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Abstract. Several studies proved that occupant behaviour has a significant impact on energy 

consumption and indoor comfort. Thus, monitoring data and Internet of Things solutions are 

used to address behavioural changes for promoting energy efficiency and increasing, at the 

same time, the comfort perception. The possibility of seeing invisible information, such as 

energy consumption or comfort parameters, on a digital support have been proved to be 

effective in increasing users’ awareness and to encourage efficient behaviours. This paper 

presents a GUI developed for increasing the user awareness and involving them actively in 

addressing their actions and presents the back-end architecture for making prediction and 

sharing feedbacks with the users. By means of the interface user can: (1) Visualize information 

related to monitoring data, selecting, and filtering the data they would like to see. (2) Receive 

real time personalized feedbacks based on behavioural predictions defined by using Artificial 

Intelligence (AI) algorithm. The AI algorithms are based on a physics-assisted approach to 

achieve better results with less input. Missing (monitoring) data is calculated by applying 

physical models (building energy simulations) and only for the remaining parts machine 

learning models are used. Mainly we apply LSTM models. (3) Express personal comfort 

feedbacks based on comfort perception, for setting user-oriented feedbacks. The first part of the 

paper describes the architecture of the monitoring systems and presents the GUIs developed for 

two different case studies: a social housing building and a nursery school. The personalization 

of the GUIs based on user’s typology has been done for enhancing the active participation and 

the involvement of the users in the project. The second part of the paper presents the back-end 

architecture of the GUI and the AI algorithms used for monitoring data analysis. The physis-

assisted algorithm allows us to make predictions based on occupancy behaviour and to provide 

each occupant with tailored personalized feedback to promote energy-saving behaviours in 

real-time. We have placed more than 150 sensors in these two buildings that return us almost 

1000 measured variables that can be used for the training of the AI models. 
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1. Introduction

Monitoring data and IoT solutions seems to be a 
promising strategy for driving the people’s habits in 
taking effective actions for reducing the energy 
consumptions and, at the same time, increasing the 
indoor comfort perception of the users. Data from 
the Internet of Things (IoT) can be used by two 
main approaches: 

• directly to optimize the control of the HVAC
(Heating, Ventilation and Air Conditioning)
systems and reducing the energy peak and the

overall consumptions [1], and 

• indirectly by communicating the monitoring 
data to the users in order to raise their
awareness for adopting an energy efficient 
behaviour.

The development of user interfaces for 
communicating with users is highly investigated in 
recent literature [1]–[4] and by several European 
projects (The4Bees, EnerGAware, Klimakit, Sinfonia, 
OrbEEt, Entropy, GreenPlay). The studies proved 
that increasing the users’ awareness, showing them 
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information related to their energy consumption 
and sending them targeted feedback, can reduce the 
energy consumption by 15% to 25% [3]. The 
information can be shown by simple dashboards or 
more effectively by advanced digital tools [5], [6] 
that allows an interactive communication with users 
and a customization of the data visualization. [7]–
[9] highlight which are the most important aspects 
that should be considered for developing an
effective communications tool. They stated that a
key role is played by the way in which the
information is presented to the users. Some of the
main aspects that should be considered and 
integrated for the development of an effective
digital interface are:

• Real time feedback on the actions that the
user should adopt. 

• Benchmark of virtuous users in order to
incentivise the competition and to increase
the gaming effect. 

• Visualization of real time energy 
consumption measurement and past data
for allowing a direct comparison of
historical and current situation.

According to [10] and [11] receiving daily tips 
seems to be effective in reducing energy 
consumptions. [10] developed a mobile application 
where the users receive daily tips for reducing their 
electricity usage. [11] developed a more complex 
user interface based on gamification where the 
users receive tailored, interactive tips, information, 
and data-driven messages that can give users a clear 
view of how their actions impact on the amount of 
energy they waste and how they can improve their 
active participation. Moreover, the systems propose 
rewards for consumers by sending stimuli to change 
consumer behaviour. Moreover, [12] proved that 
the gamification is a good strategy for keeping the 
users motivated and involved in driving their 
behavioural changes. The work of [13] proposes an 
approach based on visualization of real time data 
based on dashboards, which to a large extent follow 
the idea of using dashboards in cars to inform 
drivers of the current state of their car. Another 
important aspect is stated by [14]. The authors 
highlight the importance of allowing the users to 
express their preference on their comfort 
perception, to actively consider their point of view 
and integrating this information in the heating 
system management.  

