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Abstract. In district heating or collective heating substations, components can fail or can be 

inappropriately installed or configured (e.g. valves get broken, heat exchangers get fouled, 

controller parameters are inappropriately chosen, heat exchanger wrongly connected, internal 

heating system problems, etc.). The result of these faults is a reduced cooling of the supply water, 

and as such higher than necessary return temperatures to the grid and higher volume flows (to 

deliver the same needed power) occur, leading to higher OPEX for all stakeholders. In this work, 

two approaches for a fault detection routine for district heating substations are introduced, based 

solely on the energy meter data, with an application on a real-life district heating network in 

Sweden. The first approach is a cluster-based approach in which substations within the district 

heating are compared to each other using the overflow method and performance signatures to 

flag substations with sub-optimal performance compared to other substations in the network. 

The second method is an instance-based approach using a black-box model to predict the 

behaviour of the substation using an extended set of input variables and comparing the 

predictions to the measurements. The results from the two fault detection approaches show 

that both the cluster-based and the instance-based methods can detect deviating behaviours 

in DH customer installations. 
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1. Introduction

District heating (DH) is a collective heating system in 
which heat is produced in one (or multiple) locations 
to meet the heat demand, usually of multiple 
customers at other locations. The heat is transferred 
using water circulating in a pressurized piping 
system. The heat demand consists of Space Heating 
(SH) demand as well as Domestic Hot Water (DHW) 
demand for sanitary purposes for residential and 
commercial buildings. A simplified illustration of a 
district heating system is shown in Fig. 1: the main 
components are the heat production where heat is 
produced, the heat distribution that transports the 
heat, the customer substation that transfers the heat 
from the heat distribution pipes to the internal 
heating system, and the internal heating system that 
consists of the SH and the DHW circuits. 

Due to the inherent energy efficiency, heat source 
flexibility and the capability of utilizing residual heat, 

district heating has been identified by the European 
Union as an essential solution in future energy 

Fig. 1 - A simplified illustration of a district heating 
system, where 1 represents production, 2 represents 
distribution, 3 represents the customer installations, 4 
represents the customer substation, and 5 represents 
the internal heating system. 

systems to help decarbonizing Europe [1,2]. The 
district heating network can be supplied by a 
multitude of sources such as fossil fuel based boilers 
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as well as more sustainable sources such as excess 
heat from industrial processes and Combined Heat 
and Power plants (CHPs) based on biomass or waste 
incineration, geothermal heat and solar thermal heat 
[1]. Moreover, large-scale heat pumps can be used as 
a heat source providing the possibility to increase the 
flexibility of the energy system by integrating the 
heating and electricity sectors [3].  

In existing DH systems, multiple components can 
perform sub-optimally leading to inefficiency in the 
operation of the system due to an increase in the 
system’s temperatures. Customers’ installations 
(component 3 in Fig-1) is one of the major 
components that can perform sub-optimally, causing 
increased return temperatures in the DH system and 
consequently either the flow or the supply 
temperature need to be increased to provide the 
needed heat [4,5]. The customer’s installation 
consists of: 1) the substation, which is a combination 
of heat exchangers, valves, sensors, actuators, 
control and a heat meter, as well as 2) the SH and 
DHW system that contains a number of valves, 
radiators and heat exchanger. The issues, or faults, in 
the customer installations may occur in a number of 
different components and include faults and 
problems such as fouling of heat exchangers, broken 
temperature sensors, control valves stuck in an open 
position, temperature sensors placed on the wrong 
pipe, DHW circulation connected before the pre-
heater, high return temperatures from the 
customer’s internal heating system, and high set 
point values in the customer system [7-9].  All of 
these faults may not be seen as an actual fault where 
something is broken, but they still lead to high return 
temperatures. 

Previous studies have shown that a large share of the 
substations in different DH systems are not 
performing well [6,7],  indicating that substations 
have a large impact on the DH system’s temperature 
and its efficiency. With the district heating utilites 
aiming at decreasing their system’s temperatures to 
increase their efficiency and integrate low 
temperature renewable heat sources, and the 
emergence of the 4th generation district heating 
networks, it becomes increasingly important that 
faulty installations are detected and corrected. 
Traditionally, the poorly performing installations 
have been detected using manual analysis methods 
[10]. However, given the large number of substations 
that might be present in a DH network, the manual 
approach can be very time consuming and costly. For 
this reason, there is a need for more automated 
methods to help in the fault detection process.  

