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Abstract. Optimizing HVAC operation by taking into account predictions for presence, occupancy 

and inner loads, weather (mainly air temperature and solar irradiation) and thermal behaviour 

of the room or building can lead to significant energy savings while maintaining thermal comfort 

for the occupants. However, the quality of forecasts plays an important role for the success: High 

prediction qualities are essential for achieving the objectives in energy saving and thermal 

comfort. In the present paper, a simulation study is presented for the example of an office room 

with up to three occupants. Perfect and real (non-perfect) forecasts are applied for simulating 

predictive HVAC control in the course of one year. For evaluating the impact of forecast quality, 

the annual reduction of cooling energy demand and the decrease of thermal comfort are 

considered. Results show that there is a complex interaction between the different forecasts: The 

combined quality of all forecasts determines the benefit which can be reached from predictive 

control. If forecasts are not good enough, thermal comfort decreases significantly compared to 

perfect forecasts or the reference case without predictive control. Here, especially the forecast of 

room temperature development (thermal behaviour of the room) was found to be very 

important. If the forecasts are good, the annual cooling energy demand can be decreased by 19 % 

in the example while maintaining high thermal comfort.  
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1. Introduction

The operation of HVAC systems can be optimized by 
considering forecasts for the control system. Control 
actions might be tested in advance by means of 
simulating the system behaviour for the next time 
range (model-predictive control, MPC). Thus, 
different advantages are provided: For example, 
oscillations in the system (e.g. alternating heating 
and cooling) are avoided, room heating is 
deactivated or reduced when solar heat gains are 
expected for the next time, offices are cooled only if 
they are really used. Improvements in both energy 
savings and thermal comfort can be achieved by 
operating HVAC systems based on appropriate 
forecasts. Machine learning algorithms can be 
applied for approaching optimal control [1, 2]. 
Different concepts and methods were proposed 
which consider forecasts of weather and occupancy 
[3, 4] and achieve for example 18 % savings in 
cooling energy demand [5].  Some studies took into 
account the uncertainty of weather predictions [6, 7] 
and showed the influence on MPC performance. It 
was also shown that reliable cooling load predictions 
are required for MPC [8]. 

Thus, the performance of predictive HVAC control 
strongly depends on the quality of the forecasts 
which are required for the optimization. If the quality 
of such forecasts is not sufficient, lower thermal 
comfort and higher energy consumption may occur 
than without using forecasts. Well performed 
predictions are an important basis for successful 
optimization of operation. In the present paper, a 
simulation study is presented which compares the 
application of perfect and real (non-perfect) 
forecasts. It is shown which forecasts are required 
for HVAC predictive control in offices and how their 
quality influences energy savings and thermal 
comfort. 

Here, an office room is modelled numerically as a 
basis for the study. An operation in the course of one 
year is simulated with predictive HVAC control 
applying varied prediction models for presence, 
occupancy, weather and thermal behaviour of the 
room. For evaluating the performance, cooling 
energy savings and thermal comfort are analysed.  
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2. Research Methods

2.1 Example room 

The study is based on the numerical model of a 
theoretical office room with the dimensions 3.92 m x 
8.00 m x 3.16 m (volume 99 m³) situated in Potsdam, 
Germany. The room can be occupied by up to three 
people. The outer walls contain windows with a total 
area of 22.4 m². For the sake of simplicity, horizontal 
orientation of the windows is assumed. For non-
horizontal windows, the sun’s position determines 
the irradiation to the room for a given irradiation 
measured on the horizontal surface. For starting with 
a basic model for room temperature forecast, this 
dependency has not been considered yet. Therefore, 
the influence of solar altitude on the irradiation to 
the room is neglected in this stage of research. 

For modelling the transient thermal behaviour of the 
room, the room model described in VDI 6007 Part 1 
[9-11] is used as a basis. This is a second-order model 
which divides the building mass into two thermal 
capacitors. One capacitor subsumes all non-adiabatic 
components (e.g. outer walls), the other one 
represents the adiabatic components (e.g. wall to 
neighbour rooms with the same thermal conditions). 
The transient solution for the system of capacitors 
and resistances is found by analogy to electric 
circuits. The model is based on a time step of 1 h, but 
can be adopted to smaller time steps. Here, some 
simplifications for thermal radiation were made to 
decrease the calculation duration for a small time 
step of 1 min (no absorption or emission on opaque 
outer surfaces, no emission from inner surfaces). 

