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Abstract. The aim of this work was to examine whether the Gaussian process as a machine 
learning method is suitable for modelling time series data collected from buildings and whether 
it can be used to verify the effects of energy efficiency measures on three apartment buildings. A 
Gaussian process regression model was created using outdoor temperature and time information 
as inputs including information about the day of the week and the hour of the current day. 
Correspondingly, the output of the model was to estimate the hourly heating power demand 
corresponding to these inputs. The results provided by the created model were used as a 
reference point to verify the effects of energy efficiency measures taken on these residential 
buildings. The model was trained with 2016 hourly data. The 2017 data was used as test data to 
evaluate the functionality of the model. The impact assessment of the energy efficiency measures 
was performed with the measured data of 2019, which was compared with the results given by 
the model. Based on the performed modelling, it can be stated that using the Gaussian process, 
the need for hourly power of buildings was reasonably well modelled with even small amount of 
input variables. It can be assumed that the biggest uncertainty factor in the modelling is related 
to the domestic hot water consumption and the resulting power requirement. By measuring hot 
water consumption, modelling accuracy could probably be significantly improved. Based on the 
reviews, it could also be verified that the energy efficiency measures taken have had an impact 
on the peak power needs of residential buildings as well as on total energy consumption. For all 
three buildings, peak power needs appear to have decreased and overall energy consumption is 
lower than it would have been without the actions taken. 
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1. Introduction
In Finland energy efficiency measures in buildings 
are often targeted specifically at the heating system, 
but the challenge is to assess the impact of the actions 
taken as outdoor conditions and the occupancy rate 
of a building can vary considerably. To verify the 
impact of energy efficiency measures on the need for 
the heating power and energy consumption of a 
building, we need a model of the building. The model 
allows us to look at the situation where no measures 
has been taken and to compare the actual data with 
the results of the model. 

We can use a computer program, based on dynamic 
model, to calculate the need for heating power at 
different outdoor temperatures. An example of such 
a simulation program is IDA ICE [1]. However, to 
build a model, we need a considerable amount of 
information about the properties affecting the 
dynamics of the building. For example, we need to 
find out the structures and areas of walls and 

windows, heat transfer coefficients, ventilation 
airflows, building use profiles and numerous other 
features affecting the need for heating capacity.  

On the other hand, we may use a machine learning 
algorithm that is able to learn the dynamics of a 
building from the collected history data. For example, 
the algorithm can learn how the heating demand of a 
building depends on the outdoor temperature and 
time. In other words, we do not have to find out so 
much information about the building itself. It is 
enough that we know the outdoor temperature at 
any given time and the corresponding need for 
heating power. 

This study examines how machine learning is 
suitable for modelling a building’s heating power 
demand. The used algorithm is called Gaussian 
process, which is widely used in machine learning 
applications. The goal is to verify the effects of energy 
efficiency measures on three apartment buildings 
with student housing. Actual energy efficiency 
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measures are not presented because they are 
secondary to work. However, they have been 
designed to reduce the peak power needs and overall 
energy consumption of the buildings. The subject of 
the comparison has been the hourly power needs of 
the buildings and the monthly and annual energy 
consumption. By comparing the hourly capacities, an 
attempt has been made to examine whether the 
measures taken have been able to cut the greatest 
power requirements of the buildings.  

2. Gaussian process
In this section the basic idea of Gaussian process is 
introduced. For more complete definitions and 
descriptions please check out the book written by 
Rasmussen and Williams [2]. For visual introduction 
to Gaussian process, you should visit a web site 
authored by researchers from University of Konstanz 
[3]. 

