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Abstract.	Building performance simulations are particularly important for the development of 
various building energy efficiency strategies. However, the accuracy of these building simulations 
is often greatly influenced by real occupant  behaviour, which leads to deviations between 
expected and measured performance. The occupant behaviour varies greatly from region to 
region and even within the same region due to the differences in cultural, climatic and socio-
economic contexts and building characteristics. Therefore, typical occupant behaviours and 
usage patterns in local buildings should be considered to improve the accuracy of the building 
simulations. To achieve this purpose, sufficient occupant data is needed to derive these typical 
behaviours. The cost of data collection and analysis as well as privacy concerns, are the main 
challenges that must be addressed. This study proposed a simple method to recognise the use of 
individual split-air-conditioning units based on basic environmental parameters (indoor air 
temperature, humidity and CO2-concentration) collected by IAQ-sensors in residential buildings. 
This method was used to analyse the air-conditioning (AC) usage patterns of 98 rooms in 49 
residential apartments over one year in Hanoi, Vietnam and validated through comprehensive 
occupant surveys and on-site measurements. While deriving typical behaviours, deviations from 
measured room temperature and AC set temperature were observed and discussed in detail. The 
highlights of the proposed method are as follows: a) The data on AC operation can be determined 
without labour-intensive manual processing; b) The necessary input data can be collected by 
using standard IAQ-monitoring instruments, which minimises the cost of data collection and the 
invasion of occupant privacy; c) Missing information about AC usage can be added to data sets of 
previous studies for further analysis. 

Keywords.	Occupant behaviour, Residential building, Air conditioning, Operation recognition, 
Case study. 
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1. Introduction

The use of air conditioners (AC) for space cooling 
accounts for nearly 20% of the total electricity 
consumption in buildings worldwide today, which 
places a huge burden on the grid and increases CO2 
emissions [1]. Meanwhile, the AC's household 
penetration rate in many emerging countries with 
hot climate zones is currently low, for example, 
nearly 50% of urban households and 80% of rural 
households in Vietnam are not yet equipped with AC 
[2]. With rising living standards, population growth 
and more frequent heatwaves, the AC ownership is 
expected to increase significantly, especially in the 
Asian region [1] [3]. Therefore, it is important to 
improve the energy efficiency of the buildings there 
to reduce the energy consumption and emissions 
related to air conditioning. Many studies have 
revealed that occupant behaviour significantly 

impacts energy consumption and is a major factor in 
the building performance gap [4]-[7]. Different 
cooling behaviour can significantly differ in AC-
related energy consumption, even in the same 
building [8]. The effectiveness of building 
performance improvement actions differs under 
diverse occupant behaviour, so it is essential to 
quantify its impact on energy efficiency measures 
[7]. In order to gain insight into cooling behaviour, a 
large amount of AC operating data, such as on/off-
states (AC events) and cooling setpoints, is required 
to determine typical AC usage patterns and derive 
occupant behaviour models. In previous studies, 
researchers have used different methods to directly 
or indirectly obtain the data on the AC operation. 
Measurement parameters such as indoor air 
temperature (1), AC power consumption (2), AC 
supply air temperature (3) and infrared (IR) control 
signals of AC remotes (4) are often used to determine 
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the AC operating status as illustrated in. Fig.	 1. 
Advantages and disadvantages of these methods are 
listed in Tab. 1.  

Fig.	 1 ‐ Common measurement parameters for 
monitoring the AC on-off state 

Zhang et al. [9] monitored the indoor climate with 
temperature/humidity data loggers. The AC events 
were determined by directly observing the change in 
the room temperature. The indoor air temperature 
measured after the cooling process has become 
stable is estimated as the cooling set temperature. 
Although the parameters required for this method 
can be obtained with low-cost measuring 
instruments, the manual processing is labour-
intensive. Furthermore, night ventilation or air 
exchange with adjacent air-conditioned rooms can 
also lead to changes in indoor climate that may 
interfere with the results. In contrast, by monitoring 
the AC power consumption, Ren et al. [10] 
determined the AC on/off-state more accurately and 