Thermal loads within the room are the following: 

 base heat source: 200 W (50 % convective, 
50 % radiative) 

 heat source per occupant: 75 W (person) +
200 W (IT), 50 % radiative

 lighting: 150 W (50 % radiative)

These are practical values for different kinds of 
offices, e.g. with CAD-workstations. For the HVAC 
system, the following typical parameters are 
assumed: 

 air supply per person: 40 m³/h

 supply air temperature: 24 °C for heating,
18 °C for cooling

 setpoint value for room air temperature
during active operation time: 21 °C

 minimal and maximal room air temperature
during passive operation time (night, 
weekend): 18 °C/27 °C

 active operation time: 6:30 to 18:30 on
weekdays (if not derived from occupancy
forecast) 

 start-up time before active operation: 1 h

 decay time before end of active operation: 
1 h (During decay time, heating/cooling is
reduced and the room air temperature is 
allowed to deviate from the set-point value
because a slight increase or decrease is 
acceptable for the occupants before they 
leave the office.) 

2.2 Forecasts 

For predictive HVAC control, different forecasts are 
required. These are described in the following and 
details on the machine learning models are given in 
Table 1. 

(1) Presence forecast (PF): For optimal control,
information is required on when there are people in
the room or building and when not. For an office
room, especially the arrival time of the first occupant 
in the morning and the time when the last occupant 
left the room in the afternoon (departure time) are
relevant, because these times define the period when 
comfort requirements are to be met. If a forecast 
predicts the presence of people in a room or building,
the room temperature can be kept at the required 
value and restricted to this time for the sake of
energy savings.

The target values in presence forecasting are for 
example the arrival time of the first person and the 
departure time of the last person on a specific day. 
Relevant features (influence parameters) can include 
the weekday, the month, school holidays yes/no, 
working day yes/no. Here, a random forest model is 
used. Alternatively, presence forecast can be derived 
from occupancy forecast (see below): When the 
predicted occupancy is at least one, somebody is 
present in the room. 

(2) Occupancy forecast (OF): The occupancy
(number of people in a room or building) predicted 
for a certain time horizon allows for optimal
operation of the HVAC system both with regard to 
user comfort and reaction to inner thermal loads
(heat emission of people, devices, machines and 
lighting). This allows for example to avoid 
overshooting of the room temperature.  The
occupancy can be predicted based on the same
features as used for presence forecast. Additionally, 
the time is an important parameter.

For the study described here, synthetic occupancy 
data were created for an office room with three desks 
and flexible work time. 5 min values were generated 
for a total period of two years. They take into account 
the individual holiday and working time preferences 
of the people being modelled. The particular times of 
arrival, lunch break and departure at each day are  

2 of 6



Tab. 1 – Models applied for forecasts. Machine learning models are taken from scikit-learn [12]; validation performance 
given as root mean square error (MSE) 

Forecast ML model Details Performance 

Presence (PF) random 
forest 
regression 

arrival time of first person in seconds at day 
based on features weekday, working day 

departure time: same method as for arrival 
time 

arrival time: MSE = 2743 s 

departure time: MSE = 2806 s 

Occupancy 
(OF) 

random 
forest 
regression 

number of people being present at current 
time step based on features weekday, 
working day, time, occupancy in previous 
time step 

MSE = 0.1 

Weather (WF) none simple model: ambient temperature and 
global solar irradiation from same time at 
previous day 

temperature: MSE = 3.4 K 

irradiation: MSE = 115 W/m² 

Room 
temperature 
(RF) 

linear 
regression 

room air temperature based on features 
ambient temperature, solar irradiation, 
convective and radiative inner heat sources 
(including heating/cooling systems), 
temperature in previous time step 

MSE = 0.2 K 

subject to random distribution within the respective 
typical time windows. A random forest model has 
been trained and validated with the data for the first 
year while the second year data are used for the 
application in the predictive HVAC control study. 

(3) Weather forecast (WF): If it is known that high
solar irradiation will affect the room within the next
hours, heating can be deactivated anticipatorily. 
Weather companies provide forecast data for air 
temperature, solar irradiation and other parameters. 
Solar irradiation data might be split into direct and 
diffuse irradiation or consolidate these parts into 
global irradiation. Generally, provided irradiation
data are related to one square meter of horizontal
surface. As the effect of solar irradiation on the room
or the building depends on the current solar position
and thus e.g. on calendar day and time, conversion by
an analytical or numerical model (could also be a
machine learning model) is necessary. For limiting
the complexity of the study presented here, this 
conversion has been avoided by assuming horizontal
windows.
For the most cases studied here, a perfect weather 
forecast was applied because the focus was on the
building-specific predictions (presence, occupancy, 
thermal behaviour). In the case with weather 
prediction, a simple model using the values from the
same time at the previous day was applied.