2.1 Idea of a Gaussian process 

Let 𝐗𝐗 be a m  × n -matrix in which each horizontal 
row 𝐱𝐱i represents one observation point. Each 
horizontal row item 𝑥𝑥𝑖𝑖𝑖𝑖  indicates the status of a 
particular property at that observation point. Each 
element 𝑦𝑦𝑖𝑖 = f(𝐱𝐱𝑖𝑖) + ϵ𝑖𝑖 of the vertical vector 𝐲𝐲, where 
ϵ𝑖𝑖  is a measurement error, describes the observation 
of the phenomenon at the observation point. The 
purpose of the Gaussian process is to get to know the 
phenomenon under consideration by means of 
observations made at points and to find out the 
unknown events of the phenomenon at points 𝒚𝒚∗ at 
points 𝐗𝐗∗. Learning takes place by forming a 
conditional multidimensional normal distribution of 
the functions 𝐟𝐟 (actually the values of the functions) 
suitable for the observations. The best estimate of 
the unknown events 𝐲𝐲∗ of a phenomenon at the 
points 𝐗𝐗∗ is the mean value vector 𝛍𝛍∗ of that 
distribution. The aim of the process is not to find a 
function describing the actual phenomenon, but only 
the values produced by the function. [2] 

In many cases, modelling tasks are more interested 
in the values produced by the function and their 
uncertainty than the function itself.  [4]  

2.2 Definition of a Gaussian process 

According to the definition of Rasmussen and 
Williams [2], the Gaussian process is a collection of 
random variables, each of which follows a common 
normal distribution. The Gaussian process can be 
thought of as a generalization of the 
multidimensional normal distribution. Where a 
multidimensional normal distribution is a vector 
distribution, the Gaussian process is a distribution of 
functions, and the random variable is now the value 
of the function f(𝐱𝐱) at the point 𝐱𝐱. We can illustrate 
this with the follofing presentation: 
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where m(𝐱𝐱) and k(𝐱𝐱, 𝐱𝐱′) are a mean function and a 
covarince function (kernel). Rasmussen and 
Williams [2] have defined Gaussian process 
distribution as follows: 

𝑓𝑓(𝐱𝐱) ∼ 𝒢𝒢𝒢𝒢�𝑚𝑚(𝐱𝐱),𝑘𝑘(𝐱𝐱, 𝐱𝐱′)�
𝑚𝑚(𝐱𝐱) = 𝐸𝐸[𝑓𝑓(𝐱𝐱)]
𝑘𝑘(𝐱𝐱, 𝐱𝐱′) = 𝑐𝑐𝑐𝑐𝑐𝑐[𝐱𝐱, 𝐱𝐱′]
= 𝐸𝐸��𝑓𝑓(𝐱𝐱) −𝑚𝑚(𝐱𝐱)�(𝑓𝑓(𝐱𝐱′) −𝑚𝑚(𝐱𝐱′)T)�

(2) 

2.3 Formation of a Gaussian process 

In forming the Gaussian process, the covariance 
function plays an important role in determining the 
form of the function to be estimated. The covariance 
function looks at the distance (similarity) between 
two points (𝐱𝐱, 𝐱𝐱′), connecting the different 
observations to each other. The selection of the 
appropriate covariance function plays a key role in 
the success of the modelling task. The most typical 
covariance functions and their properties are 
presented, for example, in [3] and [5]. Covariance 
functions often contain also free hyperparameters 
which should be optimized by an appropriate 
method using training data [2]. To form a Gaussian 
process, the covariance function must be computed 
between all possible points, giving three matrices: 
𝐊𝐊𝐗𝐗𝐗𝐗, 𝐊𝐊𝐗𝐗∗𝐗𝐗 and 𝐊𝐊𝐗𝐗∗𝐗𝐗∗ . Each value of the function to be 
searched is normally distributed, so that a combined 
normal distribution [2] 

�
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can be formed from the training and estimated 
observations assuming that the mean function 
𝑚𝑚(𝐱𝐱) = 0. The most probable values (𝛍𝛍∗) of the 
function 𝑓𝑓(𝐱𝐱∗) = 𝑦𝑦∗ at the estimated points (𝐗𝐗∗) can 
now be found by forming a conditional distribution 
[2] 