This paper proposes the development of a digital 
interface that integrates all these aspects. The 
developed GUI allows to provide interactive and 
customized real time information, based on the 
users’ profile. The backend of the system uses AI 
algorithms for analysing monitoring data and a 
physis-assisted algorithm allows to make 
predictions based on occupancy behaviour. It can 
provide each user with tailored personalized 

feedback for energy-saving and comfort 
recommendations in real-time. We developed two 
different interfaces for a residential and a non-
residential building. Moreover, the software 
architecture is designed in a modular way and 
allows to adapt the interface according to the actual 
necessities. The AI algorithm is trained as a global 
model for each building type, and it is re-trained for 
each single unit by applying transfer learning using 
actual data. 

2. Methodology

2.1 Case study 

We chose two case studies to prove our approach: a 
residential and a non-residential building. 

Fig. 1 shows a school building, that is used as a 
nursery school. With this non-residential building 
we want to show how our approach can be used in a 
comprehensive solution by applying it to the overall 
building and to all classrooms. At the same time 
each classroom is independent in the use of the 
application. In total we count ten classrooms with 
altogether five classes with alternating room use. 
Four classrooms are equipped with a mechanical 
ventilation system, which is not known to users. 
Huge parts of the building are not renovated and 
show a low quality of the building envelope. Due to 
this, and a high complexity of the heating system, 
energy consumption is not analysed in this case 
study. 

Fig. 1 - School building. 

Fig. 2 depicts a residential building. In the 
residential building two flats were chosen where we 
apply the application. With this case study we want 
to prove that the approach can also be used in small 
units like an apartment without the need to apply it 
to the overall building.  

Fig. 2 - Residential building. 
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The residential building has a very high energy 
efficient standard and uses passive house 
components (U-value of walls lower than 
0.15 W/m².K, of windows lower 0.85 W/m².K). 
However, there is no mechanical ventilation system 
installed. 

2.2 Monitoring solution 

Our approach depends on sensor data. Thus, a 
monitoring solution was developed and rolled out in 
the two case studies. Several IoT technologies are 
available on the market. However, only a small 
number has the capability to be power supplied by 
battery. This is essential in our case studies, as we 
want to install our system in an existing building 
structure. We think that our approach is mainly 
feasible in existing buildings and therefore a long 
battery runtime is essential. In practise this can be 
guaranteed only by applying one of the three 
communication protocols ZigBee, EnOcean or 
LoRaWAN. 

We decided to go for LoRaWAN, as it shows two 
main advantages. First, it has the longest radio 
range of all protocols. The presented case studies 
are situated within a distance of 500 metres, and it 
is possible to gather the data with only one gateway 
(= device to collect the data and forward it to a 
server). We use two gateways to improve the 
battery lifetime of the sensors. This is also the 
second advantage of LoRaWAN: it uses a modern 
hardware and software architecture. Designed for 
security, it allows us to guarantee a fully encrypted 
data communication from sensor to database. 
Furthermore, we use features like adaptive data 
transfer rates, that improves the battery lifetime. 
We are gathering data each 10 minutes or when an 
event happens (like window opening). We expect a 
battery lifetime of almost 10 years for all devices, 
expect of the Ursalink AM102 that is equipped with 
an additional display. Here we expect 1 year of 
battery lifetime. 

Fig. 3 and Tab. 1 show the sensors used in the case 
studies. In overall, almost 150 sensors are in use. 

Fig. 3 - Sensors used in the case study, from left to 
right: Ursalink AM102, ELSYS DOOR, ELSYS ERS CO2, 
mcf88 Weather Station. 

Tab. 1 - Used LoRaWAN sensors. 

Manu-
facturer 

Name Type 

Ursalink AM102 Temperature, humidity, 
CO2, VOC, presence, 
display 

ELSYS ERS CO2 Temperature, humidity, 
CO2, presence 

ELSYS ERS EYE Temperature, humidity, 
presence, people 
detection 

ELSYS ERS DOOR Opening/closing 

mcf88 MCF-
LWWS00 

Weather station, 
temperature, humidity, 
global radiation, wind 
speed and direction, rain 

MClimate Vicki Thermostatic valves 

Fig. 4 shows the architecture of the monitoring 
solution. The sensors send the data wireless via 
LoRaWAN to a LoRaWAN server. A gateway is used 
as a physical device to forward the (encrypted) 
sensor data from LoRaWAN to WAN (internet). The 
gateways are connected to the LoRaWAN server via 
VPN and a cellular connection. As LoRaWAN server 
LORIOT is used. 

