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Abstract. One of today’s major challenges is to become climate neutral by 2050. Large 

potential for energy reduction is found in the building sector (which accounts for 40% of 

Europe’s total primary energy use). To compare energy reduction strategies, Building-Stock 

Energy Models are vital instruments. Yet, the regulatory energy performance calculation 

(which is currently used by EU policy makers) poorly predicts the real building energy use in 

residential buildings and largely overestimates the potential energy savings. Promising data- 

driven black-box models are gaining considerable traction in a wide range of applications. 

This paper evaluates whether data-driven linear regression and gradient boosting machine 

models provide better predictions of the real total building energy use at large scale as 

compared to the current regulatory white-box building energy calculation method. Compared 

to the performance of the regulatory method, both the linear regression models and the 

gradient boosting regression trees perform better (gradient boosting regression trees slightly 

worse than multiple linear regression). Yet, a large part of the variance in the linear 

regression models is left unexplained and also for the gradient boosting trees, there is room 

for improvement. At individual building level, it is clear that both the linear regression model 

performance and the gradient boosting regression tree performance is too poor for inference. 

At stock level, however, both types of models seem promising and can be a useful tool to 

inform big housing owners (e.g., financial institutions, governments, housing companies etc.) 
or for policy making. 
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1. Introduction 

One of today’s major challenges is to become 
climate neutral by 2050. Large potential for energy 
reduction is found in the building sector, which 
accounts for 40% of Europe’s total primary energy 
use and 36% of the CO2-emissions (EU, 2020). To 

compare competing energy reduction strategies, 
Building-Stock Energy Models (BSEMs) are vital 
instruments. Yet, the current regulatory energy 
performance calculation (which is currently used by 
EU policy makers) poorly predicts the real building 
energy use in residential buildings and consequently 
poorly informs current and future home owners and 
tenants about their energy use, largely 
overestimates the potential energy savings and 
therefore undermines policy making (Van Hove et 
al., 2021). 

Since the introduction of the regulatory energy 
performance calculation methods in 2009 (i.e., 
specified by the Energy Performance of Buildings 
Directive (EPBD)), national building energy 
registries have emerged and vastly increased ever 
since. These data registries consist of aggregated 
building characteristic data which are used for the 
regulatory energy performance calculation (white- 
box) (EPC, 2015). With this data being available 
and the fact that the regulatory methods only poorly 
estimate the real building energy use (Macjen et al., 
2013; Van Hove et al., 2021), the question rises 
whether data-driven statistical models and/or 
machine learning models can replace the regulatory 
methods for predicting the real annual building 
energy use. 

 
Statistical models on the one hand, such as the 

Ordinary Least Squares (OLS) linear regression 
(Zdaniuk, 2014), have been around for a couple of 
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decades and have already been tested in other EU- 
countries, though not for Flanders and often not 
including socio-demographic variables. Machine 
learning models on the other hand, such as gradient 
boosting regression trees (de Queiroz et al., 2016), 
are gaining considerable traction in a wide range of 
applications and have only been scarcely used for 
predicting the annual building energy use (also not 
for Flanders). 

 
In this paper, we aim to study the predictive 

performance of data-driven linear regression models 
and data-driven gradient boosting regression trees 
for predicting the real annual total building energy 
use. Then, the results are being compared to the 
predictive performance of the regulatory calculation 
methods and there is being evaluated wether these 
data-driven black-box models can potentially 
replace the current regulatory white-box models for 
predicting the annual building energy use at 
individual building level as well as at stock level. 

 

2. Research Methods 

Table 1 and Table 2. Table 1 shows the general 
building variables used and their frequencies or 
summary statistics (M means Mean, SD means 
standard deviation for the continuous variables). 
Table 2 shows descriptive information for the socio- 
demographic and weather variables. 

 
Tab. 1 - Overview of general building variables and 

their frequencies (bold = reference category). 
 

