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Abstract. With the increasing adoption of sensors, actors and IoT devices in existing buildings, 
the real estate sector is becoming increasingly automated. Not only do these devices allow to 
monitor these buildings (energy use, occupancy, indoor air quality, etc), they also enable model 
predictive control (MPC) through building automation and control systems (BACS). A critical 
feature to enable these is the metadata associated to data streams obtained from the building. 
Such metadata allows building operators to assess what these data streams are, what they are 
measuring and how. This can be achieved using metadata schemes and vocabularies, such as 
Brick, Haystack, Linked Building Data, Industry Foundation Classes. Merging these model-based 
metadata schemas (semantics) with data-driven monitoring and control (machine learning) 
into a functional system architecture is a considerable challenge. In this paper, we review the 
mentioned technologies and propose a draft reference architecture based on state-of-the-art 
research. This reference architecture is evaluated using a set of predefined criteria. 
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1. Introduction
The built environment is rapidly digitizing. The 
design and engineering stages of projects are 
increasingly impacted by digital tools. The 
management and operation of facilities is also 
experiencing increasing use of IT technologies. This 
motivates the creation of smart buildings, many of 
which are primarily data-driven. A smart building is 
hereby understood as a building for which the 
operation is monitored, and in which the building 
can intervene itself in the operation, towards 
optimized use. Optimised use of a smart building 
hereby often targets either an optimised energy use 
[1], as energy is becoming increasingly expensive 
and scarce; or an optimisation towards the end user, 
in which case comfort stands central.

To optimize smart buildings using smart IT 
technologies, data monitored from these buildings is 
a primary source of information (temperature, 
electricity use, indoor air quality, etc.). Analytic 
techniques examine monitored data and retrieve 
patterns upon which actions can be taken [2,3]. 
Metadata schemas and annotations [1] can “tag” 
these data sources with contextual details that make 
analytics results more easily interpretable (e.g., 
needing to know which room an anomaly occurs in, 

and knowing the features of this room, such as 
presence of windows, specific devices, users, etc.) or 
potentially easier to configure and program [4]. 
While standardisation of these annotations is often 
sought, the majority of buildings rely on ad hoc 
labels and naming conventions to describe their 
data streams. A growing family of metadata 
ontologies and vocabularies for buildings aims to 
address these issues, but it is not always clear how 
these technologies complement or compete with 
one another, or how exactly they fit into a modern 
view of a data-driven building [1,3]. 

In this paper, we investigate available metadata 
schemas for data-driven smart buildings. We study 
how these metadata schemas can be combined with 
key data analytics technologies (monitored data), 
and we demonstrate a set of contemporary system 
architectures (e.g. [3]). Eventually, this paper 
presents an opinionated reference architecture that 
explicitly demonstrates how these metadata 
technologies can be combined with data monitoring 
equipment, support data-driven applications in 
buildings, and thus enable the development of smart 
data-driven buildings.

The rest of the paper proceeds as follows. Section 2 
provides relevant background on existing smart 



building ontologies and other relevant vocabularies 
in addition to a brief overview of the capabilities 
and features of existing data platforms. Section 3 
applies a set of motivating applications to defining 
the design requirements for a representative 
platform architecture enabling data-driven 
applications. Section 4 presents the representative 
architecture built on the Brick [5] and Linked 
Building Data (LBD) ontologies [6], complemented 
with data monitoring devices and software as well 
as control algorithms aiming at model-predictive 
control (MPC). 

2. Background
Before being able to build a reference architecture, a 
review is needed of the different components that 
are needed inside that architecture. In this Section, 
we investigate (1) available smart building 
ontologies, (2) existing data platforms, and (3) 
platform design patterns. 