On the LoRaWAN server sensor data is decrypted 
and is forwarded via encrypted MQTT to a 
timeseries database. Here we use InfluxDB as a 
database, but the design allows the use of any 
timeseries-based database. Data is then accessible 
by the application for further use (see next section). 

Fig. 4 - Architecture monitoring system. 

2.3 Software architecture of the application 

Fig. 5 depicts the (simplified) software architecture of 
the application. The application is based on web 
technology, namely HTML, CSS and JavaScript for the 
frontend, ASP.NET for the backend and Python for the 
micro services. Frontend, backend and micro services 
are separated from each other and are connected via a 
RESTful API. A full user authentication (from frontend, 
over backend to micro services) is implemented. That 
guarantees full data integrity. A sensor management is 
implemented by gathering data from the LORIOT 
LoRaWAN server by applying a RESTful API. The 
frontend (GUI) can be changed by applying different 
themes. AI-based recommendations and the handling 
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of user feedback are implemented by micro services 
based on Python. A specially developed AI-hub ensures 
the data exchange between micro services and 
backend. The application is multi-language compatible 
and at the moment English, German and Italian are 
implemented as languages. 

Fig. 5 - Software architecture. 

The GUI itself was developed within a design thinking 
process. Fig. 6 depicts the results of the “ideate” part 
(prior step of rapid prototyping) of the GUI for the 
school building. Using the presented software 
architecture, specific themes can be developed and 
easily implemented. 

Fig. 6 - Design thinking process of the GUI (here for the 
school). 

Within the design think process also possible advices 
for the users were developed. In total 64 different 
recommendations were rolled out in the first version 
of the application. Typical suggestions have a format 
similar to “The air quality here is not very good. But 
outside it is very hot, so let’s wait a little bit before 
opening the windows.”. The following categories for 
giving advices on the comfort are implemented in the 
first version: temperature, humidity, indoor air quality 
and illuminance. 

2.4 AI-algorithm 

We use two AI-algorithms that were implemented as 
Python micro services. The first AI algorithm is a 
classification tree that decides, either depending on 
actual real time monitoring data or on predicted data, 
if a recommendation (see section above) is useful for a 
user. The second algorithm is based on a long short-
term memory (LSTM) time series forecasting and 
predicts the room states (temperature, humidity, CO2, 
illuminance) in 15, 30, 45 and 60 minutes. This allows 
us to give advices already in advance. The prediction 
uses a semi-physical approach to achieve a higher 
accuracy of the LSTM network with less training data. 

The results of this predictions are again the input data 
for the beforementioned classification tree. If no advice 
based on the real time data is found (i.e., the comfort is 
optimal), recommendations for future conditions, 
based on the prediction can be displayed in the 
application. 

The classification tree is generated by applying 
decision tree models from the scikit-learn toolbox. 
Training data is generated from measurement data and 
by manual labelling. As input data, data from Tab. 2 is 
used (same data as for the neural network, see below). 
As labels, the advices as described in the section above 
are used. 

For the timeseries forecast a recurrent neural network 
(RNN) using the so-called LSTM architecture is 
implemented [15]. For each room (classroom) or each 
apartment an own model is used. However, all models 
use the same input and output vectors. This allows us 
to train once a model of a single room or apartment 
and then to apply transfer learning for other rooms. By 
this, we achieve faster training results, and, in the 
future, we will be able to use a shorter training period 
for similar building structures. 

Our model uses 256 nodes that are based on LSTM 
with a forget gate. We use a multi-output model, so that 
it is possible to predict the future room states but also 
the future weather conditions by one model. This 
implicates that we need a high number of nodes. For 
training we allow a maximum of 100 epochs. The 
model sees an input data length of 7 days. Retraining is 
carried out for all different rooms based on previous 
models to reduce the necessary time for training. 

Tab. 2 shows the input data vector that is used for the 
neural network. Apart from measurement data we also 
use physically calculated data for the solar radiation on 
the vertical surfaces (South, North, East, West), that is 
crucial for solar gains through the windows. The area 
of the windows is also introduced by using an accurate 
BIM (Building Information Modelling) model of the 
case studies. By applying data exchange via the file 
format gbXML this information is imported into the 
micro service that runs the neural network. In future 
we plan to implement even more sophisticated 
physical calculations based on building energy 
simulation, like air flow calculations. 