Variable Categories (N) 
 

 

Energy score n/a (cont.: M=363kWh/m2·y, SD=173) 

Construction year n/a (cont.: M=1966, SD=28) 

Latitude n/a (cont.: M=51.05, SD=0.17) 

Longitude n/a (cont.: M=4.17, SD=0.72) 

Usable floor space n/a (cont.: M=169.6m2, SD=61.7m2) 

Building volume n/a (cont.: M=512.1m3, SD=193.9m3) 

Dwelling type Detached (39.8%), semi-detached 

(31.2%), terraced (29.0%) 

Number of floors n/a (cont.: M=2.3, SD=1.6) 

Basement? Yes (43.4%), no (56.6%) 

Roof insulation? Yes (25.4%), no (74.6%) 

Floor insulation? Yes (18.9%), no (81.1%) 

Wall insulation? Yes (38.4%), no (61.6%) 

2.1. Data set DHW on gas? 

(no=elec) 

Yes (78.4%), no (21.6%) 

The data analysed for this paper were collected 
from a former study together with Flemish Energy 
and Climate Agency (Van Hove et al., 2021). In 
total, it comprises 122,680 cases from the Flemish 
EPC registry (i.e., one centralised database with 
data from the regulatory energy performance 

SH on gas? (no=elec) Yes (93.4%), no (6.6%) 

Ventilation system A (96.8%), B (0.2%), C (2.1%), D 

(0.9%) 

Condensing boiler? Yes (49.4%), no (50.6%) 

DHW storage vessel? Yes (30.6%), no (69.4%) 

SH Floor heating? Yes (3.6%), no (96.4%) 

certificates of all registered existing buildings 
constructed  before  2006).  The  data  provide 

SH Radiator/ 

Convector? 

Yes (20.9%), no (79.1%) 

information about the building characteristics, 
technical systems and some detailed building 
geometry data. Also, there are annual real meter 
data available from the Belgian distribution system 
operator Fluvius and there are some socio- 
demographic and climate variables as well. After 
data cleansing, filtering and coupling, 56,930 cases 
were excluded from the sample based on the 
following five criteria: 

 
(i) Coupling of data from various databases (e.g., 

Fluvius real energy use data and data from the 
energy performance database). 

(ii) Inconsistencies in the PV-data. 

(iii) Doubt about the reliability of the real energy 
consumption data. 

(iv) Single-family houses with energy sources other 
than natural gas and electricity for space heating 
(SH) and/or domestic hot water (DHW). 

 
Hence, the total sample size was 69,870 cases 

which formed the basis for all the analyses carried 
out in this paper. 

2.2. (In)dependent variables 

The dependent variable in all analyses, the OLS 
regression models and the gradient boosting 
regression tree models is the annual real primary 
total energy use [kWh/y]. An overview of the 
independent variables (or predictors) is given in 

SH Air heating? Yes (1.1%), no (98.9%) 

PV-panels? Yes (3.6%), no (96.4%) 

Heat pump? Yes (0.3%), no (99.7%) 

Solar collector? Yes (1.5%), no (98.5%) 

Space cooling? Yes (1.5%), no (98.5%) 

Social housing? Yes (5.8%), no (94.2%) 
 

 

 

 

Tab. 2 - Overview of socio-demographic and weather 

variables and their frequencies (bold = reference 

category). 

 

Variable Categories (N) 
 

 

Number of occupants n/a (cont.: M=2.63, SD=1.33) 

Children 00-04yr? Yes (28.4%), no (71.6%) 

Children 05-12yr? Yes (25.1%), no (74.9%) 

Children 13-18yr? Yes (14.4%), no (85.6%) 

Adults 19-29yr? Yes (26.8%), no (73.2%) 

Adults 30-44yr? Yes (53.0%), no (47.0%) 

Adults 45-64yr? Yes (38.0%), no (62.0%) 

Adults 65+yr? Yes (16.1%), no (83.9%) 

Number of 65+-adults n/a (cont.: M=0.21, SD=0.53) 

Number of Children n/a (cont.: M=0.95, SD=1.12) 

Number of adults n/a (cont.: M=1.92, SD=0.72) 

HH composition 1Ad, 0Ch (17.3%), 1Ad, 1Ch 

(2.5%), 2Ad, 0Ch (24.1%), 2Ad, 

1Ch (15.1%), 2Ad, 2Ch (18.2%), 

2Ad, 3Ch (5.2%), 

3Ad, 0Ch (4.7%), 3Ad, 1Ch (2.2%) 

Length residency n/a (cont.: M=7.19y, SD=10.4y) 
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weighted annual average 

temperature (∆_Tav) 

weighted annual 

DegreeDays (∆_DD) 

weighted annual Global 

Horizontal Irradiance 

(∆_GHI) 
weighted annual 

n/a (cont.: M=0.04°C, SD=0.19°C) 

n/a (cont.: M=-26.0, SD=42.9) 

n/a (cont.: M=-1.16W/m2, 

SD=17.56W/m2) 

 
n/a (cont.: M=226.4, SD=73.3) 

learner” (de Queiroz et al., 2016), having high 
prediction accuracy, can be obtained by iteratively 
combining several less complex models, called 
“weak learners”. Such ensembles are constructed 
from decision tree models. Trees are added one at a 
time to the ensemble and fit to correct the 
prediction errors made by prior models. This is a 