In this paper, two methods to detect sub-optimally 
performing substations are presented: the first 
approach is a cluster-based approach in which 
substations are compared to each other based on 
their historical data and the second approach is an 
instance-based approach in which a substation is 
modelled using a black box and a deviation is 
detected by comparing the outcome of the model to 

the field measurements. In what follows, a review of 
exisiting methods for Fault Detection is presented 
followed by the explanation of the implemented 
methods and after that the results are presented. The 
paper finishes by a discussion on the implemented 
methods followed by concluding remarks and the 
prospect of future work.    

2. Fault detection in district heating

substations

Fault detection and diagnosis (FDD) is a collection of 
methods to monitor a system’s behaviour, to 
determine if a fault is present in the system, and to 
determine the characteristics and root cause of the 
detected fault(s) [11]. FDD is applied in a variety of 
domains for fault detection and predictive 
maintenance.  

The application of fault detection on DH customer 
installations is gaining momentum in recent years. 
The European Energy Efficiency Directive which 
became effective in 2012 states that all energy 
customers should be billed according to their actual 
energy consumption[12]. In order to do that, energy 
meters need to be placed at the primary side of the 
customer’s district heating substation. With this data 
being available, the utilities have the chance to 
perform analysis for different purposes, such as FDD. 
Literature regarding this topic shows that different 
types of data analysis methods are applicable for the 
detection of faults in DH substations. The literature 
includes aproaches based on cluster-based fault 
detection techniques as well as instance-based 
techniques. Sandin et al in [13] provided an overview 
of different statistical and probabilistic methods for 
fault detection in substations, such as linear 
regression modeling, limit checking, correlation 
analysis and outlier detection, and provided 
examples of their application on hourly based data. 
Gadd and Werner in [5] used the overflow method, a 
common method that compares the actual flow over 
a period of time to an ideal flow derived from an ideal 
value of the primary temperature difference. The 
authors also use temperature difference signatures 
to detect faults. In [14], Calikus et al. use heat power 
signatures and their degree of abnormality to rank 
individual buildings. Farouq et al. present in [15] a 
reference-group based approach for detecting 
customer installations that display a deviating 
behaviour. The reference groups were based on a k-
nearest neighbour approach, utilizing the return 
temperatures from the investigated installations to 
identify the reference groups for each installation in 
the data set. If an installation deviates significantly 
from its reference group, it is considered faulty. 

Machine learning (ML) and instance-based methods 
have also been explored in the literature. In [16], 
Ingvarsson et al. explored the possibilities to use 
models for fault detection and to track slow drifts in 
the substations’ performance. The results show that 
the best suited model is a SARIMAX (0, 1, 1)x(0, 1, 
1)24, for any combination of variables. In the project 
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RELaTED [18], two tools have been developed for 
automatic fault detection in DH substations based on 
ML algorithms: DH doctor and DH Autotune. The first 
one exploits clustering in which anomalies can be 
detected by measuring the distance among the 
clusters and following the evolution of the centroids 
related to a particular variable over time. The second 
tool is based on hourly averaged readings and allows 
the prediction of the load. Alarms are activated if 
some KPIs exceed a threshold. The work done by 
Guelpa et al. in [17] focused on the detection of 
fouling in district heating substations. An automatic 
method using the most commonly collected metering 
variables, such as volumetric flow and temperatures 
in the substation primary and secondary circuits, has 
been developed.  

The literature shows that there is a variety of 
successfully implemented methods for fault 
detection. However, many of the presented methods 
require an amount of manual handling and/or 
interpretation. Some of the methods also require a 
certain amount of understanding for more advanced 
computer science and data handling methods. In this 
study, the aim is to show two simple methods that 
help eliminating a lot of manual stages in the data 
analysis, which can be used by the DH industry 
without the need for prior advanced knowledge in 
computer science and data handling.  

In the next two sections, the two approaches are 
presented. 

3. Cluster-based approach

3.1 data used 

The data used in this study was gathered from the 
business system of a DH utility in Sweden between 
April 2015 and March 2016, and it includes data from 
the 3 000 installations that had the largest energy 
consumption in the system. The data set contained 
typical energy meter data, such as the accumulated 
energy consumption, the accumulated volume 
passing through the installation, the primary return 
temperature, and the primary supply temperature 
for each of the 3 000 installations. Moreover, the 
installation ID, the postal code of the installation, and 
the outdoor temperatures were collected.  