2.1 Smart Building Ontologies 

In the last decade, plenty of ontologies and 
vocabularies have been created, investigated and 
proposed [7]. These ontologies cover diverse areas. 
For one, in the design and engineering domain, 
there is the long-standing IFC ontology or 
vocabulary [8] that is available in the Web Ontology 
Language since 2016 [9]. In parallel to that 
ontology, there exists the combination of Linked 
Building Data (LBD) ontologies [6], which are 
diverse combinations of building topology ontology 
(BOT – Fig. 1 – [10]), building element ontology 
(BEO) [11], Building Product Ontology (BPO) [12], 
MEP ontology [13], diverse props ontologies that 
provide specialised property sets, the Ontology for 
Property Management (OPM) [14], the File Ontology 
for Geometry Formats (FOG) [15,16], and the 
Ontology for Managing Geometry (OMG) [15,17]. 
With the modular approach towards the creation of 
these ontologies [6-7], it is fairly possible to create 
more ontologies and use those in combination. In 
that case, one needs to be careful of the overlap 
between multiple ontologies, and how a 
combination of two ontologies may best be used [7]. 

When considering also the asset management phase 
and existing buildings and infrastructure in general, 
diverse other ontologies can be of additional use, 
such as SAREF4BLDG [18], the Damage Topology 
Ontology (DOT) [19], Real Estate Core (REC) [20], 
and so forth. However, in the smart building area, 

and in the operational phase of the building, a 
different community of ontologies exists, that is 
much more focused on the data streams collected in 
the building as well as its systems and devices. 

The most predominant ontology in this ecosystem is 
the Brick ontology [5, 21]. At its core, Brick consists 
of a class brick:Location, which groups the 
definition of Building, Space, Floor, Site, and Zone. 
These location classes are very similar to the core 
BOT classes (Fig. 1). They can be combined using 
the simpler hasPart and part of relations, thus 
enabling to build any building topology, in a less 
rigid manner compared to BOT (no domains or 
ranges in object properties). Further to the Location 
class, Brick also defines an Equipment class, System 
class and a Point class, each holding a considerable 
inheritance tree below to define specific subclasses 
of both. As such, the Brick ontology is very well 
capable of defining the system of a building, 
including those points of relevance for data 
monitoring. 

The Project Haystack metadata model [22] differs 
substantially from other building ontologies in that 
it is not rooted in RDF technologies. Though similar 
in scope to Brick, Haystack instead describes the 
type, behavior and other properties of entities in the 
model using combinations of tags --- atomic terms 
with pre-defined meaning. Recent efforts have 
begun to standardize the choice of tags to ensure 
consistent and interpretable use, but the majority of 
Haystack usage is unrestricted and correspondingly 
irregular [23]. 

The Flow System Ontology (FSO) is aimed entirely 
at the flows, ports and interfaces in an HVAC system 
[24]. FSO allows to define systems, components and 
connections, including energy storage devices, 
supply units, and fluid and heat flows. As such, it is 
much closer to the design and engineering area 
compared to Brick and Haystack. The ontology can 
mainly be used to define and compute flows through 
a system, and design its dimensions accordingly to 
acquire an optimised HVAC system. 

Existing ontologies such as QUDT, SSN/SOSA, O&M, 
Time, and others can easily be aligned and 
combined with the above mentioned ontologies, as 
is also commonly done. 

2.2 Existing Data Platforms 

In addition to the above ontologies and 
vocabularies, many data platforms have emerged to 

Fig. 1 – Main classes and properties in the BOT ontology. 



help users organize, analyse and otherwise make 
sense of the data delivered by buildings. These 
include not only commercial platforms but also 
smaller open-source and community-driven efforts. 
The platforms examined below all make use of some 
sort of metadata to support data-driven smart 
buildings. The data itself is dominated by streams of 
time-series data collected from sensors and control 
networks, but also includes asset management data 
and static attributes of the building itself. 

The SkySpark platform [25] ingests data from 
buildings using a variety of data adaptors and 
provides an API for constructing data-driven 
applications over that data. The results of these 
applications, like fault histories, are rendered in a 
web-based dashboard. SkySpark uses Haystack tags 
as the underlying metadata representation and 
defines a simple filter language over those tags to 
help users browse available data streams, and to 
allow applications to identify relevant data sources. 