(4) Thermal behaviour of the building (room
temperature forecast RF): For finding the optimal 
HVAC control, the development of the room air
temperature depending on thermal loads, room or
building properties and HVAC system operation 
needs to be predicted. This forecast can be conducted 
by means of an analytical or numerical 
room/building model or with a machine learning 
model. Here, a linear regression model is used which

was trained and validated with data from the room 
model. 

2.3 Predictive HVAC control 

For optimizing HVAC operation, the active operation 
time of the system is not fixed but depending on the 
presence forecast. At the beginning of each 
day (0:00), this forecast is generated for the present 
day and the active operation time is derived from the 
result. At the defined start-up time before the 
(predicted) active operation (see Figure 1; here: 1 h), 
the system starts to heat or cool in order to reach the 
setpoint value when the first occupant arrives. 

The predicted departure time of the last occupant 
defines the end of the active operation time. As a 
slight decrease or increase of temperature might be 
acceptable for the user before leaving the room, a 
decay time (here: 1 h) is assumed before the end of 
the active operation time. During this time, heating 
or cooling is reduced or deactivated. 

Fig. 1 – Nomenclature of time periods. 

Heating the room when cooling would be required 
shortly afterwards or vice versa should be avoided. 
To this end, a defined “preview time” is considered 
here. The preview time is a defined time horizon 
from the current real time to the future which is 
considered for predictive control. This means that 
forecasts are conducted e.g. for the following hour to 
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check if a change from cooling to heating or from 
heating to cooling becomes necessary. If this is the 
case, cooling or heating will already be stopped at the 
current time. For the preview time, inner and outer 
thermal loads are estimated based on the occupancy 
forecast and the weather forecast, respectively. The 
development of the room temperature is predicted 
by the forecast model for the thermal behaviour as 
described in section 2.2. 

In the optimized operation, the air change/the air 
supply to the room is set according to the real 
occupancy. 

The predictive HVAC control modelled here is only a 
basic example because the main focus was to 
investigate the influence of forecast quality. Much 
more advanced strategies and optimization 
algorithms are possible and desirable. 

2.4 Metrics 

The aim of predictive HVAC control is to reduce 
energy demand while ensuring thermal comfort for 
the occupants. Here, the following metrics are used 
for evaluating energy demand and thermal comfort, 
respectively: 

 Cooling energy reduction: The relative
change of cooling energy in the room during 
one year compared to the reference case
without predictive control shows the
energetic advantage. Heating energy was 
studied as well, but is not shown here
because it follows the same trends.

 Temperature deviation hours:  A 
temperature deviation hour of 1 Kh means
that during the presence of at least one
person the room air temperature deviates 
from the setpoint value plus tolerance (here
1 K) by 1 K for one hour. The summarized 
value for one year is used here as an
indicator for thermal comfort.

2.5 Cases 

Perfect and real predictions are used in the cases. 
“Perfect” means that the real value, e.g. the number 
of people being present in the next time step, is 
known in advance. “Real” predictions are the 
forecasts made by the machine learning models 
named in section 2.2. 

The following cases are investigated: 

• Case 0: Reference case without any
predictions. The HVAC system runs with
fixed active operation time and start-up
time as given in section 2.1. There is no
decay time, air supply is constant at
120 m³/h during active operation time. 
Thus, the setpoint temperature is met 
during all times when people are present.

• Case 1: As case 0, but air supply is controlled
according to a perfect occupancy prediction.
That means that the air supply is adjusted to the
real number of persons at each time.

• Case 2: As case 1, but with a decay time of 1 h
before the fixed end of active operation time.

• Case 3: As case 2, but with a preview time of 1 h
for predictive HVAC control. For
simulating the preview time, perfect
predictions for occupancy, weather and
thermal behaviour of the room are used. 
The active operation time remains fixed, no
presence forecast is used.

• Case 4: As case 3, but with real occupancy
forecast.

• Case 5: As case 4, but with real presence
forecast used during preview time
simulation.

• Case 6: As case 5, but with active operation
time based on real presence forecast.

• Case 7: As case 6, but with real forecast of
thermal behaviour and perfect forecast for
presence, occupancy and weather.

• Case 8: As case 7, but with real occupancy
forecast.

• Case 9: As case 7, but with real presence
forecast.

• Case 10: As case 9, but with real occupancy
forecast.

• Case 11: As case 10, but with real weather
forecast- Thus, no perfect forecasts are used in
this case.

The case configurations are summarized in Table 2. 
One year of operation is simulated for each case, the 
simulation time step is 1 minute. 

3. Results and discussion

The resulting metrics for the 11 cases are shown in 
Figure 2.  