Tab. 2 - Input data for the neural network. 

Input data Type 

Hour of day as sine Generated from timestamp 

Hour of day as 
cosine 

Generated from timestamp 

Day of year as sine Generated from timestamp 

Day of year as 
cosine 

Generated from timestamp 

Day of week Generated from timestamp 

Hour of day Generated from timestamp 

Temperature Measured value of temperature 

Humidity Measured value of humidity 
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CO2 Measured value of CO2 

Pressure Measured value of ambient 
absolute air pressure 

Illumination Measured value of illumination 

Motion Measured value of motion 

Window South 
opening state 

Measured opening state of 
South windows (summed up) 

Window North 
opening state 

Measured opening state of 
North windows (summed up) 

Window East 
opening state 

Measured opening state of East 
windows (summed up) 

Window West 
opening state 

Measured opening state of West 
windows (summed up) 

Door opening state Measured opening state of door 
against corridor 

Ambient 
temperature 

Measured ambient air 
temperature (weather station) 

Ambient humidity Measured ambient air humidity 
(weather station) 

Ambient pressure Measured ambient air pressure 
(weather station) 

Wind speed x-
direction 

Measured wind speed (weather 
station) 

Wind speed y-
direction 

Measured wind speed (weather 
station) 

Solar radiation 
South orientation 

Calculated solar radiation on 
vertical surface against South 
based on measured global 
radiation 

Solar radiation 
North orientation 

Calculated solar radiation on 
vertical surface against North 
based on measured global 
radiation 

Solar radiation 
East orientation 

Calculated solar radiation on 
vertical surface against East 
based on measured global 
radiation 

Solar radiation 
West orientation 

Calculated solar radiation on 
vertical surface against West 
based on measured global 
radiation 

Window South 
area 

Area of South windows 
(summed up) 

Window North 
area 

Area of North windows 
(summed up) 

Window East area Area of East windows (summed 
up) 

Window West area Area of West windows 
(summed up) 

3. Results and Discussion

3.1 Graphical user interface 

Two different graphical user interfaces (GUI) were 

developed for the case studies. Fig. 7 and 8 show the 
GUI for the school building. The teachers and the 
children can change the room where they are, in 
every moment (Fig. 8). All main rooms are equipped 
with tablets, that have installed the application. To 
simplify the use of the app for the children, almost 
no text was used on the main pages. Only when 
asking for the advice (here not visible), the textual 
advice will be accompanied with a picture of the 
action that the mouse should do (compare Fig. 9). 

Fig. 7 - GUI of school building (adviser). 

Fig. 8 - GUI of school building: room selection. 

Fig. 9 - GUI of school building: different states & 
actions. 

Fig. 10 shows the GUI used in the residential 
building. The occupant can see actual data of a 
central sensor, past data of sensors in each room, 
actual weather and the advices how to improve the 
IAQ and to reduce the energy consumption. 
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Fig. 10 - GUI of residential building. 

In both GUIs the optimal temperature and humidity 
range is determined depending on the thermal 
comfort, mainly on the concept of predictive mean 
vote (PMV). The user has also the possibility to 
change the setpoint of the thermostatic valves in 
each room. Also this is realized by LoRaWAN and 
LoRaWAN compatible thermostatic valves. 

3.2 AI-algorithm 

Training of the decision tree was carried out by 
using the period between 2021/09/27 and 
2021/10/31. The labelling was carried out for the 
whole period by applying a semi-automatic labelling 
routine. The advices described in the section above 
were used as labels and in addition a label for an “all 
okay” state. The first three weeks were used for 
training and the last two weeks for validation. In 
overall a prediction accuracy of around 90% was 
achieved.  

The main advantage of this approach is that the 
overall decision tree does not have to be 
programmed. Programming a decision tree, 
considering room sensor data and weather 
information, as input and (at the moment) 64 
different results leads to a very high effort in 
programming and a high number of errors can be 
introduced. Considering the actual result of 90% 
accuracy of prediction of the decision tree, in overall 
better results can be expected compared to 
traditional approaches. Further, when more data is 
available a re-training can be carried out. Also 
adding additional advices is very simple by applying 
this approach. However, the labelling takes quite a 
lot of time and needs expertise. It is not a trivial 
work and is at the same time very time-consuming. 
Moreover, due to the very time-limited training 
period (limited in particular to a specific season), 
not all available labels could be used. This means, 
that more time periods are necessary to ensure that 
all labels can be used and to achieve an even higher 
prediction accuracy. 