obtained the actual AC-related energy consumption 

data. However, indoor climate, such as air 
temperature and humidity, as well as the cooling 
setpoints must be measured separately. In addition, 
the power measuring instruments also increase the 
costs and are not suitable for some scenarios, e.g., in 
some households investigated in this study, the AC 
power supply cable is enclosed in the wall and cannot 
be connected to an external power meter. Song et al. 
[11] also determined the air conditioning events by
observing temperature changes, but the difference is
that they used the temperature measured at the AC
supply air vent. When the AC state changes, the
change in the air supply air temperature is more
noticeable than the change in room temperature,
thereby avoiding false recognition caused by other
cold/heat sources. However, the AC events were still
manually recognised and the indoor climate needs to
be measured by other instruments. Mun et.al. [12]
adopted a more direct method to determine the AC
operating status by collecting and analysing the
infrared control signals from the AC remote. In this
way, the on/off-state and the AC operating mode
(incl. the cooling setpoint and the fan speed) can be
obtained accurately. During the pre-processing of the 
signals collected by the IR receiver, signals from
other home appliances must be excluded. Moreover,
due to the different protocols, the AC control signals
for each AC unit must be analysed individually.

A common disadvantage of these methods 
mentioned above is the labour-intensive manual 
processing. In addition, the data collection in 
residential buildings is very challenging, not only due 
to the cost of the measuring instruments but also 
because of the intrusion of long-term measurements 
on the occupants. Therefore, the data collection and 
processing process must be improved to make it 
more implementable in practice.  

Tab.	1	‐	AC event recognition methods used in previous studies 
 

Measuring	instruments/	
key	parameters/sample	size 

Pros	&	Cons	

Zhang	et	al.		
(2013)	
[9]	

 T/RH data logger 
 Indoor air temperature 
 10 dormitories (bedroom) in Guangzhou, 

China (January 2009 – January 2010) 

(+): Low-cost and low-complexity 
(-): Manual recognition is labour-intensive. 
(-): Recognition may be affected by night ventilation 
or air exchange with adjacent rooms. 

Ren	et	al.		
(2014)		
[10]	

 Power meters 
 Power of AC 
 34 households (living room and bedroom) 

in 8 different cities in China, (mid-July – 
mid‐September 2013)

(+): AC energy consumption can also be measured 
(-): Additional costs for power meters and possible 
limitations on installation  
(-): Indoor climate must be measured separately. 

Song	et	al.		
(2018)	
[11] 

 Temperature logger 
 Supply air temperature of AC
 43 households (living room and bedroom) 

in Tianjin, China (May – November 2016)

(+): The change in the air supply temperature can 
indicate the AC on/off state more obviously. 
(-): Manual recognition is labour-intensive. 
(-): Indoor climate must be measured separately. 

Mun	et	al.		
(2019)	
[12]	

 Infrared receiver 
 Control signal of AC remote
 4 households (living room) in Seoul, South 

Korea (late July – early September 2017)

(+): AC settings can be accurately obtained 
(-): Pre-processing procedure is labour-intensive  
(-): Indoor climate must be measured separately 
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With the development of sensor technology and the 
growing concern for comfort and health, measuring 
instruments for indoor environment monitoring are 
becoming more popular in people's daily life. Key 
parameters in the indoor environment such as air 
temperature, humidity and carbon dioxide (CO2) 
concentration can be long-term measured with an 
integrated IAQ sensor. Thanks to IoT technology, 
measurement data can be uploaded to cloud servers 
and accessed remotely. Considering these 
advantages, this study proposes a simplified method 
for determining the operating status of split-AC using 
cloud-based IAQ data loggers. To improve the 
efficiency of data analysis, automatic recognition 
algorithms have been developed based on a long-
term investigation of 49 households in Hanoi, 
Vietnam.  