𝑝𝑝( 𝐲𝐲∗ ∣∣ 𝐗𝐗∗,𝐗𝐗, 𝐲𝐲 )~𝒩𝒩�𝐦𝐦∗ + 𝐊𝐊∗𝐊𝐊−1(𝐲𝐲 −𝐦𝐦∗),
𝐊𝐊∗∗ − 𝐊𝐊∗𝐊𝐊−1𝐊𝐊∗

𝑇𝑇 �  (4) 

By assumption 𝐦𝐦∗ = 𝟎𝟎, the best estimate of values 𝐲𝐲∗ 
obtained by the function 𝐟𝐟∗ is now a mean vector of 
the distribution 

𝐸𝐸[𝐲𝐲∗] = 𝛍𝛍∗ = 𝐊𝐊∗𝐊𝐊−1𝐲𝐲 (5) 

and the uncertainty of that estimate is described by 
the variance of the distribution 

𝑣𝑣𝑣𝑣𝑣𝑣[𝐲𝐲∗] = 𝐊𝐊∗∗ − 𝐊𝐊∗𝐊𝐊−𝟏𝟏𝐊𝐊∗
𝑇𝑇. (6) 

2 of 6



Figure 1 shows an example of a situation where 𝑥𝑥∗ ∈
[−5,5] and the goal is to find out the values 𝐲𝐲∗ 
obtained by the function 𝑓𝑓(𝑥𝑥∗) in that range. The left 
side of the figure shows the situation when no 
observations have been made of the function values 
and the right side of the figure shows the situation 
when six noisy observations have been obtained. The 
solid bold line describes the best estimate of the 
values obtained by the function in both cases. The 
dashed line in right side is the real function to be 
estimated and the grey area is the 95 % confidence 
interval obtained from the variance of the 
distribution. 

Figure 1 - Three samples of possible functions, when 
there are no observations about the function values and 
an estimated function when there is six observation 
points about the function values. 

3. Verifying energy efficiency
measures

In this section the used data and main results is 
presented. 

3.1 Used data 

The heating power demand in a building depends on 
the temperature difference between the indoor and 
outdoor temperatures. The hourly averages of the 
Finnish Meteorological Institute's Tampere Härmälä 
measuring station were used as the outdoor 
temperature. Wind strength can also have a large 
effect on heating power demand in certain situations, 
but no detailed information on wind strength was 
available for these explicit buildings, so it was 
decided to exclude it. The heating power required to 
heat domestic water depends, of course, on how 
much water is used and when. In principle, therefore, 
this may be entirely incidental. However, it is 
assumed that there is some correlation between the 
need for heating power in terms of the day of the 
week and the time of day. This assumes that the 
routines of apartment dwellers, such as washing and 
cooking, will remain reasonably similar. However, it 
is precisely the assessment of the power required to 
heat domestic water that involves the greatest 
uncertainty. 

The measures taken on buildings date back to 2018 
and possibly 2019. Data from 2016, 2017 and 2019 
were used in the study. Data from 2016 have been 
used as a training data while 2017 has been used as 
a test year. As the systems and use of the buildings 
have been very similar in 2016 and 2017, the 
modelled data should correspond quite well to the 
data measured for 2017. Measures have been taken 

in the buildings during 2018. In 2019, the measures 
have had an impact throughout the year. So, when 
comparing the modelled and measured data for 
2019, it should show the effects of the measures 
taken in terms of reduced peak power and energy 
consumption. 

The outdoor temperature and time data, which 
included information about the day of the week and 
the hour of the current day, were used as inputs for 
the model built in the study. The output of the model 
was an estimate of the hourly average heating power 
demand corresponding to these inputs. Since time is 
cyclical, time information must be transformed into 
a form from which the used algorithm also 
understands its cyclical nature. Thus, the algorithm 
must in practice understand, for example, that the 
last hour of the day is close to the first hour of the 
following day. Therefore, the input used as a time 
information has been converted to cyclic using sin 
and cos transformations. 

