (2011). As an alternative, it is proposed to avoid using transition slopes by generating 

nonlinear waves through a combination of numerical wave models and ad-hoc wave generation. In cases where a transition 

slope is necessary, it is recommended that, for a foreshore with a slope of 1:250 or flatter, the end of the transition slope 

should stop at h/L0p > 0.060, and for a 1:30 slope, it should stop at h/L0p > 0.025. Linear interpolation can be used to determine 

limits for foreshore slopes falling within the range of 1:250 to 1:30. 
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