2. Methodology

2.1 Direct observation (DO) 

The use of AC is accompanied by significant changes 
in indoor climate. By directly observing the rate of 
change of the relevant parameters, e.g. temperature 
gradients, it is possible to manually recognise the 
space cooling events and determine the AC on/off 
moments as adopted by Zhang et al. (2013) [9] in 
their study. However, rapid drops in outdoor 
temperature (e.g. due to rainfall) or in adjacent 
rooms (e.g. due to space cooling) can also cause 
similar changes in room temperature with air 
exchange. Determining the AC on/off-state with 
room temperature alone is unreliable in some cases. 
Long-term observations of indoor climate data have 
shown that when the AC is turned on the humidity in 
a room usually drops significantly, sometimes even 
more sensitively than the temperature (especially 
under hot and humid conditions). In addition, most 
occupants only use AC in the rooms they occupy and 
close the windows during the cooling process, which 
leads to an increase of the CO2-concentration in these 
rooms. Therefore, the humidity change rate and CO2-
concentration in the indoor air were introduced as 
additional parameters to manually determine the AC 
operating status in this study. Fig. 2 illustrates the 
working principle of the DO-method with an example 
of a bedroom. Since rapid simultaneous drops and 
rises of room temperature (red curve) and absolute 
humidity (blue curve) may indicate that the AC is on 
and off respectively, the AC on/off moments can be 
first determined by observing the sudden changes in 
the time series (black dashed lines). The occupancy 
status of this room can be estimated from the CO2-

concentration (yellow curve). When the CO2-
concentration continuously exceeds 500 ppm it can 
be considered as evidence that the room is occupied. 
The estimated occupancy profile (green dotted step 
curve) indicates on the one hand that the room is 
poorly ventilated when the AC is in use (blue zone), 
and on the other hand confirms that the change in 
indoor climate is not caused by airflow from other 
rooms or from outdoor. 

Fig.	2	‐	Principle of the direct observation method	

Manual processing can ensure accurate recognition 
of AC events, especially under complex conditions 
(e.g. when indoor environment fluctuates greatly), 
but it is very labour-intensive and inefficient. Three 
representative households in this study were 
analysed using this method to validate and compare 
the following two automatic recognition algorithms. 

2.2 Local extrema analysis (LEA) 

The first algorithm for automatic recognition of AC 
events is also based on finding sudden changes (local 
extremes) in the time series of room temperature 
and absolute humidity. Although Fig. 2 
demonstrates that CO2-concentration is also 
correlated with AC use, it cannot be used as a 
criterion for the automatic determination of AC 
on/off moments, as changes in occupant CO2 
generation rate and the operation of doors and 
windows may interfere with the results. However, 
the estimated room occupancy status can be used to 
correct the recognition result under certain 
conditions, e. g. according to the occupant survey, the 
AC is always turned off when the room is unoccupied. 

In order to introduce the rate of change (ROC) of 
room temperature and absolute humidity as criteria 
in the recognition process, they are first normalised 
by their maximum ROC over the period in question 
and then combined according to equation	(1). 
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(1) 

Where, 

𝑛𝑅𝑂𝐶௦௨: Sum of normalised ROC 
𝜌:  Absolute humidity  
𝜗: Room temperature 

Fig. 3 illustrates the working principle of the LEA-
method using the same indoor climate data as in 
Section	 2.1. The sum of the normalised rates of 
change of room temperature and absolute humidity 
(nROCsum) deviates significantly at the moment when 
the AC operating status is changed. The AC on/off 
state recognition is therefore equivalent to finding 
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local minima and maxima (valleys and peaks) in the 
nROCsum time series. In this study, this task was 
performed with the "Find Local Extrema" function 
available in the software MATLAB R2020b [13]. The 
parameter "prominence", which measures how the 
valley/peak at the AC on/off moment stands out with 
respect to its depth/height and location relative to 
other valleys/ peaks, has to be set to a reasonable 
value. A high parameter value can improve the 
recognition accuracy but will reduce the sensitivity, 
resulting in some AC events cannot be recognised, 
especially those events with short duration (2 – 3 h). 
A low parameter value, on the other hand, will 
increase the number of misrecognised AC events. 
Since there is no universal parameter value that can 
be applied in all cases, it is necessary to manually 
select a relatively reasonable values and to fine-tune 
it in some special cases. In order to correct 
misrecognised events, an automatic checking 
procedure is needed to remove frequent AC on/off 
events (fluctuation) that occur in a very short period 
of time. In addition, typical room temperature and 
humidity values observed during the use of AC are 
used as reference values to check each AC event. 