 SolarHours (∆_SH)  
 

 

2.3. OLS linear regression 

Statistical modelling with the data are all 
conducted in Python with the statistical packages 
‘scikit-learn’ (Pedregosa et al., 2011) and 
‘statsmodels’ (Skipper et al., 2010) in combination 
with the data analysis and visualisation package 
‘pandas’ (McKinney, 2010). Initially, a linear 
ordinary least squares (OLS) regression model 
(Zdaniuk, 2014) has been built for both a set of 
‘general building variables’ and a set of ‘socio- 
demographic and weather variables’. Given the 
suspected issue of multicollinearity, the variance 
inflation factors (VIF) have been inspected. VIF 
indicates how much the variance of an estimated 
regression coefficient increases if the explanatory 
variables are correlated. If uncorrelated, VIF=1. In 
this paper a threshold of 5 has been used, as 
suggested in literature (Roberts et al., 2009; Chan et 
al., 2012). If VIFs greater than 5 are found in the 
OLS regression, then one (or more) of those 
correlated variables are excluded one-by-one 
stepwise depending on the regression coefficient 
and the individual VIF until a model is obtained 
with no collinearity issues. 

 
Further, all p-values and bootstrapped 95% 

confidence intervals (CI) of the predictors are 
checked for irregularities. Only the predictors for 
which the p-values are <.05 and the confidence 
intervals do not include nil are significant and thus 
kept in the model. The exclusion of explanatory 
variables from the model is once more done one by 
one stepwise. After building the individual models 
(i.e., ‘general building variables’ and ‘socio- 
demographic and weather variables’), the models 
are combined until resulting in a final model 
encompassing all explanatory variables, tested and 
adjusted for multicollinearity and significant 
regression coefficients. As all model input variables 
are normalised, the magnitude of the regression 
coefficients gives an indication of the parameters 
relative importance in the regression model. 

 
In order to fulfil the necessary assumptions for 

linear regression models, the model input variables 
are checked for linearity, autocorrelation and 
multicollinearity; the residuals are checked for 
independency, homoscedasticity and normality. 

2.4. Gradient boosNng regression trees 

The gradient boosting machine (GBM) is part of 
a class of powerful ensemble machine learning 
algorithms based on the concept that a “strong 

type of ensemble machine learning model referred 
to as boosting. Models are fit using any arbitrary 
differentiable loss function and gradient descent 
optimisation algorithm. This gives the technique its 
name, “gradient boosting”, as the loss gradient is 
minimised as the model is fit, much like a neural 
network. Gradient boosting is an effective machine 
learning algorithm and is often the main, or one of 
the main, algorithms used to win machine learning 
competitions (like Kaggle) on tabular and similar 
structured datasets, which is why we test its 
performance in this paper. 

 
The algorithm provides hyperparameters that 

must be tuned for a specific dataset. Such 
parameters include the number of trees or 
estimators in the model, the learning rate of the 
model, the maximum tree depth, the minimum tree 
weight etc. The gradient boosting implementation 
that we are using in this paper is XGBoost (Extreme 
Gradient Boosting) with the Python package 
‘xgboost’ (Chen et al., 2016). First a baseline model 
is made with a 80%-20% training-set split without 
hyper parameter tuning. Then hyper parameter 
tuning is performed with the Bayesian optimisation 
algorithm (HYPEROPT) (N.B., see Table 3 for the 
used hyperparameter space) (Bergstra et al., 2015), 
with 80%-20% training-set split and a 5-fold cross- 
validation. Similar to the OLS regression models, 
first initial models are built for a set of ‘general 
building variables’ and a set of ‘socio-demographic 
and weather variables’. Then models are combined 
until resulting in a final model encompassing all 
explanatory variables. 