Before the actual construction of the model, the data 
were cleaned by removing e.g., clearly erroneous 
readings as well as moments of time that lacked 
relevant information such as outside temperature or 
heating power information. Many times, in modelling 
tasks like this, the data is collected from many 
different sources, in which case it may be incomplete 
in some respects and contain erroneous readings. 
Making data usable is often one of the biggest and 
most time-consuming jobs before the actual analysis 
and modelling work. 

3.2 Building the Gaussian process model 

The GPstuff function library for Matlab, made by 
Vehtari et al. [6], was used to build the Gaussian 
process model. In these studies, the addition of the 
squared-exponential and periodic covariance 
function was used. Additivity allows strong 
assumptions to be made about the individual 
components that make up the sum [5]. Other 
variations of the covariance function were also tested 
but were not found to have a significant effect on the 
modelling results. However, it is good to note that 
using the right kind of covariance function or a 
combination of them can have a significant impact on 
the success of the modelling. 

3.3 Error review 

Table 1 shows the RMSE values of the models for 
2017 monthly. The RMSE values describe the 
distance between the prediction and the observation 
vector and cannot in themselves be used to draw 
conclusions about the goodness of the model. In this 
study, RMSE values were mainly used to define the 
Gaussian process model to be used when testing the 
effect of different covariance functions, and their 
combinations, on the modelling results. However, the 
table 1 shows that the RMSE values for building 1 are 
the smallest. Building 2 values are slightly higher and 
building 3 values are clearly higher than the other 
two buildings. This is natural, as the hourly outputs 
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themselves are higher for buildings 2 and 3. Building 
3 also differs considerably in the actual power 
demand from buildings 1 and 2. Maximum power 
demand at building 3 is about 400 𝑘𝑘𝑘𝑘ℎ

ℎ
, while 

buildings 1 and 2 have maximum power requirement 
slightly below and above 200 𝑘𝑘𝑘𝑘ℎ

ℎ
. In this case, 

relatively equal errors in the modelling may appear 

as a larger absolute error in those buildings where 
the power range is also larger. 

Table 1 - Year 2017 model RMSE-values. 

Building 1 Building 2 Building 3 

jan 10.5 13.5 32.8 

feb 10.6 16.0 27.9 

mar 10.3 12.9 25.1 

apr 12.3 16.5 27.7 

may 12.4 16.5 34.5 

jun 8.7 9.5 25.9 

jul 6.4 7.0 19.6 

aug 6.7 7.9 29.9 

sep 10.6 12.1 49.2 

oct 11.0 13.6 46.4 

nov 11.0 17.6 40.5 

dec 12.4 15.8 34.0 

year 10.4 13.7 34.3 

The figure 2 shows the distributions of the residual 
values of the 2017 models. The distribution shows 
that the expected values of the residual values of 
buildings 1 and 2 (μ1 = −0.57  and μ2 = −1.50) are 
close to zero, which can be considered as one of the 
properties of a successful regression model. Instead, 
the residual values of object 3 are slightly weighted 
to the right of zero (μ3 = 22.40), suggesting that the 
modeled values would appear to be smaller than the 
measured values. 

Figure 2 - Distributions of residuals between 2017 
measured and modelled values. 

3.4 Hourly power comparison 

The figure 3 shows the modelled and measured 
hourly power of buildings in relation to the outdoor 
temperature in 2017. The figure also shows the lines 
indicating the level below 98% of all hourly power 
values. As can be seen from the figure for buildings 1 
and 2, for both the modelled and measured values, 
the lines are very close to each other. This suggests 
that the modelling has been reasonably successful 
and in 2017 the technical systems and users of the 
building have performed similarly as in 2016. 
Instead for building 3 the line of the modelled values 
is lower than the measured values, so the modelled 
values would appear to be lower than the measured 
ones. This can also be clearly seen by looking at the 
points. The points produced by the model would 
appear to compress to the left edge of the point cloud 
of measured values. 