3.2 Method 

The cluster-based method compares substations 
within a group or a cluster of substations to find 
faulty or poorly performing substations. A schematic 
of this method is shown in Figure 2.  

Fig. 2 – Schematic view of the cluster-based fault 
detection method. 

First, a pre-processing and data handling is 
performed on the input data. During this step, the 
data is prepared and transformed into a suitable 
format for the data analysis step. Data processing 
may include several tasks, such as removal of 
duplicate values, feature extraction, and removal of 
outliers. In this first step, faults in sensors readings, 
communications and data logging can be detected. 
After that, data analysis is performed. Here, for each 
substation, an overflow value is calculated. The 
overflow represents the extra volume of water that 
passed on the primary side of the substation during 
a certain period compared to an ideal calculated 
volume. This ideal volume is calculated based on an 
ideal cooling value of the primary temperature. The 
overflow can be calculated using equation (1): 

𝑉𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 𝑉𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑉𝑖𝑑𝑒𝑎𝑙 = 𝑉𝑎𝑐𝑡𝑢𝑎𝑙 −
𝐸𝑎𝑐𝑡𝑢𝑎𝑙

𝜌.𝑐𝑝.𝛥𝑇𝑖𝑑𝑒𝑎𝑙
 (m3) 

(1) 

Where  

𝑉𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤  = overflow volume (m3) 

Vactual = actual measured volume (m3) 

Videal = ideal volume (m3) 

Eactual = actual energy (J) 

𝜌 = fluid density (kg/m3) 

Cp = specific heat capacity (J/kg.K) 

ΔTideal = ideal temperature difference 
between the primary supply and 
return (K) 

The ΔTideal value varies depending on which DH 
system is being investigated. In this study, it was 
chosen to be 45 ℃, in accordance with [3]. As 
equation (1) shows, the lower the primary ΔT, the 
higher the overflow. This is an indication that the 
customer’s installation doesn’t function optimally. 
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After the calculation of the overflow, a set of the 
substations with the lowest overflow values is picked 
and considered as the reference case: a 
representative set of the best performing 
substations. In this case, the top 25 % are considered 
for the reference case.  Then, to determine from the 
remaining substations the poorly performing ones, 
three different criteria were used: the cooling 
performance, the return temperature level, and the 
energy consumed in the building. Two criteria were 
used to create two signatures: one cooling signature 
and one return temperature signature. The 
signatures consisted of a reference case and 
threshold values which were used for outlier 
detection. For each of the signatures, the reference 
case is determined by performing a piecewise linear 
regression on the reference substations chosen 
based on the overflow method. The mathematical 
relationship for a piecewise linear regression model 

with one breakpoint H is defined as follows [19]: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2(𝑋𝑖 − 𝐻) 𝐼(𝑋𝑖 ,𝐻) + 𝜀𝑖 ,

𝑤ℎ𝑒𝑟𝑒 𝐼(𝑋𝑖 ,𝐻) {
1, 𝑋𝑖 > 𝐻,
0, 𝑋𝑖 ≤ 𝐻.

 

(2) 

In the equation, 𝛽𝑛, n = 0, 1, 2 are the parameters of 
the regression model, 𝑌𝑖  is the dependent variable 
being modelled, 𝑋𝑖 is the independent variable which 
is used to model the dependent variable, and 𝜀𝑖  is the 
model error. In the cooling signature, the cooling of 
the substation was modelled as a function of the 
outdoor temperature. The breakpoint for the 
piecewise linear regression was determined by 
visually inspecting the data set. 

Once the piecewise linear regression for the 
reference case is determined, the deviating, or 
outlier, values can be identified. The outliers were 
identified using the mean and the standard 
deviations of the reference case values. Values 
located at a distance larger than 3 standard 
deviations from the mean are considered as outliers 
[13]. For the cooling, piecewise linear regression was 
used to model the mean of the reference case and so 
the thresholds were also linear. For the return 
temperature signature, the mean was modelled using 
a constant value, resulting in constant thresholds. 

 3.3 Results 

Figures 3 and 4 show the cooling and return 
temperature signatures with one well performing 
and one poorly performing customer installation 
visually represented. In both Figures, the well 
performing installation is represented by the blue 
circles, while the poorly performing installation is 
represented by the red circles. As may be seen in the 
figures, the well performing installation has all its 
values located inside the thresholds, while the poorly 
performing installation has the main share of the 
values located outside of the thresholds. 

