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Abstract. The object of the present study is a natural refrigerant base (propane) heat pump 

system with a dual source/dual sink heat exchanger (air or ground-based) which is integrated 

into a centralized tri-generation system with PV and battery for a multi-family building located 

in Spain. To evaluate the performance of this complex system, a simulation environment was 

developed, connecting different software. The main program is TRNSYS, with the python package 

pytrnsys used to create the models and run the simulations, while a model predictive controller 

is externalized in a separate optimization software. The co-simulation environment enables to 

couple both software and operate the models in the simulation with the decisions made by the 

external controller.  This environment was used to evaluate the considered system for three 

separate weeks of the year, each representative of the heating/cooling/DHW demands in winter, 

summer and intermediate seasons. For each of these weeks, the simulation was run once with a 

reference rule-based controller, and once with the advanced model predictive controller, to 

evaluate the additional benefits brought by the later strategy. The results were then extrapolated 

to the whole year, and revealed that the model predictive controller was able to provide cost 

savings of 12 to 20% (depending on the consideration or not of the cooling season which gave 

unexpectedly adverse results). This controller operated the heat pump more efficiently thanks to 

its prior knowledge of the best source to use at each moment (air or ground). It also managed the 

battery in a more economical way thanks to its prior knowledge of the time-varying electricity 

price, thus charging always at the cheaper hours of the day, and demonstrating the advantages of 

using forecasts and predictive optimization for HVAC control. 
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1. Introduction

Heat pumps have an important role in the 
decarbonisation of the building sector, thanks to 
their high efficiency and the possibility to operate 
them with renewable electricity. The corresponding 
market has been growing rapidly in the last years, 
with an increase from 893 k units sold in Europe in 
2015 to 1.6 m in 2020 [1]. Furthermore, the Kigali 
amendment to the Montreal Protocol [2] will enforce 
a limit on the global warming potential of the 
refrigerants used in heat pumping systems, which 
will drive a shift towards natural refrigerants or less 
environmentally damaging substances.  

Centralized heat pump installations for multi-family 
buildings present several advantages, including the 

economy of scale for the buffer storages in common 
spaces of the building. In this paper, a dual 
source/sink heat pump system adapted to mild 
Mediterranean climates is investigated. This heat 
pump includes a dual source heat exchanger that is 
able to transfer heat with either a geothermal or an 
air source/sink, and which can work as evaporator 
or condenser in heating or cooling modes 
respectively. Both sides can be switched depending 
on which is the most efficient heat source or sink at 
any moment. Such a system enables to downsize the 
length of the costly borehole by a factor of two, since 
part of the yearly load can be covered with the air 
source. Furthermore, the dual source/sink heat 
pump uses propane (R290) as a refrigerant, which 
has a much lower global warming potential than 
most refrigerants currently used in thermodynamic 
cycles, and therefore presents less potential impacts 
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in case of leakages. 

To fully exploit the cost and carbon emission savings 
potential of heat pump systems, they must be 
controlled and operated in a smart manner. In this 
regard, model predictive controls (MPC) based on 
optimization and predictions of the future have 
proven to be a promising solution. It has been 
demonstrated that such strategies can provide 
savings of up to 30% in several cases [3].  

The present study evaluates the benefits of the 
centralized dual source/sink system for a multi-
family building. Through detailed simulations 
performed in co-simulation between different 
software, the complete studied system was evaluated 
under two different strategies: a reference rule-
based control, and an advanced controller based on 
model predictive control. Selected representative 
weeks were chosen to perform these detailed 
simulations.  

2. Methodology

The dynamic simulations performed for this study 
have been carried out in a software environment 
involving different interconnected programs. This 
simulation environment is first presented, then the 
study case is described with details of all the systems 
considered, and their control strategies. Finally, the 
weeks chosen for the analysis are presented. 

2.1.  Simulation environment 

The simulation environment is based on the pytrnsys 
package [4], which is a complete framework to 
create, run and post-process TRNSYS simulation 
models in python. All the systems are represented 
with detailed models connected together with the 
pytrnsys interface. In the present case, two different 
control strategies have been used: a reference 
control, which was integrated directly in the TRNSYS 
models, and an advanced energy management (AEM) 
which is based on optimization and therefore has to 
be externalized.  

Fig. 1 – Architecture of the simulation environment 
in the reference control case. 

The reference control schematic is presented in Fig. 
1. In that case, the rules composing the reference
control are implemented into a custom TRNSYS Type
that manages the operation of the different systems.