The same comparison for 2019 is shown in figure 4. 
The figure shows two things. First, the image also 
shows how some of the actual hourly power points of 
the harshest frosts have dropped lower, forming 
their own small point cloud. In addition, the 98% 
limit for measured values has dropped lower in all 
three buildings. These findings support the claim that 
actions taken to the buildings have succeeded in 
limiting the maximum hourly powers. 

Figure 3 - Modelled and measured hourly powers of buildings from 2017. 
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In addition to limiting the maximum power 
requirement, the actions taken in the buildings also 
aimed at lower energy consumption. Figure 5 shows 
the monthly energy consumption of buildings for 
2017 and Figure 6 for the whole year. It can be seen 
from the figures that the measured and modelled 
consumptions correspond quite well to each other, 
but small deviations occur, especially at the monthly 
level. For building 3, the differences are larger and 
follow the same regularity as when comparing 
hourly power needs. 

Figure 5 – Measured (blue) and estimated (orange) 
monthly energy consumption of buildings in 2017. 

Figure 6 - Measured (M) and Estimated (E) annual 
consumption of buildings 2017. 

Figures 7 and 8 show the same thing for 2019. Figure 
7 shows that the measured consumption is lower 
than the modelled ones every month, except for 
building 3. However, for building 3 it can also be seen 
that the difference between the measured and 
modelled consumption has narrowed compared to 
2017. Of course, the effect is also visible on an annual 
basis, and the figure 8 shows that for buildings 1 and 
2, the actual total energy consumption in 2019 is 
significantly lower than the modelled one. For 
building 3, the difference between actual and 
modelled consumption has narrowed since 2017. 

Figure 7 – Measured (blue) and estimated (orange) 
monthly energy consumption of buildings in 2019. 

Figure 8 - Measured (M) and Estimated (E) annual 
consumption of buildings 2019. 

4. Discussion
Based on the modelling performed, it can be stated 
that the method succeeded in modelling the hourly 
power demand of buildings with even small amount 
of input variables. It can be assumed that the biggest 
uncertainty factor in the models is related to the 
domestic hot water consumption and the resulting 
power requirement. By measuring hot water 
consumption, modelling accuracy could probably be 
significantly improved. On the other hand, 
information about the position of the hot water 
heating control valve is already often available in 
building automation system. Also, taking this 
information as one additional variable could improve 
the accuracy of the modelling. 

It can also be said that the energy efficiency measures 
in buildings have had a positive effect both in limiting 
the maximum hourly power needs and in reducing 
overall energy consumption. Although the effects are 
clear, their absolute magnitude, especially on an 
hourly basis, is difficult to assess. To make hourly 
absolute impact assessments, the model should be 
more accurate, which could be achieved, for example, 
with the hot water consumption data described 
before. Regarding the annual consumption of the 
model, a reasonably good estimate can be made of 
the actual energy savings of buildings 1 and 2. In 
contrast, for building 3, there was more uncertainty 
in the modelling. This may be due, for example, to 

Figure 4 - Modelled and measured hourly powers of buildings from 2019. 
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changes in the building in question that were not 
known and had an impact on power demand in 2017. 
On the other hand, modelling for this building also 
suggests that measures have been taken during 2018 
reduced overall energy consumption compared to 
the situation without measures. 

Machine learning can have significant applications in 
the analysis of building operations and the 
development of more intelligent control methods. In 
addition to the impact assessment of energy 
efficiency measures discussed in this work, potential 
applications could also include model-based 
predictive control, maintenance cost forecasting 
based on utilization rate, fault diagnosis by 
identifying various deviations, and clustering-based 
intelligent control. However, these are just a scratch 
on the surface of potential applications, and the 
construction industry also offers considerable 
opportunities for innovation in the use of artificial 
intelligence and machine learning. However, the 
implementation of various methods and applications 
still requires considerable further research and 
development. There are many questions that still 
need to be answered. What kind of information is 
relevant? How is the information collected and who 
owns it? What are the possibilities of different 
methods and what limitations do they have? How to 
get methods into the production? And many others. 
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