Google’s Digital Buildings [26] effort defines an 
open-source ontology and schema for describing 
and reporting building data. The platform is not 
publicly documented; however, the ontology 
documentation demonstrates that it is possible to 
organize related data streams by the metadata 
provided by the ontology. If the ontology gets 
properly published in the future, this would make it 
easier for applications to discover relevant data 
because they only need to know the name of the 
collection containing the data they need.  

The Azure Digital Twins platform [27] is another 
recent metadata-based data platform for smart 
buildings. The platform models properties of and 
interactions between data-producing entities in a 
cyber-physical environment (such as a building) as 
a graph using the RealEstateCore ontology [20] and 
a custom Digital Twin Description Language 
(DTDL). Applications query the graph to access live 
and historical data about the environment which is 
gathered using other data ingestion services. 

Recent academic work highlights the importance of 
metadata in implementing and deploying data-
driven applications [2,3,7,28-32]. The BOSS work 
develops a set of operating system-style services for 
executing portable and fault-tolerant applications 
[29]. Portable applications are those which require 
little to no adjustment to their implementation to 
execute in a variety of environments. BOSS achieves 
this through late-binding of resources discovered 
via a graph-oriented query mechanism. The Mortar 
work [28] further develops the notion of application 
portability through the construction of an analytics 
platform incorporating Brick-based graph models of 
buildings and a large public release of data. LBD 
reference architectures are different in style, also 
among each other. Malcolm et al. [30] defines a 
relatively standard web infrastructure in which 
multiple RDF triple stores are made available in 
combination with a web-based 3D viewer using the 
glTF data format. Ontological data integration 
happens in a modular fashion, similar to how it was 

described in Schneider et al. [32], but with the 
monitoring data outside the RDF graphs. This 
LBDServer namely also includes timeseries 
databases, and can then enable the joint access of 
building data together with monitoring data, within 
a state-of-practice web development framework. 
Werbrouck et al. [31] leverages this work and aims 
to make it available through the SOLID web data 
framework [33]. 

In the majority of the above systems, data is 
collected in state-of-the-art databases and amended 
with one or more metadata schemas to provide 
structure, standardisation and reference.

2.3 Platform Design Patterns 
A critical question is exactly how metadata models 
can be used to build data-driven applications for 
buildings. We identify three representative design 
patterns, and identify later on in this section where 
these may be of more value and fit. In the first 
pattern, the metadata model is used as a reference 
for the programmer. A software developer may use 
certain representations --- such as building 
information models (BIM), one wire diagrams, 
blueprints and floor plans --- to help themselves 
understand the structure and composition of the 
building in its subsystems. Although this metadata is 
not consumed in an automated fashion, it helps the 
programmer understand what algorithms or 
approaches are appropriate, and which data sources 
and I/O points to consider when implementing the 
desired functionality. 

The second design pattern uses the metadata model 
as an internal addressing and filtering system for 
manipulating data in a particular platform, as 
typified by Project Haystack. A data platform may 
contain the data and interfaces to those data 
sources and relevant I/O points. The programmer 
needs a way to identify which endpoints, API calls 
and parameters in the system are required to 
implement the desired functionality. This metadata 
may be added as an aftermarket feature, such as in a 
platform like SkySpark or the Google digital building 
stack, or it may consist of point names placed there 
by the installer of the building management system. 
An advantage of this second approach is that it is 
highly flexible. As no rigid ontology or standard is 
followed in annotating the data (no or hardly no 
metadata schema), the implementer or data 
engineer has a lot of freedom to work with the data 
collected from sensors and devices. These can 
simply be retrieved and used, provided that the 
implementer or user keeps track of how the data is 
actually structured. This last part is therefore also a 
weakness of this system: flexibility leads to many 
disagreements and confusion and then errors [23]. 