The advanced control schematic is presented in Fig. 
2. In that case, the controller (AEM) is written in an
external GAMS code [5]. The simulation has a time
step of 1 minute, and every 15 minutes, the AEM
controller is called: first, a communication is
established between a python script and TRNSYS 
(Type163) through read/write files. Afterwards the
python script launches the GAMS model which
performs its optimization calculations and returns 
its output to TRNSYS through python. In this way, the
AEMS determines the optimal set-points for the next
15 minutes of simulation, which are then interpreted 
in TRNSYS by a custom Type and applied to the
models of the different systems.  This process is 
repeated after 15 minutes.

Fig. 2 – Architecture of the simulation environment 
in the advanced control case. 

2.2. Characteristics of the study case 

The study case presented in this paper is a multi-
family building situated in Tarragona, Spain, with a 
total heated surface area of 2400 m2. The heating and 
cooling systems are centralized and distribute the 
required power to the 38 flats that comprise the 
building.  

The centralized systems consist of: 
- A dual source/sink reversible heat pump with a

dual source/sink heat exchanger (DSHX), capable
of using either air or ground as sources (DSHX as
evaporator) and sinks (DSHX as condenser).

- Two storage tanks, one for storing domestic hot
water (DHW) and one for space conditioning
including both space heating (SH) and cooling
(SC).

- An electrical system composed of a photovoltaic
field (PV) and an electrical battery that enables to 
store the surplus of electricity not directly 
consumed in the building.

Space heating is distributed to the flats through 
distribution pipes and a radiant floor system. Space 
cooling is distributed using fan coil units (FCU). The 
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DHW distribution system includes a recirculation 
loop to keep the piping to each apartment warm.  
A conceptual schematic of the mechanical and 
electrical systems is presented in Fig. 3 and the list of 
subsystems and their respective sizes in the 
considered study case is presented in Tab. 1. 

Fig. 3 – Conceptual view of the overall mechanical 
and electrical systems. 

Tab. 1 – List and sizes of the considered systems for 
the study case of Tarragona. 

Parameter Unit Value 
Heat pump power kW 44 
DHW tank capacity m3 1.75 
SH/SC tank capacity m3 1.5 
PV peak power kWp 62.5 
Battery capacity kWh 125 
Heating demand kWh/m2 2.0 
Cooling demand kWh/m2 7.0 
Appliances elec. demand kWh/m2 31.5 

2.3. Control strategies 

The reference control for the dual source system 
consists in a set of rules that decide on the operation 
of its different components. The algorithm is split 
between heating and cooling modes. The 
temperatures in the two tanks and their associated 
set-points determine whether there is a demand for 
space heating, cooling or DHW. The demand is 
mainly covered by the heat pump with priority on 
DHW. The algorithm determines which is the most 
efficient source or sink (air or ground) for the DSHX 
at each moment, i.e. the warmest source is 
considered the most efficient in heating mode, while 
it is the coolest in heating mode. When both 
sources/sinks have the same temperature, the 
ground source is favoured. The room temperature 
demand is determined by a classic thermostatic 
control. In addition, in cooling mode, a free cooling 
operation is possible and prioritized:  it consists in 
circulating water between the radiant floor circuit 
and the borehole to cool down the building. If this is 
not sufficient, cold water from the space conditioning 
tank is provided to the FCU to further cool down the 
rooms. 

The advanced control presents a different approach 
based on model predictive control. It consists of an 
optimization problem that minimizes operational 
costs and discomfort. The optimization module uses 
reduced-order models of the system that enables it 
to project its operation into the future. It is also fed 
with weather forecasts, occupancy and energy 
prices. The optimization problem is solved every 15 
minutes and sends the required set-points to the 
“real” (simulated) system, to which the set-points are 
applied in the TRNSYS simulation. The main 
configurational parameters of the model predictive 
control are presented in Tab. 2. The thermal systems 
are represented as RC models, as shown in Fig. 4. The 
heat pump is represented by a linear model which 
expresses its electrical consumption in function of 
the ambient temperature, the supply temperature 
and the thermal power delivered [6]. 

Tab. 2 – Configurational parameters of the model 
predictive controller. 

Building model R2C2 

Tanks model R1C1 

HP model Linear 

Horizon length 24h 

Time step 15 min 

Optimization criteria 5% relative gap 

Fig. 4 – Simplified models of the considered systems 
(thermal part). 