 
Tab. 3 - List of hyperparameters of the GBM models 

and tuning range. 
 

 name tuning range  

learning rate  [0.001, 0.1] 

hessian regularisation [1, 10] 

loss regularisation [1, 12] 

column sampling by tree [0.5, 1] 

column sampling by level [0.5, 1] 

maximum depth [3, 25] 

number of iterations [100, 1800] 

 (with early stopping at 50)  

 

 

We further use SHAP (Shapley Additive 
exPlanations) values to interpret the outputs 
(Lundberg et al., 2017)(Fig. 1). The x-axis of a 
SHAP summary plot shows the impact off features 
on the outcomes, based on the SHAP values. 
Features are sorted based on their impact, thus the 
variable at the top has the highest impact. The color 
represents the feature values, with red for high 
values and blue for low values. The vertical 
dispersion for each feature corresponds to the data 
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points with the same SHAP values. If red points are 
mostly present on the positive side of SHAP values, 
it means by increasing the value of the independent 
variable, the dependent variable increases as well. 

 

Fig. 1 - SHAP reference graph. 
 

3. Results 

3.1. General building characterisNcs OLS 
model 

General building variables explained (adjusted) 
R2=38.1% of the variability in the real total energy 
use. Two variable showed VIF values above the 
chosen threshold criterion so some of those had to 

be excluded one-by-one stepwise (i.e., building 
volume). Further, five variables had confidence 
intervals including nil and a p-value >.05 meaning 
that some of those had to be excluded one-by-one 

stepwise as well (i.e., type of ventilation system, 
construction year, roof insulation?, number of floors 
and SH energy carrier). After exclusion of those 
variables, an OLS regression rerun on the remaining 
variables resulted in a model that explained 
R2=41.3% of the variability in the real total energy 

use. Table 5 shows the coefficients of the reduced 

OLS model (i.e., standardised coefficients 𝛽OLS, 95% 

confidence intervals of the standardised coefficients 

𝛽OLS and the p-values of the standardised 

coefficients 𝛽OLS). Five variables are significant: A 

larger dwelling size is associated with higher total 
energy use, the presence of renewable systems (i.e., 
PV-panels, heat pump and solar collector) is 
associated with using less total energy use, floor and 
air heating is associated with more total energy use 
compared to radiator space heating, having space 
cooling is associated with having higher total energy 
use and detached houses are associated with having 
higher total energy use compared to semi-detached 
houses while terraced houses are associated with 
having less total energy use compared to semi- 
detached houses. 

 

3.2. Socio-demographic & weather OLS 
model 

The socio-demographic and weather model 
explained (adjusted) R2=11.7% of the variability in 
the real total energy use. Six variables showed VIF 

values above the chosen threshold criterion so some 
of those had to be excluded one-by-one stepwise 
(i.e., the number of children, average age of HH, 
HH with children, the number of 65+ per HH). 
Further, six variables had confidence intervals 
including nil and a p-value >.05 meaning that some 
of those had to be excluded one-by-one stepwise as 
well (i.e., HH with children 5-12 and 13-18, HH 
with adults 30-44 and 65+, HH composition 2Ad 
1Child and weighted annual GHI). After exclusion 
of those variables, an OLS regression rerun on the 
remaining variables resulted in a model that 
explained R2=13.6% of the variability in the real 
total energy use. Table 6 shows the coefficients of 
the reduced OLS model. Three variables are 
significant: A larger household size and a larger 
number of adults is associated with higher total 
energy use, singles are associated with less total 
energy use and a more annual heating degree days 
at the dwelling’s location are associated with higher 
total energy use. 

 

3.3. Combined OLS model 

In the next step, the two different individual 
models are combined together for increments in 
explanatory power through adding additional 
variables. For the building and socio-demographic 
and weather model, only the variables that had 
remained after VIF- and CI-checks have been 
included. The combined ‘general building and socio- 
demographic and weather’ model explained 
(adjusted) R2=46.6% of the variability in real total 
energy use. No variables showed VIF values above 
the chosen threshold criterion and no variables had 
confidence intervals including nil. An OLS 
regression rerun on the remaining variables was 
thus not necessary. This 5.3% increase in R2 

compared to the model with general building 
characteristic variables only is significant (p<.01). 
Also in comparison to the socio-demographic and 
weather OLS model, the increase in R2 is significant 
(p<.01). Table 7 summarises the coefficients for all 
variables that remained after VIF- and CI-checks. 