In the third design pattern, the metadata model is 
used to contextualize and further model resources 
that are contained in external, incumbent systems. 
In this context, metadata is implemented with 
linked data (specifically RDF graphs). This approach 
is like the second design pattern but is critically 



different in that it includes formal or semi-
formalized information that can be extended and 
validated. This semi-formalised information is 
enabled by the use of an OWL ontology in creating 
the RDF graphs. The scope of these metadata 
models is also not limited to the features provided 
by anyone ontology. Instead, the developer of this 
model can choose which elements, aspects or assets 
of the building are necessary for an intended suite of 
applications. An advantage of this third approach is 
that it normalizes the representation of metadata 
from various other systems, such as the metadata 
provided by the prior two patterns. Linked data 
decouples the meaning, or semantics, of metadata 
from its representation in a particular siloed system. 
Multiple ontologies can be used to represent the 
building [32] and thus provide an agreed upon 
representation and context of the data collected for 
the building. 

Given the rising interest in developing ontologies 
based on linked data technologies (RDF graphs), we 
choose to examine data platforms of the third type. 
Metadata represented as linked data can be harder 
to integrate into existing data platforms for several 
reasons. First, the RDF format [34], describing a 
directed labelled multigraph, is quite abstract 
compared to the relational or object-oriented 
models many software developers are familiar with. 
Second, software supporting linked data is often 
quite generic due to the wide family of possible uses 
of linked data. It is not always obvious how to use a 
linked data system in conjunction with traditional 
aspects of a data system, such as a time series 
database [30]. Third, some ontologies such as SSN 
and QUDT formalize how to represent data and 
telemetry inside the RDF graph. However, this is far 
from the most intuitive or high-performing way of 
representing and accessing this data [32,35]. This 
can cause potential confusion for consumers or 
implementers of a linked data-based system. 

2.4 Domains of Relevance 
While this paper orients entirely towards data-
driven smart buildings, there still exist several 
subdomains or areas of relevance. Each of these 
subdomains has a specific aim and corresponding 
business value. Depending on that business value, 
one or the other reference architecture may be 
more relevant.

A first domain of relevance is asset management. In 
a range of cases, primary relevance in building 
management is asset management. In such cases, 
the amount of monitored data is relatively small, 
and semantics play a much bigger role. As an 
example, a system or platform may be devised that 
has a semantic building model at its core, and 
additions are made using RDF graphs to further 
enrich the building model and its assets [30,31]. 
Enrichments then typically consist of annotations of 
damage and material wear (e.g. DOT in [19]). That 
damage can be represented using RDF graphs (e.g. 
using the DOT ontology [19]), and this often 

includes references to the collected measurements 
(e.g. element creep, cracks in concrete, photos, etc.). 
In this subdomain, the aim of the data-driven part in 
the data-driven smart building is mainly to collect 
data for analysis. The smart building is not self-
repairing or self-cleaning, and therefore this can 
hardly be called a data-driven smart building.

A second domain of relevance is the systems and 
control domain. In this domain, a detailed view is 
required of the system inside the building, as well as 
how it is functioning (e.g. the purpose of the BACS 
[36] and FSO ontologies [24]). In many cases, this
includes feedback loops and control models that
allow to intervene in the building systems. Such
subdomain typically relies on a Building
Management System (BMS) that inhibits a detailed
physical model of the building system (model-
based), and provides access to monitoring data that
is collected about those systems’ operation. As such,
the state of the system can at any given moment be
tracked, and automated routines allow to intervene
in the building (e.g. closing blinds, initiate heating, 
etc.). These systems tend to rely on two
components, namely (1) a good physical model or
simulation model that can compute at any time the
expected performance and actions in the system,
and (2) a live data-stream that logs the system
status and can always be compared with the
simulation model. If corresponding actions are
taken, then this leads to Model-Predictive Control
(MPC) [37].