Fig.	3	‐	Principle of the local extrema analysis	

2.3 Deviation monitoring (DM) 

As the method presented in section	 2.2	 requires 
manual parameter adjustment and its recognition 
performance is not very stable, another method 
"DEM" has been developed to improve efficiency, 
robustness and accuracy in the recognition 
processing. It is based on dynamic monitoring the 
deviation of the measured temperature and absolute 
humidity from their baselines (see Fig. 4). The 
baselines used to calculate the dynamical 
temperature deviation (DevT) and humidity 
deviation (DevH) are defined as the moving mean of 
the daily maximum values of the corresponding 
parameters. When a room is being mechanically 
cooled, the room temperature and humidity will 
deviate significantly from their respective baselines 
at the same time. Therefore, comparing whether the 
deviation exceeds a certain threshold can be used as 
a basis for determining the AC operating status of in 
that room. The threshold is defined as the product of 
the threshold factor and the mean dynamic deviation 
for the period in question. If the climatic and building 
conditions are similar, a uniform threshold factor can 
be used, e.g. in this study 1.5 and 2.5 are used to 
determine the DevT-threshold and DevH-threshold 

respectively. Since the mean dynamic deviation is 
calculated separately for each room, this method 
allows for self-tuning of parameters to suit different 
rooms. This method applies to "part-time occupant 
AC behaviour", which means that the room is not 
constantly air-conditioned. This AC behaviour is 
typical in most residential buildings.  

Fig.	4	‐	Determination of the dynamic deviation	

Fig.	5	‐	Principle of the deviation monitoring 

A concrete example is presented in Fig. 5 to show 
how this method works. Whenever DevT and DevH 
simultaneously exceed and fall below their 
respective thresholds again after a certain time, the 
air conditioner is considered to be in use during this 
time period. In contrast to the LEA-method, the AC 
event is determined first rather than the AC on/off 
moments. The advantage is that the misrecognition 
rate can be reduced by increasing the threshold 
factor. Although the preliminary derived AC event 
time period will be narrower than the actual one, it is 
more reliable. The AC on/off moments are then 
searched additionally by finding the local extreme 
value of room temperature and absolute humidity in 
the area near the edge of each AC event (grey area). 
Although the recognition can already be improved by 
using this method, a checking procedure is still used 
to reduce the misrecognition rate further. 

2.4 Performance evaluation 

Fig. 6 illustrates the workflow used to evaluate the 
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two automatic recognition algorithms (LEA and DM). 
The direct observation method is first used to 
analyse indoor climate data collected from long-term 
monitoring to prepare a reference dataset for a 
quantitative comparison of results based on the 
other two automatic recognition methods. Next, 
information on occupant AC usage collected through 
online and telephone surveys was used to verify the 
accuracy of the reference dataset generated. 
However, the data on AC operation obtained through 
the questionnaire is in fact a summary of the AC 
usage over a period of time and cannot be compared 
directly with the time series AC on/off dataset. The 
frequency of AC usage, the duration of each AC 
operation and the typical cooling setpoints were 
therefore statistically analysed based on the 
recognition results to make a semi-quantitative 
comparison with the occupant survey. Although AC 
operation data obtained by direct measurements (i.e. 
power measurements) would be more suitable for 
evaluation, in this study it was not possible to install 
such measurement devices because the AC power 
cables were all enclosed in the wall. 

Verification

Feedback

Direct	observation

Occupant	
survey

LEA

DM

Long‐term	
monitoring

Data	on	AC	
operation

Fig.	6	‐	Workflow of the performance evaluation	

In previous studies [14], [15] on AC-related energy 
consumption, the operating rate (OR) of AC and F1 
score are commonly used as important evaluation 
indices. They were introduced in this study to 
analyse the performance of the recognition 
algorithms. OR, calculated according to equation	(2) 
is the ratio of the sum of the AC running time (tAC_on) 
to the total observed time period (ttotal). 