Training of the RNN was carried out by using the 
period between 2021/09/27 and 2021/12/19. Here 
70% of the data was used as training data, the rest 
as validation data. The batch size was data of 12 
hours. We take a 10-minute interval for the data 
points. The prediction is carried out for 15, 30, 45 
and 60 minutes. We train a model for each single 
room; however, we use the previously trained 

model as starting point. With this approach, we 
need for the further rooms only about 3 epochs to 
get a high accuracy. In overall, the accuracy of the 
prediction is very high. There is only a very little 
amount of time, where the prediction fails 
completely (< 1%). As quality criteria for failing of 
the prediction we set for the indoor temperature a 
range of 0,3 °C, for the humidity 3%, for the 
illumination 10 lux and for the CO2 concentration 
50 ppm. Highest failure rate can be seen in the 
illumination.  

3.3 Preliminary monitoring results 

We present here first preliminary monitoring 
results of the application impact. At the moment it is 
only feasible to evaluate the comfort parameters, as 
changes there can already be obtained after a very 
short time. For evaluating the impact of the advices 
that could reduce the energy consumption, a longer 
observation period is necessary. 

For the indoor air quality in particular the CO2 
concentration was analysed. The period between 
2021/10/04 and 2021/10/24 was taken for the 
reference values. The validation period of the 
application is between 2021/12/06 and 
2021/12/19. Tab. 3 shows the number of total 
hours in the two weeks periods with CO2 
concentrations above 800 ppm for the school 
building. The use of the classrooms was in both 
periods the same. Also the number of children was 
unchanged. Independent of this study, teachers have 
been advised to open the windows regularly due to 
the COVID pandemic in both periods. In the 
validation period the ambient temperature was 
significantly lower than in the reference period 
(which usually leads to a reduced ventilation). The 
total hour of use in these periods is each about 
70 hours. 

Tab. 3 - Hours with CO2 concentration above 800 ppm. 

Room Reference Validation Difference 

G01a 16.83 h 2.17 h -87%

G01b 16.17 h 11.50 h -29%

G02a 4.33 h 3.83 h -12%

G02b 35.33 h 51.33 h +45%

G03a* 5.67 h 0.00 h -100% 

G03b* 4.17 h 3.83 h -8%

G04a 8.17 h 10.83 h +33%

G04b* 11.0 h 22.50 h +105% 

G05a* 1.00 h 0.00 h -100% 

G05b 4.25 h 3.17 h -25%

TOTAL 106.92 h 109.16 h 2%

* Equipped with mechanical ventilation system. 

For the classrooms the hours of CO2 concentration 
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could only be reduced by 2%. For the residential 
building we can obtain the same results in our first 
analysis. In terms of thermal comfort, no significant 
change was obtained so far, but the observation 
period is rather short for such analysis. 

4. Conclusions and Outlook

We conclude that with a high number of sensor data 
available creating AI models is a relatively simple 
task. The decision tree approach allows to reduce 
the demand of necessary work to implement 
decision logics considerably. However, the labelling 
task is time-consuming and non-trivial. Here more 
sophisticated approaches are necessary to automate 
the labelling. Non-supervised machine learning 
models were not considered in this work. However, 
for decision trees they are not common, since the 
data is not labelled, there is no objective function to 
determine an optimum clustering. A prior 
unsupervised clustering of the data would be 
possible to reduce the amount of necessary 
labelling. 

Short-time prediction by applying RNNs and the 
LSTM approach seems to be very convenient. In 
particular when combining it with physical 
calculated data, training time and prediction results 
can be improved. It seems that it can help to find the 
neural network more direct correlations in a shorter 
period of time. However, for training a significant 
amount of data is necessary to achieve good results. 
Combining it in a second step with the decision tree 
model seems to be convenient. 

According to preliminary results the impact of the 
application in terms of indoor air quality seems to 
be modest. However, for a comprehensive 
validation a longer observation time is necessary. 
Also for evaluating the aspects linked to energy 
demand a longer observation time is needed. 
Therefore, the monitoring will be continued for the 
next months to gather data of an overall heating 
seasons. Comparison with energy demand data of 
previous heating seasons will be carried out. 
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