Historically, semantics and metadata have had little 
to contribute to this specific target (MPC, systems 
and control) because of the reliance on detailed, 
hand-built, white-box models of the physics and 
dynamics of the system. However, recent work on 
grey-box and black-box models has heightened the 
need for systems which can organize the data 
required to fit these models. Both the FSO and BACS 
[24,36] ontologies aim to represent the system and 
all its components and flows using a semantic 
model. Models of the system’s dynamics can then be 
determined by the structure of the related graph 
and historical telemetry of the system. The 
predictions from the model are used to implement 
MPC. MPC is the dominant control strategy studied 
in intelligent building research and has been 
demonstrated to provide thermal comfort to 
occupants while meeting energy consumption 
constraints, among other successes [37].

The last domain of relevance is data monitoring and 
prediction [2-3]. In this domain, the main purpose is 
to collect data for monitoring the building’s function 
and predict its state over time, not limited to the 
state of the system and its devices. In this case, the 
focus lies heavily on data monitoring points 
(sensors) that provide access to monitored data. In 
this scenario, the focus lies a lot more on the actual 
time-series data that is collected, and a lot less on 
the definition of the system or its flow in full detail. 
A more commonly explored business opportunity in 
this case lies in the detection of patterns in the 
sensor data, to be able to detect and diagnose faults 



over time (Fault Detection and Diagnosis – FDD). As 
there is much less need for a full representation of 
the system, this approach more often relies on the 
above outlined Approach 2, where data points are 
tagged and annotated, but mainly kept flexible and 
simple. 

3. Platform Requirements
Those who would implement a platform for data-
driven buildings must take into consideration the 
diversity enumerated above. Data-driven use cases 
in buildings consist of a variety of usage scenarios 
serving different goals. Implementation of these use 
cases may be facilitated through the incorporation 
of structured metadata. In this section, we examine 
the requirements that the above use cases -- model 
predictive control and fault detection – place upon a 
hypothetical data platform. These requirements will 
be incorporated into a representative architecture 
discussed in Section 4. 

3.1 Requirements for an MPC application 

Recall that MPC is an advanced control strategy 
which uses live and historical building telemetry to 
construct and refine a predictive model that allows 
a controller to implement an optimal policy. At its 
most essential, any MPC implementation requires 
three components. First, an MPC implementation 
needs a way of optimizing a control sequence 
relative to the predictions output by a model. The 
optimization itself is usually outsourced to an 
existing optimizer, but the MPC controller must be 
able to interface with that optimizer and use its 
results as part of the control process. Secondly, an 
MPC implementation requires a means of recording 
live observations about the state of the building. 
MPC controllers must constantly relay the feedback 
of their decisions to the optimizer to ensure they are 
making the best control decision at each 
opportunity. It is not always necessary for an MPC 
implementation to retain all historical data; often 
only the most recent data (e.g. one week) is 
required to update the model and inform the 
optimizer. Thirdly, an MPC implementation requires 
a means of actuating the environment with the 
control decisions reached by the optimizer. 
Depending on the deployment, it may be necessary 
to provide certain desirable properties for the 
actuation. As the BOSS work [29] details, 
transactional control can be beneficial in physical 
settings where having a building in an intermediate 
state can waste energy or even cause harm. Other 
deployments may be content with having an MPC 
controller write low-priority control signals that can 
be overridden by other safety software. 

If the MPC implementation is using a white-box 
model to provide the predictions, then the 
supporting metadata only needs to describe the 
relevant data so it can be found by the controller. 
For grey-box and black-box models, the controller 
will require some knowledge about the structure 
and composition of the building in order to know 

what kinds of data sources would be relevant and 
what kind of model to train. While MPC applications 
may be less data-intensive, they generally are much 
more complicated on the systems and control side 
(signal processing and communication on the edge), 
which impacts software (and hardware) 
architecture significantly. 