For case 1, there is no temperature deviation because 
the setpoint of the room temperature is maintained 
during the fixed active operation time. However, 
cooling energy demand can be reduced by 9 % 
compared to the reference case (case 0) by adjusting 
the air supply to the number of people being present. 

Cases 2 to 6 show cooling energy reductions between 
15 and 20 %. These reductions are accompanied by 
deviations between the setpoint and the real room 
air temperature during certain hours. For the whole 
year, temperature deviation hours are below 50 Kh 
and might thus be acceptable. 
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Tab. 2 – Case overview: Forecasts for presence (PF), 
occupancy (OF), weather (WF) and thermal behaviour 
of the room (RF); p = perfect, r = real; n.d. = no decay 
time; n.a. = active operation time not based on forecast. 

Forecast 

Case PF OF WF RF 

1 - p (n.d.) - - 

2 - p - - 

3 - p p p 

4 - r p p 

5 r (n.a.) r p p 

6 r r p p 

7 p p p r 

8 p r p r 

9 r p p r 

10 r r p r 

11 r r r r 

Fig. 2 – Cooling energy reduction and temperature 
deviation hours for one year depending on the case. 

The cases up to 6 have in common that a perfect 
forecast for the thermal behaviour of the room is 
used. Switching to a real prediction (cases 7 to 11) 
leads to significant increase of temperature deviation 
hours and thus a loss in thermal comfort. The reason 
is that in certain hours the forecast says that no 
cooling is required for example, but the real 
temperature development is different and the room 
gets too warm. 

From case 3 to 6, further perfect forecasts are 
replaced by real forecasts. Cooling energy reduction 
decreases, but temperature deviation hours decrease 
as well. Thus, the real forecasts lead to less success in 
energy savings, but no comfort problems are 
produced by the real forecasts compared to the 
perfect forecasts in the example considered here. 

Cases 7 to 11 show that the success of predictive 
HVAC control depends on the combination of 
forecast qualities: Case 7 with real forecast of 
thermal behaviour and perfect forecasts for all other 
parameters shows poor thermal comfort 
(temperature deviation hours: 330 Kh). Replacing 
the perfect occupancy forecast by the real one 
(case 8) leads to significant comfort improvement 
(104 Kh). Case 9 with real presence forecast, but 
perfect occupancy forecast is much worse again. Tis 
shows the complex interaction of the different 
forecasts. 

Basing the predictive HVAC control only on real 
forecasts (case 11) provides cooling energy savings 
of 19 % compared to the reference case while there 
are 141 Kh temperature deviation hours. This might 
be acceptable, but could be improved by increasing 
forecast accuracy (see case 3 with the same cooling 
energy savings, but less than half of the temperature 
deviation hours due to perfect forecasts). 

In the cases presented here, preview time is set to 
1 h. Figure 3 shows for the example of case 3 what 
happens if this value is varied. 

Fig. 3 – Influence of the preview time length on cooling 
energy reduction and temperature deviation hours 
(based on case 3) 

With more than one hour of preview time, thermal 
comfort decreases significantly. The relative increase 
of cooling energy reduction is much smaller and does 
not justify the loss of thermal comfort. Thus, preview 
time length needs to be chosen carefully. 

4. Conclusions

For the example of an office room with three 
occupants, the influence of the forecast quality on the 
performance of predictive HVAC control was 
investigated. Results show that the complex 
interactions of the different forecasts (presence, 
occupancy, weather, thermal behaviour of the 
building/room) have a strong influence on the 
energy savings which can be achieved while 
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maintaining an acceptable level of thermal comfort. 
If forecasts are not reliable, thermal comfort 
decreases significantly compared to perfect forecasts 
or the reference case without predictive control. 
Here, especially the forecast of room temperature 
development (thermal behaviour of the room) was 
found to be very important. A machine learning 
model applied for this forecast needs to be well-
suited to the room or building. Alternatively, an 
analytical or numerical building/room model could 
be applied. Modelling and parametrization effort 
might be higher than for a machine learning model, 
but the forecast quality is expected to be better as 
well if the analytical or numerical model is an 
appropriate representation of reality. 

The example studied here cannot be generalized. The 
thermal behaviour of buildings and rooms is very 
individual and depends on many parameters as for 
example thermal capacity of the envelope, ratio of 
transparent to opaque areas, etc. Thus, the results 
shown here are supposed to give an impression on 
the effects that can be expected depending on the 
forecasts which are available, but further studies are 
required. The room model will be improved by 
taking into account the orientation of windows and 
the sun’s position. Furthermore, other room types 
(e.g. meeting rooms) will be studied and 
experimental validation of the findings needs to be 
conducted. 
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