 
Table 4 shows the adjusted R2 of the individual 

OLS models and the combined OLS model as well as 
results for the Mean Absolute Error (MAE) and Root 
Mean Squared Error (RMSE) metrics. As expected, 
building characteristic variables explain by far the 
most of the variability in real total energy use, on 
their own, and also when added to building and 
socio-demographic and weather variables. Socio- 
demographic variables play a lesser but still 
significant role in explaining real total energy use. 
Extra detailed building variables don’t add much 
information to the model to predict more of the 
variability in the real total energy use. Therefore, in 
explaining more of the variability (and avoiding 
collinearity problems), the modeller can better 
gather more different types of variables (i.e., 
building characteristics, socio-demographics, 
incomes, weather, appliance ownerships etc.) rather 
than more detailed variables within the same type 
of variables (e.g., extra detailed variables related to 
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building characteristics). Further, as a model with 
general building characteristics (i.e., building 
features that inhabitants can easily fill in 
themselves) performs equally well compared to a 
model including detailed building characteristics 
and intermediate results from the regulatory 
calculation, the final model can be used (e.g., in an 
online tool) as a primary model to inform 
inhabitants, tenants and home owners about their 
energy use, without needing extra inputs from the 
EPC-registry to improve performance. 

 
Tab. 4 - Adjusted R2, MAE and RMSE for the two 

individual models and the combined model. 
 

model gen_build socio final 

(adj) R2 41.3% 13.6% 46.6% 

MAE 5227 kWh/y 6211 kWh/y 5011 kWh/y 

RMSE 6469 kWh/y 7832 kWh/y 6214 kWh/y 

 
 

Tab. 5 - Coefficients of OLS regression model, general 

building variables. 
 

Predictor 𝛽OLS 95% CIOLS pOLS 

(constant) 22694.2 [22526.9, 24373.3] <.001 

Energy score 1698.9 [1549.1, 1927.9] <.001 

Latitude 193.0 [20.4, 342.7] <.013 

Longitude 695.6 [550.6, 876.8] <.001 

Usable floor space 5034.9 [4854.8, 5212.1] <.001 

Detached? 2214.8 [1834.0, 2443.4] <.001 

Terraced? -1800.9 [-2096.4, -1579.6] <.001 

Basement? 745.6 [506.5, 967.8] <.001 

Floor insulation? -553.3 [-850.4, -247.2] <.002 

Wall insulation? -517.2 [-772.3, -228.3] <.001 

DHW on gas? 717.4 [306.3, 1018.2] <.001 

Condensing boiler? -1404.5 [-1611.4, -1098.0] <.001 

DHW storage vessel? 1719.0 [1525.3, 2085.8] <.001 

SH Floor heating? 3928.5 [3244.1, 4740.9] <.001 

SH Radiator? 2145.3 [1884.9, 2687.9] <.001 

SH Air heating? 3589.5 [2581.5, 4933.7] <.001 

PV-panels? -3475.2 [-3991.1, -3080.9] <.001 

Heat pump? -4613.1 [-6561.9, -813.4] <.003 

Solar collector? -1865.6 [-2488.6, -752.7] <.001 

Space cooling? 2236.3 [1374.4, 2679.9] <.002 

Social housing? 1154.5 [775.8, 1399.9] <.001 

 

 
Tab. 6 - Coefficients of OLS 

demographic variables. 

regression model, socio- 

Predictor 𝛽OLS 95% CIOLS pOLS 

(constant) 24760.7 [24326.2, 25237.3] <.001 

Number of occupants 1247.5 [1027.9,1606.9] <.001 

Number of adults 1397.5 [1045.1,1703.2] <.001 

Children 00-04yr? -1028.6 [-1398.4,-630.6] <.001 

Adults 19-29yr? -1143.6 [-1463.4,-809.2] <.001 

Adults 45-64yr? 870.8 [517.1,1099.1] <.001 

Length residency 158.2 [127.2,186.3] <.001 

HH: 1Ad, 0Child -3133.4 [-3789.8,-2416.8] <.001 

HH: 1Ad, 1Child -1227.0 [-2282.9,-505.5] <.001 

HH: 2Ad, 0Child -1190.3 [-1688.9,-720.7] <.001 

HH: 2Ad, 2Child 1238.4 [701.7,1464.8] <.001 

weigh. ann. Tav 703.2 [326.9,1028.9] <.001 

weigh. DegreeDays 1413.0 [981.2,1783.4] <.001 

weigh. SolarHours -659.7   [-825.1,-490.8]   <.001 
 

 

 

 

Tab. 7 - OLS coefficients for the final combined 

regression model. 
 