3.2 Requirements for an FDD application 

FDD applications leverage a wide variety of 
computational models and algorithmic techniques. 
Some FDD approaches use equipment model- and 
manufacturer-specific information to identify errors 
in the equipment’s operation (closer to FSO and 
BACS approaches – [24,36]). Others use timeseries 
analysis techniques to identify deviations from 
normal patterns, without having to know anything 
specific about the operation of a system [2,3]. Still 
others adopt an expert-system approach by 
evaluating rules over live telemetry from the 
building. 

In contrast to MPC applications, which may require 
information about the composition and topology of 
an entire subsystem (usually HVAC), FDD 
applications typically require much more localized 
metadata. Many FDD rules are concerned with the 
operation of individual pieces of equipment. This 
means that the supporting metadata should capture 
the identification of equipment for FDD, and the 
properties of that equipment required to properly 
configure the FDD. These applications are therefore 
much more detailed and data-intensive, and are 
more likely needing multiple types of databases in 
their software architecture. Most FDD applications 
do not need the ability to actuate the building. This 
simplifies the platform requirements, especially 
compared with MPC. As with MPC, FDD application 
require the platform to provide a means of 
recording live observations about the state of 
equipment in the building. 

4. A Representative Architecture
From a software architecture perspective, the 
requirements detailed above are nothing new. Many 
existing solutions --- building management systems, 
IoT platforms, SCADA systems, and so on --- 
incorporate a classic “three-layer cake” (Figure 2) 
above the hardware. A hardware abstraction layer 
interacts directly with deployed devices to provide 
standardized I/O interfaces to the rest of the 
platform. A system services layer provides storage, 
routing, scheduling and other essential 
functionality. Finally, an application layer on top 
presents an API and possibly an execution 
environment for software running on the platform. 

This basic architecture is very flexible and leaves 
room for implementation choices such as which 
communication protocol and database to use. 
However, it is much less clear how metadata 
ontologies fit into this picture: what types of 
technologies should be used, and how do they 
interact with the other components of the 



architecture? Furthermore, which metadata 
schemas should be used and to what extent? This 
particularly related to the two top layers in the 
given three-tier architecture in Fig. 2. Depending on 
the top-level application(s), database infrastructure 
and storage techniques can differ. Furthermore, 
application logic, e.g. computational models and 
black box prediction models, impact the stack 
further towards the two top tiers of the 
architecture. 

Fig. 2 – The three-layer architecture interacting with 
cyber-physical hardware (bottom) through a variety of 
protocols.

Based on the previous section, it is clear that the 
FDD case has the highest impact on the data 
infrastructure, as this has more challenging 
requirements on data infrastructure and prediction 
algorithms. The asset management case is less 
oriented towards live measurements, yet needs a 
similar semantic core to be managed for the 
building. The MPC case lastly is much more oriented 
towards the lower layers of the software stack and 
the devices (signal processing, communication and 
control). Hence we continue the construction of a 
reference architecture in this section with the FDD 
case primarily in mind, complemented with asset 
management features.  

In the following sections, we first outline what the 
data infrastructure and computational setup might 
best be in the first and second tier of the 3-tier stack 
of Fig. 2. This includes a draft schema of how 
different databases and algorithms may best be 
combined and how all data can be interlinked 
without a too large data management overhead. 
Second, we elucidate in more detail how ontologies 
can support the software in the architecture. This is 
performed via the incorporation of a metadata 
graph that contains the relevant information to 
configure applications and enable them to discover 
important data sources and I/O points. The 
structure and content of the graph is informed by a 
family of RDF-based ontologies. 

4.1 Computation-friendly Data Infrastructure 

The first and second layer in the three-tier entire 
architecture of Fig. 2 are key in building a 
computation-friendly data infrastructure. As 
indicated before, the data infrastructure is highly 
required to include multiple types of databases (see 
Fig. 3). This cannot be a single database, not in RDF, 
not a relational database, not an object-oriented 

database (key-value store), because of the need for a 
very diverse set of data of different nature. Hence, 
the core of the reference system architecture needs 
to consist of a combination of these, as was also 
argued in many other places [2,3,7,30-32,35]. While 
flexibility may be useful in some cases, a highly 
interconnected network of data is better off with a 
defined and rigidly enough structure. Therefore,, it 
is highly recommended to adopt the more rigid 
ontologies for the management of the semantic data, 
in which case the LBD ontologies and the BRICK 
ontology and the IFC ontology are a better choice. 