Fig. 3 – Cooling signature with one well performing 
(blue circles) and one poorly performing (red circles) 
installation represented. 

Fig. 4 – Return temperature signature with one well 
performing (blue circles) and one poorly performing 
(red circles) installation represented. 

The developed fault detection approach identified 1 
273 installations as being poorly performing, which 
corresponds to approximately 43 % of the 
investigated installations. Tab.1 presents the five 
installations that were identified as the substations 
that deviated the most from the expected behaviour. 

Tab. 1 - The five substations with the highest overflows, 
and with outliers for both cooling and return temperature 
signatures. 

Subs # 6 7 8 9 10 

ID X54 X93 X45 X41 X21 

# of dT 
Outliers 

277 277 169 201 277 

# of Tr 
Outliers 

366 366 316 363 366 

𝑉𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤  

(m3) 

124 
581 

102 
885 

64 
824 

57 
121 

55 
927 
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4. Instance-based approach

4.1 data used 

The dataset used in this study consisted of hourly 
values for one year (November-November) from the 
energy meter of one DH substation in a DH system in 
Sweden. The variables, or features, that were 
included in the dataset are: substation ID, average 
hourly outdoor temperature,  hourly measurements 
of heat power consumption, mass flow, supply and 
return temperatures, as well as the average value of 
the outdoor temperature during the previous 24 
hours.  

4.2 Method 

In this method, a well-performing substation is 
modelled and then its performance is predicted 

based on subsequent input data. Any faults are then 
detected as deviations from the normal behaviour in 
the model predictions. The installation was selected 
from a data set of approximately 1 000 customer 
installations. First the overflows (Section 3.2) for all 
installations were calculated and then 10 
installations with the lowest values of overflow were 
visually inspected to identify the best performing 
one. 

The fault detection method was developed in Python 
using the Tree-based Pipeline Optimization Tool 
(TPOT), an automated machine learning tool that 
creates combinations, or pipelines, of data 
transformations and machine learning models using 
genetic programming. This tool helps simplifying 
some of the requirements of ML methods regarding 
the data quality: the variables (or features) may have 
to be modified in some way, e.g., scaling or 
introduction of polynomial features, and a well-
performing predictor must be chosen [20]. Given a 
set of data without missing or mislabelled values, the 
TPOT automatically optimizes feature selection, 
feature pre-processing, feature construction, model 
selection, and parameter optimization. The last step 
of the ML process, the model validation, is carried out 
by the user.  

To choose the best TPOT pipeline to be used, 16 
different training sets and 16 different test sets were 
used to produce 16 different pipelines. These 
pipelines were then introduced to the same training 
set, to evaluate which pipeline to further test and 
evaluate in the study. Training sets and tests set are 
subsets of the input data, with the ration training 
over test set equal to 80/20. To evaluate the 
performance of the TPOT pipeline, the coefficient of 
determination (R2) and the Mean Absolute Error 

(MAE) were used. Equation (3) shows how R2 is 
calculated. The closer R2 is to one, the better is the 
performance of the model. 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
(3) 

Where: 

SSres = the sum of squares of the residuals 

SStot = the total sum of squares, which is 
proportional to the variance of the data 

The mean absolute error, MAE, is the averaged sum 
of the absolute value of the residuals between actual 
values and predicted values, and can be calculated 
using equation (4). For a well performing model the 

MAE is expected to be as close to zero as possible. 

𝑀𝐴𝐸 =
1

𝑛
∑ |(𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)𝑖 −𝑛

𝑖=1

(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)𝑖|  

(4) 

By investigating the values of MAE and R2 the most 
accurate TPOT pipeline, shown in Figure 5, was 
chosen. 

After choosing the TPOT pipeline, a choice of the 
parameter to be predicted using the substation 
model must be made. For that, different 
combinations of input/output variables were tested. 
The performance of the models was evaluated using 
the R2 and MAE values. The results are shown in 
Tab.2. 