2.4. Simulated weeks 

Three different weeks of the year have been 
simulated, covering the specific seasons encountered 
in the climate of Tarragona, Spain. These specific 
weeks were chosen as representative of their 
respective season, enabling an extrapolation to the 
whole year. The methodology for selecting the 
representative weeks followed these two main steps: 
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- Grouping all the weeks of the year into 4 
different clusters using their average outdoor 
temperature and summed solar irradiation 
(using a k-means algorithm) [7],

- Within each cluster, choosing the  week that is 
most representative of the cluster according 
to its space heating or cooling load (using a
genetic algorithm) [7]

Following this process, one week was selected for the 
heating dominated cluster (January 18th to 24th) and 
one week for the cooling dominated cluster (July 4th 
to 10th). For the two remaining intermediate clusters 
with little to no space conditioning load, only one 
week was selected to represent both of them (April 
10th to 16th), since they only have DHW load.  

The weather conditions of the three selected weeks 
are represented in Fig. 5, with both the outdoor 
ambient temperature and the horizontal solar 
irradiation. In addition, the price signal for the first 
week has been plotted. This price signal represents 
one typical week, with high prices between 10:00 – 
14:00 h and between 18:00 – 22:00 h in weekdays, 
while the weekends see low prices all day long. Here, 
the Saturday and Sunday are in the middle of the 
chosen 7 days (Jan. 20th and 21st). The price signal is 
the same for the other weeks, therefore they are not 
presented again, although the Saturday and Sunday 
fall to different positions. 

Fig. 5 – Representation of the three selected weeks. 

Another important hypothesis is the impossibility to 
sell the excess electricity produced by the PV panels 
to the grid. Although the export is possible, it is not 
rewarded economically.   

Regarding the interpretation of the results, several 
Key Performance Indicators (KPIs) have been 
calculated, among which the amount of electricity 
imported from the grid, the electricity from the PV 
that is exported to the grid, the average COP 
(averaged for COP and EER when operating for both 
DHW and SC in the cooling season), and the thermal 
energy produced by the heat pump for each use. 
Other KPIs are described in [8]. 

3. Results

3.1. Heating season week (winter) 

The results are first analysed for the winter week in 
the heating season, which ranges from the 18th to the 
24th of January. Fig. 6 presents the electricity 
imported from the grid in both the reference and the 
advanced control cases as well as the resulting 
energy cost. The periods of high prices have been 
represented in light red to highlight the moments of 
high penalty where the import of energy should be 
avoided.  

Tab. 3 – Main KPIs  computed for the reference and 
advanced control cases of the winter week, and the 
difference between both cases [8]. 

Parameter Ref. AEMS Diff. (%) 
Cost of imported 
electricity [EUR] 

85.1 69.6 -15.5 
(-18.2%) 

Electricity import from 
grid [kWh] 

646.9 670.8 +24.0 
(+3.7%) 

Electricity export to grid 
[kWh] 

0 3.28 +3.27 

Average COP [-] 3.23 3.50 +0.26 
(+8%) 

Thermal energy 
produced SH [kWh] 

300.4 245.5 -54.9 
(-18.3%) 

Thermal energy 
produced DHW [kWh] 

859.3 914.1 54.9 
(+6.40%) 

Comfort time in Cat. I 
[%] 

83.2% 46.5% -36.7% 

Comfort time in Cat. II 
[%] 

16.8% 53.5% +36.7% 

Average room 
temperature [ºC] 

21.2 21.0 -0.23 

Grid purchase ratio [%] 0.36 0.37 +0.02 
PV generation ratio [%] 0.68 0.69 +0.01 
Renewable primary 
energy [kWh] 

2299 2321 +21.8 
(+1.0%) 

Total primary energy 
[kWh] 

3563 3631 +68.7 
(+1.90%) 

Renewable Energy Ratio 
[%] 

0.65 0.64 -0.01 

It can first be observed that the reference control 
strategy actually performs well with regards to 
avoiding these high cost periods. In the hours of solar 
irradiation in the middle of the day, it charges the 
battery, and when the sun sets, it can use the charged 
energy: this moment coincides with the high price 
period of the night, and therefore the import of 
electricity is generally avoided at these times. The 
advanced control goes one step further by optimizing  
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the charging of the battery considering the energy 
price. A peak of energy import from the grid can be 
observed during certain nights: during this hour, the 
price is minimal over the rolling 24 hour horizon, 
therefore the advanced controller makes the most of 
it by fully charging the battery with the energy that 
will not anyways be available with solar power on 
the next day.  

This operation enables to provide additional cost 

savings which is the final objective of the 
implemented control, as can be seen in Tab. 3 where 
the main KPIs that have been computed are 
presented. Although the amount of electricity 
imported from the grid slightly increases (+3.7%) 
due to this night charging operation, the energy 
operational costs decrease by 18%. It should be 
noted that the dual source heat pump operates at a 
higher efficiency with the advanced controller, since 
it knows the temperature evolution of both sources 

Fig. 6 – Hourly electricity import, battery power and cumulative energy cost compared for both the reference 
and advanced control cases in the winter week. Red shaded represents periods of high electricity prices. 