Predictor 𝛽OLS 95% CIOLS pOLS 

(constant) 11427.4 [21995.9, 23892.4] <.001 

Energy score 1619.9 [1483.9, 1852.8] <.001 

Usable floor space 3780.8 [3199.2, 4138.1] <.003 

Detached? 2334.4 [1967.6, 2544.4] <.001 

Terraced? -1846.7 [-2111.1, -1619.2] <.001 

Basement? 659.4 [435.4, 894.8] <.001 

Floor insulation? -399.9 [-698.8, -98.6] <.001 

Wall insulation? -451.8 [-669.5, -198.2] <.001 

DHW on gas? 546.2 [169.9, 857.1] <.001 

Condensing boiler? -1168.1 [-1387.5, -883.1] <.001 

DHW storage vessel? 1607.6 [1435.4, 2009.9] <.001 

SH Floor heating? 4010.4 [3448.2, 4875.4] <.001 

SH Radiator? 2024.9 [1767.9, 2508.9] <.001 

SH Air heating? 3546.6 [2499.6, 4855.8] <.001 

PV-panels? -3913.3 [-4436.5, -3477.3] <.017 

Heat pump? -4981.3 [-6854.2, -1449.2] <.011 

Solar collector? -1553.6 [-2321.5, -465.6] <.002 

Space cooling? 2237.1 [1427.8, 2752.5] <.001 

Social housing? 527.2 [199.2, 830.8] <.001 

Children 00-04yr? -642.3 [-829.8, -89.3] <.001 

Children 05-12yr? 654.2 [207.2, 1007.5] <.001 

Children 13-18yr? 701.2 [393.1, 1218.1] <.001 

Adults 45-64yr? 454.9 [265.9, 773.9] <.001 

Number of occupants 1177.8 [842.0, 1401.1] <.001 

Number of adults 840.2 [548.9, 1048.2] <.001 

Length residency 78.8 [62.2, 112.7] <.001 

HH: Average Age 841.2 [492.8, 1049.8] <.001 

HH: 1Ad, 0Child -1660.9 [-2218.1, -1069.6] <.001 

HH: 2Ad, 0Child -1132.6 [-1408.9, -560.5] <.001 

weigh. ann. Tav 564.8 [302.3, 851.8] <.001 

weigh. DegreeDays 720.3 [471.6, 1123.4] <.001 

weigh. SolarHours -201.1 [-319.5, -42.3] <.001 

 

3.4. General building characterisNcs XGB 
model 

For a XGB baseline model with general building 
variables, we obtained a MAE and RMSE of 
respectively 6041 kWh/y and 7856 kWh/y. After 
hyperparameter tuning with 5-fold cross-validation, 
a XGB rerun resulted in a model with a MAE and 
RMSE of respectively 6020 kWh/y and 7828 kWh/y 
(learning rate = 0.0118, n estimators = 1450, 
colsample bytree = 0.510, gamma = 0.451, min 
child weight = 1, max depth = 3, colsample bylevel 

= 0.563). Fig. 2 shows the SHAP summary plot for 
predicting the real total energy use based on general 
building variables. The most important general 
building variables are the usable floor space, the 
building volume, the dwelling type and the 
calculated energy performance score. 

 

3.5. Socio-demographic & weather XGB 
model 

A XGB baseline model with socio-demographic 
and weather variables resulted in a MAE and RMSE 
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of respectively 6993 kWh/y and 9088 kWh/y. After 
hyperparameter tuning, a XGB rerun resulted in a 
model with a MAE and RMSE of respectively 6990 
kWh/y and 9100 kWh/y (learning rate = 0.0468, n 
estimators = 370, colsample bytree = 0.817, 
gamma = 0.352, min child weight = 9, max depth 

= 4, colsample bylevel = 0.563). Fig. 3 shows the 
SHAP summary plot for predicting the real total 
energy use based on socio demographic and 
weather variables. The most important socio- 
demographic and weather variables are the number 
of occupants, the number of adults, the length of 
residency and the normalised number of solar hours 
and degree days. 

3.6. Combined XGB model 

For the combined ‘general building and socio- 
demographic and weather’ XGB baseline model, we 
obtained a MAE and RMSE of respectively 5747 
kWh/y and 7499 kWh/y. After hyperparameter 
tuning, a XGB rerun resulted in a model with a MAE 
and RMSE of respectively 5740 kWh/y and 7505 
kWh/y (learning rate = 0.0290, n estimators = 
1360, colsample bytree = 0.507, gamma = 0.966, 
min child weight = 8, max depth = 3, colsample 
bylevel = 0.501). Fig. 4 shows the SHAP summary 
plot for predicting the real total energy use for the 
final combined XGB model. The most important 
variables are the dwelling type, the usable floor 
space, the building volume and the number of 
occupants. 