𝑂𝑅 ൌ
∑ 𝑡_

𝑡௧௧
 

(2) 

The F1 score is calculated from precision and recall 
(see Tab. 1) using equation	(3), where the precision 
is the number of true positive results divided by the 
number of all positive results, including those not 
recognised correctly (Eq.	4), and the recall (known 
as  sensitivity) is the number of true positive results 
divided by the number of all samples that should 

have been recognised positive (Eq.	5). 

Tab.	1	‐	Precision and recall	

Reference	result	(DO)	

AC	on	 AC	off	

LEA	
&	
DM	

AC	on	
True positive 

(TP) 
False positive 

(FP) 

AC	off	
False negative 

(FN) 
True negative 

(TN) 

𝐹ଵ ൌ 2 ൈ
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൈ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑟𝑒𝑐𝑎𝑙𝑙 (3) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
𝑇𝑃

𝑇𝑃  𝐹𝑃 (4) 

𝑟𝑒𝑐𝑎𝑙𝑙 ൌ
𝑇𝑃

𝑇𝑃  𝐹𝑁 (5) 

3. Study cases

As a part of the research project CAMaRSEC [16], a 
comprehensive technical survey campaign with 
accompanying measurements was conducted in 49 
households living in high-rise buildings in urban 
Hanoi, Vietnam from June 2020 to June 2021.  

Indoor climate data (air temperature and humidity, 
CO2 concentration, ambient pressure) were collected 
from 49 living rooms and 49 bedrooms using wall-
mounted WiFi data loggers testo 160 IAQ with a 
measurement interval of 15 minutes. (see Tab.	2). 

Tab.	2:	‐	Technical data of the measuring instrument 

Parameter	 Range	 Accuracy	
Temperature 0 ~ 50 °C ± 0.5 °C 

Relative 
Humidity 

0 ~ 100 % (non-
condensing) 

± 2.0 % at 20 ~ 80 
%RH (±3.0% at 
remaining range) 

Ambient CO₂ 0 ~ 5000 ppm ± 50 ppm 

Atmospheric 
Pressure 

600 ~ 1100 mbar ± 3 mbar 

Hanoi features a warm and humid subtropical 
climate, with summer lasting from May to 
September. Winters in Hanoi are generally mild. This 
climate results in a large demand for space cooling 
using AC in summer and relatively low heating 
demand in winter. Based on this AC usage 
characteristic, measurements from June to 
November 2020 were defined as the observation 
period in this study. According to the household 
survey, the frequency of AC use in Summer in the 98 
rooms investigated was categorised as 'rarely', 
'sometimes' and 'often'. Three bedrooms (BR) and a 
living room (LR) from three households (No. 17; No. 
25; No. 34) were chosen as representative rooms to 
evaluate the performance of the recognition 
algorithms. The basic information about these rooms 
is listed in Tab.	3.
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Tab.	3:	‐	Basic information about the selected rooms and the AC usage in them based on the household survey 

Room	 Floor	
area	
[m²] 

Main	
orientation	

Window	
size	
[m²]	

Location	of	
data	logger	

AC	usage	
frequency	

Typical	
months	for	
using	AC	

Typical	time		
for	using	AC	

17LR	 36.1 NW 2.5 Internal wall, 
without direct 
sun irradiation 

rarely - - 

17BR	 14.8 NW 4.1 Internal wall, 
opposite the 

window 

often May to Oct Sometimes in the 
afternoon,  

always overnight 

25BR	 11.5 W 2.3 Internal wall,
opposite the 

window 

often May to Aug Overnight 

34BR	 14.3 E 1.2 Internal wall, 
without direct 
sun irradiation 

sometimes May to Jul Overnight  
(9pm – 4am) 

4. Results and discussion

4.1 Summary of direct observed AC events 

Fig. 7 shows the monthly AC operating rates for the 
four selected rooms from June to November 2020, 
derived from direct observation of indoor climate 
data. 