Fig. 7 – Hourly electricity import, battery power and cumulative energy cost compared for both the reference 
and advanced control cases in the intermediate week. Red shaded represents periods of high electricity prices. 

Fig. 8 – Hourly electricity import, battery power and cumulative energy cost compared for both the reference 
and advanced control cases in the summer week. Red shaded represents periods of high electricity prices. 
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and the resulting COP of the heat pump in those 
conditions in advance. The average COP for that 
week therefore increases from 3.23 to 3.50. Thermal 
comfort slightly decreases: the average room 
temperature is 21.2 °C in the reference case, while it 
is reduced to 21.0 °C with the advanced control. This 
slight difference is not considered to affect the 
occupants since thermal comfort always stays within 
the comfort categories I or II from the European 
standards on Indoor Environmental Quality [9]. 

3.2. Intermediate season week (spring) 

The results of the intermediate season week are 
analysed next. For this case, it is a week with a mild 
climate which does not require active heating or 
cooling, and where thermal comfort can be achieved 
with passive strategies such as natural ventilation. 
The main thermal load is therefore DHW in this 
scenario. The imported electricity and cumulative 
cost in both control strategies are reported in Fig. 7.  

In this scenario, both control strategies avoid the 
highest price periods to import electricity. However, 
the import peaks always happen at the lowest price 
hour for the advanced control, and a few hours later 
for the reference rule-based control. The main 
computed KPIs are presented in Tab. 4. The cost 
savings are lower in absolute values than in the 
heating case since the demand is also lower. 
However, in relative savings, the advanced control 
manages to reduce the electricity import from the 
grid by 28.5%, which then corresponds to cost 
savings of 29%, this despite a slight increase of the 
thermal energy produced for DHW (+5.5%). The heat 
pump is also operated at higher efficiency since the 
average COP increases from 3.44 to 3.96 thanks to 
the advanced control. 

Tab. 4 – Main KPIs computed for the reference and 
advanced control cases of the intermediate week, 
and the difference between both cases. 

Parameter Ref. AEMS Diff (%) 
Cost of imported 
electricity [EUR] 

14.7 10.4 -4.3
(-29.0%) 

Electricity import from 
grid [kWh] 

132.1 94.5 -37.6 
(-28.5%) 

Electricity export to grid 
[kWh] 

985.8 962.8 -23.0 
(-2.3%) 

Average COP [-] 3.44 3.94 +0.50
Thermal energy 
produced SH [kWh] 

0.0 0.0 0.0 

Thermal energy 
produced DHW [kWh] 

747.9 788.9 +41.0
(+5.5%) 

Grid purchase ratio [%] 0.08 0.06 -0.02
PV generation ratio [%] 1.59 1.61 +0.02

Renewable primary 
energy [kWh] 

2198 2287 +88
(+4.0%) 

Total primary energy 
[kWh] 

2456 2471 +15
(+0.6%) 

Renewable Energy Ratio 
[%] 

0.89 0.93 +0.03

3.3. Cooling season week (summer) 

Finally, we analyse the results of the week of the 
cooling season. In that case, the building can be 
cooled down using the borehole in a free cooling 
operation, or with active cooling using the cold water 
produced by the heat pump and stored in the space 
conditioning tank.  

It should be noted that the cooling case with the 
advanced controller does not perform as expected. 
This is notably due to the higher complexity of the 
optimization problem with the additional free 
cooling variables, and the differences in the model 
parameters. For these reasons, the optimization fails 
to converge and to provide a solution within its 
allocated time (300 seconds for each optimization) 
for a significant number of instances. When such 
error occurs, the set-points are not updated, and thus 
it disturbs the strategy that had been planned until 
that moment, since local changes must be adapted to 
continue operating the systems. 

Tab. 5 – Main KPIs computed for the reference and 
advanced control cases of the summer week, and the 
difference between both cases. 