Tab. 2 - Parameter combinations that were tested with 
the model. Combination number 5, highlighted in grey, 
obtained the best R2 and MAE value. 

comb Input Output R2 MAE 

1 Tout, Tr, Ts, t ṁ 0.9703 0.1337 

2 Tout,24, Tr, Ts, 
t 

ṁ 0.9555 0.2027 

3 Tout, Ts, t, ṁ Tr 0.8839 1.1091 

4 Tout,24, ṁ, Ts, t Tr 0.8903 1.10348 

5 Tout,24, Ts, t, 
Tout 

ṁ 0.9740 0.1301 

6 Tout,24, Ts, t, 
Tout 

Tr 0.8841 1.0555 

Fig. 5 – The TPOT pipeline used in the study 
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7 Tout,24, Ts, t, 
Tout 

Tr, ṁ 0.9296 0.5857 

To test the fault detection capability of the model, 
artificial faults were introduced to the data set. The 
model outputs for the faulty data sets were then 
compared to the outputs for the well-performing, 
original data set by calculating the hourly and 
accumulated residuals (rolling window of the 
previous 24 hours) between the model outputs and 
the actual measurements from the customer 
installation. By comparing these residuals to each 
other, it was possible to investigate whether the 
model performance changed when introduced to a 
data set containing faults.   

Two faults were induced in the dataset. The first one 
represents a loss of communication between the 
energy meter and the database of the DH utility. To 
handle this type of fault, the utilities usually replace 
the missing values by a constant value. In this case, a 
value of 60 ˚C was chosen and inserted randomly in 
the data set for the supply temperature. Since this 
was an extremely low value compared to the original 
dataset, another fault was also induced where the 
original value of the supply temperature was 
decreased by 10 %. The second type of fault was 
induced as a gradual change in output over a time 
period, representing a drifting meter. This was done 
for the outdoor temperature sensor as well as the 

supply temperature sensor. These two faults are a 
common occurrence in DH metering data. In what 
follows only the results for a drifting meter will be 
presented.  

4.3 Results 

Figures 6 and 7 shows two different residual plots for 
two of the faults investigated in the study: the 
drifting outdoor temperature sensor (Figure 6) and 
the drifting supply temperature sensor (Figure 7). 
The residuals for the data sets containing a fault are 
represented by the red line in the figures. The blue 
line in both figures represents the residuals between 
the real and the predicted values for the data set that 
did not contain a fault. 

Figure 6.a) shows the residuals between the real 
values and the values that were predicted by the 
model. Figure 6.b) shows the cumulative sum over a 
24 h interval of the same residual values. As may be 
seen in Figure 6.a), the model prediction changes 
when this fault is present in the data set, but the 
deviation is not clearly distinguishable. The 
cumulative sum of residuals in Figure 6.b) displays a 
clear deviation approximately one month after the 
fault was induced in the data, indicating that this 
method may be well suited for automated detection 
of a drifting outdoor temperature meter.  

Figure 7.a) shows the residuals between the real 
values and the values that were predicted by the 
model. Figure 7.b) shows the cumulative sum over a 
24 h interval of the same residual values. As may be 
seen in Figure 7.a), the model prediction does not 
change significantly when this type of fault is present 
in the data set.  This may also be seen in Figure 7.b). 

4. Discussions and conclusions

The results from the two fault detection approaches 
show that both can detect deviating behaviours in DH 
customer installations. The cluster-based method 

Fig. 7 – Analysis of the residuals between the real  and the predicted values for the data set without a fault  (blue line) 
and the data set with a drifting supply temperature meter (red line).  a) Residuals between real and predicted values 
as a function of time. b) Cumulative sum of residuals as a function of time. 

Fig. 6 – Analysis of the residuals between the real  and the predicted values for the data set without a fault (blue line) 
and the data set with a drifting outdoor temperature meter (red line). a) Residuals between real and predicted values 
as a function of time. b) Cumulative sum of residuals as a funcion of time.   

a) b) 

a) b) 
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rapidly detects several installations that have a high 
overflow. Since a high overflow is an indication that 
the installation is not working as it should, this 
further implies that the cluster-based approach 
detects poorly performing installations.  