Fig.	7	‐	Overview of monthly AC operating rate derived 
by observation of indoor climate data (01.06 – 30.11)	

July 2020 is the hottest month in Hanoi and this is 
well reflected in the usage of air conditioners. 25BR 
and 17BR have a significantly higher OR than 34BR 
and 17LR, which is consistent with the results of the 
occupant survey shown in Tab. 3. It is noticeable that 
although occupants responded in the survey that 
they rarely use AC in 17LR, the OR observed in this 
room in July and August exceeded 0.1. A further 
occupant survey revealed that one visitor slept in the 
living room during those two months, and 
sometimes, only the AC in the 17LR was turned on at 
night to cool the whole apartment. It can also be 
observed that the AC running time in the bedrooms 
significantly dropped in August, which could be a 
result of lower room occupancy due to holidays. This 
is confirmed by additional occupant surveys and low 
levels of CO2 (< 500 ppm) in those rooms over a long 
period of time.  

By comparing the operating rates in Fig. 7 with the 
occupant feedback for typical AC months in Tab. 3, it 
can be determined that the results derived from the 
direct observation of indoor climate data generally 
match the occupant responses. However, there are 
deviations in some details. For example, the occupant 
answered that the AC was usually used from May to 

July, but a similar AC usage frequency can be 
observed in September. This means that data on AC 
operation obtained from occupant surveys can only 
give a rough overview of AC usage information and is 
not suitable for analyses that require more detail. 

To compare the results of direct observation with the 
occupant feedback at a higher temporal resolution, 
the AC operating probabilities over time were 
calculated from the derived AC operation data. Since 
the operating probability of AC is closely related to 
the month, two typical cooling months, June and July, 
are used for the comparison. 

Fig.	8	‐	AC operating probabilities over time derived by 
observation of indoor climate data (01.06 – 31.07)	

Responses from three households regarding the 
typical time for using AC in the bedroom are all 
"overnight", which can also be clearly seen in  Fig. 8.	
Both 17BR and 25BR have a probability of turning on 
the AC after 22:00 of more than 0.8, coinciding with 
occupant responses regarding the AC usage 
frequency ("often"). The occupant specified that the 
AC in 17BR was sometimes used in the afternoon, 
which is also well represented in the diagram. After 
04:00, the AC operating probability in 34BR drops 
significantly, which matches the typical AC off time 
given by the occupant. However, the typical AC time 
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for this room, as derived from the diagram, should be 
after 23:00, later than the 21:00 given by the 
occupants. This may be due to a discrepancy between 
the response of the occupants and the actual 
situation or because the AC cannot immediately 
change the indoor climate in hot and humid 
environments. 

The cooling setpoint is the last parameter used to 
compare the derived data on AC operation with the 
occupant responses. The indoor air temperature 
measured after the cooling process has become 
stable is estimated as the cooling setpoint for each AC 
event. Fig. 9	 presents the boxplots of estimated 
cooling setpoints for the different rooms from 1 June 
to 31 July 2021.  

Fig.	 9	 ‐	 Comparison	 of the derived cooling setpoints 
with the occupant responses (01.06 – 31.07)	

According to the occupant survey, the common 
cooling setpoints in 34BR are 26 to 28 °C, which is in 
line with the statistics for the typical AC months. 
However, it is noticeable that the cooling setpoint 
statistics for 17BR and 25BR are generally higher 
than the occupant responses. In particular, in 25BR, 
the estimation results completely deviate from the 
occupant responses. By analysing the room 
information in Tab. 3, it can be seen that the data 
loggers in both rooms are located on internal walls 
that are exposed to direct sunlight in the afternoon. 
This causes the walls to gain and store a lot of heat. 
As the data logger is mounted on the wall, its 
temperature measurement is also influenced by the 
wall surface. When the room is not cooled by the AC, 
the deviation of the temperature measured by the 
sensor from the actual indoor air temperature is not 
apparent. However, when the room is in the cooling 
phase, the temperature in the near-wall region will 
be higher than the temperature in the AC dominated 
area, resulting in an overestimation of the cooling 
setpoint. At this point the temperature measured by 
the wall-mounted data logger is closer to the 
operative temperature. In addition, the AC 
temperature set by the occupant does not mean that 
the room can actually be cooled to that temperature, 
which also depends on the cooling capacity and 
control accuracy of the AC, as well as the cooling load 
and the thermal performance of the room.  