 

Fig. 2 - Contribution of the 20 most important features 

in the ‘general building variables model’. 

 

 
Fig. 3 - Contribution of the 20 most important features 

in the ‘socio demographic and weather variables 

model’. 

 

Fig. 4 - Contribution of the 20 most important features 

in the ‘combined model’. 

3.7. Regulatory calculaNon method 

Fig. 5 shows a scatter plot of the real and 

regulatory calculated total energy use [kWh/y]. In 

an ideal scenario, a linear function should 

closely describe the relationship between both 
parameters. As expected, an ideal relation is not 
obtained. In fact, a negative R2 (R2=-15%) between 
both (N.B., R-Squared can be negative only when 
the chosen model does not follow the trend of the 

Number of occupants 

Length residency 

Weighted annual SolarHours 

Weighted annual DegreeDays 

Number of adults 

Age oldest HH 

Weighted annual GHI 

Age mean HH 

Age youngest HH 

Weighted annual Tav 

Number of children 

HH composition: 1Ad, 0Ch 
 

Adults 30-44yr? 

HH composition: 2Ad, 0Ch 

Children 13-18? 
 

Number of 65+ 
 

Adults 19-29? 
 

Children 05-12? 

HH composition: 1Ad, >0Ch 

Children 00-04? 
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data, so fits worse than a horizontal line (Hastie et 
al., 2009; James et al., 2013) indicates that the 
average real total energy use of the stock is, on 
average, a better prediction of the real total energy 
use of an arbitrary single-family house than the 
annual regulatory calculated total energy use. 
Furthermore, the RMSE and MAE between both 
variables are respectively 45808 kWh/y and 35325 
kWh/y. When considering that the average real total 
energy use of the studied sample is 27286 kWh/y, 
the MAE and RMSE results are 1.29 to 1.68 times 
larger. 

 
Compared to the performance of the regulatory 

method, both the linear regression models and the 
gradient boosting regression trees perform better 
with results for the MAE respectively 6.05 and 5.15 
times better (smaller) and the results for the RMSE 
respectively 6.37 times and 5.10 times better. 
Gradient boosting regression trees perform slightly 
worse than multiple linear regression. 

 

Fig. 5 - Scatter plot of the real and regulatory 

calculated annual total primary energy use in Flemish 

single-family houses. 
 

4. Conclusions 

This study investigated the predictive 
performance of data-driven linear regression models 
and data-driven gradient boosting regression trees 
for predicting the real annual total building energy 
use. Also, the results are being compared with the 
predictive performance of the regulatory calculation 
methods and there is being evaluated wether these 
data-driven black-box models can potentially 
replace the current regulatory white-box models for 
predicting the annual building energy use at 
individual building level as well as at stock level. 

 
A total of 46.6% of the variability in total energy 

use is explained by the final linear regression model 
based on a combined set of predictors (general 
building variables, socio-demographic and weather 
variables) and we obtained MAE and RMSE results 

of respectively 5011 kWh/y and 6214 kWh/y. For a 
final XGB model with hyperparameter tuning, based 
on a combined set of predictors (general building 
variables, socio-demographic and weather 
variables), we obtained MAE and RMSE results of 
respectively 5432 kWh/y and 6543 kWh/y. 

 
Compared to the performance of the regulatory 

method, both the linear regression models and the 
gradient boosting regression trees perform better 
(gradient boosting regression trees slightly worse 
than multiple linear regression). Yet, a large part of 
the variance in the linear regression models is left 
unexplained and also for the gradient boosting 
trees, there is room for improvement. This means 
that a large portion of evidence/information has to 
be attributed either to parameters that are not listed 
among the variables of the EPB registry (e.g., 
occupant behaviour, appliance ownership, income) 
or that the values of the parameters listed are 
inaccurate (e.g., inaccurate default values). 

 
At individual building level, it is clear that both 

the linear regression model performance and the 
gradient boosting regression tree performance is too 
poor for inference. At stock level, however, both 
types of models seem promising and can be a useful 
tool to inform big housing owners (e.g., financial 
institutions, governments, housing companies etc.) 
or for policy making. 
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