For the instance-based approach, the model 
behaviour changes when a fault is present in the data, 
as may be seen in Figures 6 and 7. This indicates that 
the method can detect the deviations induced in the 
data set. However, when analysing the results, it can 
be concluded that different faults have different 
impacts on the model performance. This is especially 
clear for the two faults that are related to drifting 
meters. Although the fault is the same (a gradual 
increase of the meter readings over time), a drifting 
outdoor temperature sensor in the meter readings 
has a much larger impact on the model performance 
than when a drifting supply temperature sensor is 
present. This may be seen in Figures 6 and 7. In 
Figure 6.b), the drifting outdoor temperature sensor 
causes the cumulative sum of residuals for the data 
set known to contain a fault (red line) to deviate from 
the expected behaviour (blue line) soon after the 
fault has been induced in the data set. This shows 
that the model predictions have changed, thus 
indicating that a fault is present in the data set. When 
investigating the cumulative sum of residuals for the  
predictions of the drifting supply temperature 
sensor (Figure7.b)), it can be noticed that the 
deviation from the expected behaviour is not as large 
as for the data set in Figure 6. This indicates that the 
model used in the instance-based fault detection 
approach may not be able to detect all faults that are 
present in DH customer installations. However, this 
also indicates that the method may be suitable for 
fault diagnosis as it seems to be capable of 
distinguishing between different faults.  

The two methods are based on two different fault 
detection approaches. The cluster-based approach is 
based on a reference case of several installations, to 
which the behaviour of each individual installations 
is compared. This means that the method can be 
generalized between different installations and 
different DH systems rather easily. The change that 
must be made when investigating a new DH system 
is to change the reference case that the fault 
detection signatures are based on. However, the 
generality of the method may be a problem since the 
current method does not differentiate between 
different types of customer installations which may 
have a wide variety of different behaviours in terms 
of heat use, e.g., if comparing a school building to a 
single-family household. One way to solve this 
problem is to introduce another, initial step in the 
fault detection method, right after the data validation 
step. In this step, the buildings would be divided into 
smaller groups or clusters, representing different 
types of buildings (in terms of heat use). The fault 
detection method would then be applied to each of 
these groups. Another improvement on the method 
would be to introduce extra Key Performance 
Indicators (KPIs) in addition to the absolute overflow 

calculated. For example, using a relative or an energy 
weighted overflow can enhance the accuracy of the 
method. 

The instance-based approach uses the model of one 
installation. This means that one model for each 
installation in the DH system should be developed to 
obtain a well-performing fault detection method. 
However, this may be a very time-consuming task 
that would have to be repeated each time a new 
customer installation is installed in the DH system. 
One way to reduce the number of models needed 
could be to implement the same type of grouping of 
installation types as suggested for the cluster-based 
fault detection approach. The behaviour of each 
group would then be modelled in the way suggested 
in this paper. This approach would probably reduce 
the accuracy of the fault detection model, since the 
model of a group of installations will be less accurate 
for individual installations.  

A natural step in the process of developing a fault 
detection method is to validate the results. However, 
obtaining such data sets from DH industry has been 
a challenge. Most DH utilities do not log when a fault 
has occurred in their systems, only when they have 
corrected a fault. Neither do they connect the records 
of the corrected faults to deviations in customer data. 
This may be referred to as the lack of labelled data. 
Labelled data may in this case be described as data 
where a specific fault is known to have occurred at a 
specific time, in a specific customer installation. The 
lack of labelled data has made it challenging to 
validate the developed fault detection methods 
properly. The lack of labelled data also introduced a 
problem that may be present for both the cluster-
based and the instance-based approach: how to 
know that the data from the installations represent a 
well performing installation that can be either 
modelled or included in the reference case? Since no 
labelled data is available, it may be that some 
installations that contain a fault today are included in 
the reference case for the cluster-based approach. It 
is also possible that some installations seem to be 
well performing since no larger deviations are 
present in the data set. However, they may in fact 
contain a fault that has been present during a long 
time, which makes it look like their “faulty” 
behaviour is their normal behaviour. Using the 
instance-based approach on such data sets would 
generate an incorrect model of the expected 
behaviour of the installation.  