Another reason that causes the estimated cooling 
temperature to be sometimes higher than the actual 
set temperature is the short operating time. Fig. 11 

presents the indoor climate measured in 17BR 
around a typical afternoon short AC event. The 
increase in CO2-concentration in the room after the 
AC has been turned on indicates that the occupant 
has closed the internal door and windows to cool 
down the room quickly. With the AC running, the 
humidity in the room also drops very significantly. 
However, the hot and humid indoor environment 
makes it impossible for the AC to cool the room to the 
set temperature in such a short time. This also 
explains why in the same apartment, the measured 
(estimated) cooling setpoints in 17LR are generally 
higher than that in 17BR, since Fig. 8	shows that the 
17LR is usually cooled only briefly in the afternoon 
or evening rather than overnight. 

Fig.	10	 ‐	 Indoor climate measured in 17BR around a 
short AC event 

The AC operation data derived by the direct 
observation method generally matches the occupant 
feedback regarding the typical AC time and usage 
frequency, which can be used as a reference to 
evaluate the performance of the other two 
recognition algorithms. 

4.2 Evaluation of the recognition algorithms 

Data from 1 June to 30 September 2021 was chosen 
for the performance evaluation as the period after 
October is no longer a typical AC usage period. As 
shown in Fig. 11, for all four representative rooms, 
the AC operating rates derived from the two 
automatic recognition algorithms are very close to 
the reference (DO), and the performance of the DM-
method is slightly better. 

Fig.	 11:	 ‐	 Comparison of OR derived by different 
methods (01.06 – 30.09)	

Tab. 4 shows a comparison of the F1 scores, 
precision and recall of the two developed algorithms, 
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The datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request. 

assuming the reference data derived by the DO-
method as the true result. The F1 scores for the DM 
are overall higher than those for the LEA. Although 
the LEA has higher precision scores, this comes at the 
cost of reduced sensitivity. This means that some AC 
operations are ignored, especially in rooms where 
the AC is not used regularly, such as 17LR. 

Tab.	4	‐	The results of F1 scores for different methods	

LEA	 DM	

F1/precision/recall	 F1/precision/recall	

17LR	 0.78/0.88/0.71	 0.82/0.80/0.84	

17BR	 0.85/0.89/0.82	 0.90/0.82/0.86	

25BR	 0.84/0.89/0.80	 0.86/0.87/0.86	

34BR	 0.86/0.86/0.87	 0.87/0.84/0.90	

5 Conclusion 
Occupant AC behaviour plays an essential role in the 
indoor environment and energy consumption in 
residential buildings in hot and humid regions. 
However, collecting and processing data on AC 
operation can be very challenging in practice. To 
improve the efficiency of data processing and 
analysis regarding AC operations, two algorithms 
have been developed to automatically recognise AC 
events based on the analysis of indoor climate data. 
To evaluate the performance of the two algorithms, 
AC operation data for four representative rooms 
were determined using direct observation of indoor 
climate data and verified by comparing with 
occupant responses. The results show that both 
algorithms perform well in analysing OR, while the 
DM has higher F1 scores. Compared to the LEA, the 
DM is easier to adapt to process different cases and 
its result is more robust (without repeated on/off 
events within a short time period). Therefore, the DM 
algorithm will be used in the further work to analyse 
the AC operation in all measured rooms. In addition, 
the preliminary derived AC usage patterns differ 
from the "full time" (always on ) patterns commonly 
used in building simulations. It would therefore be 
more reasonable to introduce these "part-time" AC 
usage patterns into the building simulation. 
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