Parameter Ref. AEMS Diff (%) 
Cost of imported 
electricity [EUR] 

2.89 9.59 +6.7 
(+232%) 

Electricity import from 
grid [kWh] 

26.5 79.1 +52.6 
(+198%) 

Electricity export to grid 
[kWh] 

1522 916 -606 
(-40%) 

Average COP [-] 3.82 3.86 +0.05 
(+1.2%) 

Thermal energy 
produced SC [kWh] 

21.1 2318 +2297 

Thermal energy 
produced DHW [kWh] 

685 731 +46 
(+6.8%) 

Free cooling energy 
[kWh] 

1980 568 -1411 
(-71%) 

Comfort time in Cat. I 
[%] 

100% 100% - 

Average room 
temperature [ºC] 

24.1 23.6 -0.48 

Grid purchase ratio [%] 0.02 0.03 +0.02 
PV generation ratio [%] 2.02 1.43 -0.59 
Renewable primary 
energy [kWh] 

2281 2325 +44 
(+1.9%) 

Total primary energy 
[kWh] 

2333 2480 +147 
(+6.3%) 

Renewable Energy Ratio 
[%] 

0.98 0.94 -0.04 

The KPIs are presented in Tab. 5 and the time series 
(import, battery and cumulative cost) in Fig. 5. These 
results should be considered with caution because of 
the aforementioned faulty operation. In this 
considered summer week, the PV production is high 
and should suffice to cover almost all the electrical 
load of the building. The imported electricity is 
therefore small in both cases (26.5 and 79.1 kWh), 
although the advanced controller case actually 
imports more energy than the reference controller 

6 of 8



case. 

It can  also be observed that the advanced controller 
performs worse than the reference one when it 
comes to the choice of the cooling strategy. Most of 
the cooling load is covered by free cooling with the 
reference controller, a strategy that has little to no 
cost (only circulation pumping). The advanced 
controller on the other hand resorts a lot to active 
cooling with the heat pump and the FCU. We suspect 
that the simplified model for the ground temperature 
used in the AEMS, which has large effects on the free 
cooling operation, is the main cause of such 
discrepancies and we are trying to solve this issue. 

3.4. Yearly results extrapolation 

The results of the separate weeks for each season 
have been presented in the previous section. An 
annual interpretation can then be carried out, by 
considering that the chosen weeks are 
representative of their respective seasons, and that 

the other weeks of their cluster will present similar 
levels of energy costs. The energy cost for each of the 
studied week and the extrapolation is reported in 
Tab. 6. Given the number of weeks in each cluster, the 
total cost for each season can be computed, which 
then gives the sum of the annual energy costs. In that 
case, the reference control would result in an annual 
cost of 1889 € against 1651 € for the advanced 
controller, hence the AEMS provides cost savings of 
12.6%. 

Given the uncertainty of the cooling week results, a 
separate sum considering only the heating and 
intermediate seasons has also been computed. In 
that case, the adverse effects of the cooling week 
performance are less notable, and therefore the cost 
savings reach a value close to 20% which complies 
with the 15% objective that had been envisioned for 
this type of system operated with the advanced 
controller.

Tab. 6 – Interpretation of yearly results. 

Number 
of weeks 

[-] 

Cost Ref. 
week 
[EUR] 

Cost AEMS 
week  
[EUR] 

Season cost 
Ref. 

[EUR] 

Season cost 
AEMS 
[EUR] 

Savings  

[%] 
Heating season 19 85.1 69.6 1616.9 1322.4 
Intermediate season 15 14.7 10.4 220.5 156 
Cooling season 18 2.89 9.59 52.0 172.6 

Yearly total 52 1889.4 1651.0 -12.6% 
Yearly total (without cooling) 34 1837.4 1478.4 -19.5% 

4. Conclusions

The study has first presented an innovative 
simulation framework including different 
interconnected software. This platform enables the 
testing of different controllers in an automated way, 
particularly of advanced controllers based on 
optimization which cannot be included in the main 
simulation software and must be externalized. It was 
shown that the communication between the different 
pieces of software functions correctly and that the 
overall simulation framework performs 
satisfactorily. This developed environment is an 
important outcome of the study that can be reused 
for further research. 

In that simulation environment, a dual source/dual 
sink system adapted to a Mediterranean climate has 
been tested for three separate representative weeks. 
The overall HVAC system performs satisfactorily 
with a reference controller, but the advanced 
controller based on model predictive control enables 
to save an additional 12% to 19% on the energy costs 
annually. The advanced controller manages the heat 
pump in a more efficient way, benefitting from its 
knowledge in advance of the most efficient of the two 
available sources (air or ground) at every moment. 
The battery is also managed more efficiently 

according to the considered price signal, with 
charging hours coinciding with the lowest electricity 
prices.  

As further research, the optimization problem of the 
advanced controller in cooling mode should be 
revised to obtain faster and more reliable results. 
Furthermore, a second system which includes 
additional elements will also be tested. This new 
system comprises a solar thermal collector and an ice 
slurry storage, hence the advanced controller will 
additionally manage these elements to optimize the 
operation of the whole system. This other system is a 
study case in another climate (Switzerland), thus 
enabling to have a better overview of the controller 
performance in a variety of climates and conditions. 
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