Therefore, an important initial step to further 
improve the fault detection methods developed 
would be to identify several installations where 
specific faults are known to have occurred, at a 
specific time. It is also important to identify several 
installations that are known to not have had any 
faults during the same time. This would provide the 
possibility to validate the methods, and to make sure 
that they detect the installations that actually 
contained a fault during the investigated period of 
time. To also overcome the lack of labelled data, both 
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methods can be used simultaneously by the district 
heating utility. Starting from historical data, the 
cluster-based approach can be used to gradually 
detect malfunctioning substations. It can be re-
evaluated on a periodic basis, for instance monthly. 
The instance-based approach can be used in parallel. 
Given that the instance-based method uses historical 
data, it would not be known from the start if the 
behaviour modelled is for the well-behaving or faulty 
substation. For that, the cluster-based method can 
help. As a faulty substation is corrected, the model is 
recalibrated, and any further deviations can be an 
indication of a fault in the substation. Another point 
of improvement is how the deviating behaviours are 
detected for the instance-based approach. Currently, 
this is done by visual inspection of the residuals. To 
be able to use the instance-based approach on a 
larger scale, the identification of deviating residuals 
must be automated. This could be done by 
introducing, e.g., threshold values that the deviations 
may not exceed (in similarity to the threshold values 
used in the cluster-based approach). Overall, the two 
approaches show great promise for fault detection. 
The next steps include testing the methods on 
labelled data sets, and to develop a solution for fully 
automating the fault detection methods.  

5. Acknowledgement

This work is part of the TEMPO project which is 
funded by the European Union’s Horizon 2020 
Programme under Grant Agreement no. 768936. 

6. Data access statement

The datasets analysed during the current study are 
not publicly available because of privacy 
requirements. 

7. References

[1] Lund H. et al. “4th Generation District Heating
(4GDH) - Integrating smart thermal grids into
future sustainable energy systems”. 
Energy.2014;68:1–11. 

[2] Kavvadias K., Jiménez-Navarro J., Thomassen G. 
Decarbonising the EU heating sector -Integration
of the power and heating sector. EUR 29772 EN. 
Luxembourg: European Union, 2019.

[3] Lund H. et al. “Smart energy and smart energy
systems”. Energy.2017;137:556–565. 

[4] Sandin F., Gustafsson J., Delsing J. Fault Detection
with Hourly District Energy Data; Research
Report 2013;27. 

[5] Gadd H., Werner S. Achieving Low Return
Temperature from District Heating Substations. 
Appl. Energy. 2014;136:59–67. 

[6] Gadd H., Werner S. Fault Detection in District 

Heating Substations. Appl. Energy. 2015;157:51–
59. 

[7] Werner S. Feltyper i fjärrvärmecentraler
strukturerade (Types of Faults in District Heating
Substations Structured); Halmstad Högskola: 
Halmstad.2013. (In Swedish)

[8] Yliniemi K. Fault Detection in District Heating
Substations. Licentiate Thesis, Luleå University of
Technology, Luleå, Sweden.2005.

[9] Alsbjer M., Wahlgren P. Fjärrvärmecentraler 10
år—Håller de måttet? (District Heating
Substations 10 Years—Do They Measure up?);
Research Report 2011;9. (In Swedish)

[10] Frederiksen, S.,Werner S. District Heating and
Cooling; Studentlitteratur: Lund, Sweden, 2014.

[11] Park YJ., Shu-Kai F., Chia-yu H. “A Review on
Fault Detection and Process Diagnostics in
Industrial Processes”. Processes.2020. 

[12] The European Commission. Annex to the
Commission recommendation on the
implementation of the new metering and billing
provisions of the Energy Efficiency Directive
2012/27/EU no C(2019) 6631 final. 2019.

[13] Sandin F., Gustafsson J., Delsing J. Fault detection
with hourly district data. 2013. 

[14] Calikus E et al. “Ranking Abnormal Substations
by Power Signature Dispersion”. Energy
Procedia.2018; 149: 345–353. 

[15] Farouq S. et al. “Large-scale monitoring of
operationally diverse district heating
substations: A reference-group based approach”. 
Engineering Applications of Artificial Intelligence
2020. 

[16] Ingvarsson S. Statistical Modelling of Individual 
Substations in a District Heating System. 2018. 

[17] Guelpa E., Verda V. Automatic fouling detection
in district heating substations: Methodology and
tests. Applied Energy, 2020;258. 

[18] Garay R., Fester J., Mugaguren, L., Martinez R. 
RELaTED D2.4 – Energy flexibility and DH
Control. 2019. 

[19] Cogger K.O. Piecewise linear modeling: Theory, 
guidelines, and applications. In Management 
Science & Technology Symposium. 2006. 

[20] Olson R., Urbanowicz R., Andrews P., Lavender
N., Kidd L., Moore J. ”Automating Biomedical Data
Science Through Tree-Based Pipeline
Optimization,” European conference on the
Applications of evolutionary computation. 2016. 

8 of 8