Fig. 3 – Core data infrastructure in combination with 
pre- and post-processing layers as well as 
computational components behind a microservice 
architecture.

To be able to connect to the upper and lower tiers, 
appropriate connectors are required, which can pre-
process and post-process data coming in and going 
out of the system (top and bottom layers in Fig. 3). 
For example, in the case of asset management, a 
legacy IFC dataset needs to be transformed into the 
different core data models used in the system (not 
IFC). Similarly, timeseries data and the reference 
tags with which they are classified need to be put in 
correctly in the BRICK ontology as well as the 
corresponding timeseries databases. Furthermore, 
dedicated algorithms for FDD need to be provided 
in addition to the data, and these can be made 
accessible through microservices through the upper 
tier layer of the data infrastructure (Fig. 3).

4.2 Architecture of Supporting Ontologies 

When considering more closely the metadata 
schemas and ontologies deployed in the proposed 
data infrastructure, we can clearly see how an 
“architecture” of ontologies is available that 
together forms the structure of a system metadata 
graph. In this case (FDD and asset management), we 
recommend here to adopt an entity-centric 
approach for the metadata supporting a data 
platform for buildings. Entities are the physical, 
virtual and logical “things” in a building which 



produce and consume data. Examples of physical 
entities are sensors, equipment, devices, rooms and 
pipes. Examples of virtual entities are setpoints, 
commands, alarms and other digital registers. 
Examples of logical entities are zones, groups and 
other collections of entities. The identification of 
these entities constitutes the central part of the 
graph in Figure 4. The other parts of the graph 
contain different perspectives on those entities.  

Fig. 4 – Categories of metadata required to support 
data-driven smart buildings. Circles represent 
ontology-based graphs.

Due to the diverse needs of applications [38], it is 
important that the graph provide multiple ways of 
identifying and understanding each entity. For 
example, FDD applications will require more asset 
management metadata to determine what kind of 
models and rules to use for each piece of equipment. 
FDD applications concerned with the health of the 
communication network will use network and 
communication metadata to diagnose connectivity 
issues. After faults are detected, an FDD application 
can leverage spatial and location metadata to tell a 
human operator where the broken device is. In 
contrast, MPC applications will require topology and 
composition and purpose, behaviour and 
configuration metadata to properly construct and 
configure the models of the system that allow 
optimal control sequences to be computed and 
executed. In each of these applications, references 
and links metadata (top layer in Fig. 3) provides the 
link between the representation of entities in the 
graph and how applications would interact with 
those entities: where historical data is, how to 
control the device’s behaviour with an API, and so 
on.  

5 Conclusion 

The digital built environment transforms into a 
smart digital built environment. This leads to an 
abundance of data, algorithms and systems being 
commonly available for the creation of data-driven 
smart buildings. In recent years, several ontologies 
and metadata schemas have been proposed for 
supporting these smart buildings. In this paper, we 
reviewed mainstream approaches in that regard. 
While previous research focused a lot on schemas 
and vocabularies, this paper proceeded towards 

localising these ontologies in a draft reference 
system architecture. This draft architecture consists 
of three tiers (applications, systems and services, 
hardware abstraction). The systems and services 
layers has been detailed further in this paper, as a 
combination of different types of databases that is 
accompanied by a solid metadata infrastructure 
based on BRICK and LBD ontologies. The value of 
such a system lies primarily in FDD and asset 
management applications, yet, can be a solid basis 
also for MPC. Future work will focus on stress-
testing the proposed architecture in multiple cases 
and examples internationally. 
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