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Abstract. Window state information and changes can help understand ventilation patterns or 

be used as input in energy models. State identification can be achieved by capturing time-lapse 

images and processing these through a deep learning model. Deep learning methods have 

shown reliable performance in object detection tasks such as window and door detection, but 

have not been applied for window states detection. One of the challenges in setting up such 

models is to collect a large number of images of window states. In this case, image augmentation 

can be a critical pre-processing step to enhance the training dataset artificially. Image 

augmentation has been beneficial in similar contexts and applications. This paper investigates 

image augmentation methods, adjusting for brightness, scale, and weather. Windows images 

were used as the starting dataset to demonstrate the proposed methods, and augmented images 

were artificially generated from the original images. Using the expanded dataset, the Faster R-

CNN (faster region-based convolutional neural network) trained a model to detect the binary 

window states. The augmented dataset model showed better performance than when the 

original dataset was used. The findings are a testament to the utility of image augmentation 

methods in the training model of window states detection using deep learning methods. 
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1. Introduction

In residential and non-residential buildings, indoor 
environments that meet high thermal and visual 
comfort standards are conducive to occupants' 
health and productivity. One way of controlling 
indoor environment parameters are manually 
openable windows. Operational patterns of each 
window, also called window states, can be very 
complex since they can be affected by many 
behavioural aspects driven by environmental or 
non-environmental factors (e.g. indoor conditions 
and personal characteristics) [1]. For example, 
when occupants feel uncomfortable with the indoor 
environment, windows may be partially opened, 
even during the cold season. On the other hand, 
other occupants may choose to fully close windows 
if they are sensitive to outside noise. 

Knowing the window states and how they vary over 
time can be helpful in many applications. For 
example, window states are used as an influential 
input of energy, ventilation, and lighting 
simulations. There are two widely used methods for 
window state detection. One way is to monitor the 
windows' binary (open or closed) state through the 
magnetic contacts attached at the interface between 
the window frame and the wall. However, installing 

magnetic sensors' in large numbers requires high 
capital and installation cost, which diminishes the 
benefits from the available information [2]. Another 
approach to window state detection is to classify the 
window states after taking a picture of each building 
façade from places where window states can be 
recognisable accurately [3]. As photography can 
capture many windows simultaneously through a 
single camera, it is relatively inexpensive. However, 
time-lapse photography is limited when window 
states are recognisable using naked eyes, and such 
recordings can raise privacy concerns. For this 
reason, this method may be more appropriate in 
non-residential buildings such as offices and schools 
during occupied hours (generally 9 am to 5 pm) [4]. 
In addition, such manual classification of window 
states from images is time consuming and labour-
intensive. In particular, this problem may become 
more serious when the sampling interval is short, 
and there are many windows on each façade. 

Computer vision techniques can be introduced as an 

automatic method for analysing the images. While 

deep learning methods for computer vision have 
been proved in high generalisation ability to 
recognise different components such as window 
and door from building façade images [4], they have 
not been applied for window states detection yet. As 
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one of the data-driven methods, deep learning may 
have billons of parameters to be trained for high 
generalisation ability and requires a sufficiently 
large number of annotated datasets [5]. Curation of 
such large data sets for training the deep learning 
model can be time consuming and tedious. As an 
alternative, artificially expanding labelled training 
datasets from original data, known as image 
augmentation, could be introduced to address this 
data scarcity problem [6]. Image augmentation 
methods change the pixel values to produce 
artificial images based on original ones. However, 
computational time and generalisation ability may 
be increased and decreased, respectively if 
unrelated augmented data is trained. For this 
reason, appropriate augmentation methods based 
on a possible scenario in a real site needs to be 
applied. However, in previous studies, the data 
augmentation methods for window states detection 
have not been investigated yet. 

Two image augmentation methods are often used in 
practice: traditional and elastic. Traditional 
methods involve various techniques such as 
rotation, flipping and brightness adjustment and 
take advantage of simple operations. While they are 
easy to apply and have low computational 
requirements [7], they often result in limited 
variation of the augmented images with regular 
change of pixel. On the other hand, elastic methods 
such as Generative Adversarial Network (GAN) 
generate artificial images using deep learning 
approaches. They make more substantial inconstant 
and irregular changes to the original image, but 
require significant computational resources and the 
augmented images that can be generated are limited 
by the available real data [8]. Although there is no 
doubt that both approaches may be useful for the 
augmentation of training data, traditional 
augmentation is considered in this research as a 
research scope. 

In this paper, we propose image augmentation 
methods for improving the accuracy of the window 
states detection model based on deep learning. The 
developed model can detect the hinged and sliding 
window and its states with binary level (open, 
closed). The development of model with this binary 
level is still meaningful since existing automated 
research for sliding window states detection [9] 
manually performs localization of window and an 
automated method for hinged window states with 
reliable accuracy are not developed yet. 
Furthermore, given existing studies have still used a 
magnetic sensor and manual photographic method 
for 2-discretization level [10], binary window states 
detection can be utilized practically. To demonstrate 
the proposed methods, different datasets, which are 
original and augmented datasets, are created, 
respectively. Finally, the models with or without 
proposed augmentation methods are implemented 
and compared.  

2. Image augmentation methods

As influential augmentation methods for window 
states in this research, the following traditional 
augmentation techniques: brightness, scale, and 
weather augmentation are selected. This chapter 
describes the reasons for selecting these methods 
with its predicted effectiveness. 

2.1 Brightness augmentation 

Since it is challenging to distinguish window states 
for dark lighting conditions, images with enough 
brightness should be collected. The brightness of 
each image can be ambient and different for reasons 
such as time of day and weather when picture of 
building facades from outdoor environment is 
taken. In general, images taken on a sunny day are 
likely to have a relatively higher intensity than those 
taken on a rainy day. Thus, various images with 
different lighting conditions are collected in real 
site. To effectively collect the dataset on this 
variation of the irregular lighting distribution, 
brightness augmentation can be applied. This one 
can artificially change original images into either 
brighter or darker by increasing or decreasing pixel 
intensity in original images [11], which is shown in 
equation 1: 

𝐼′(𝑥) =  𝐼(𝑥) +  𝐽(𝑥); (1) 

where 𝐼′(𝑥) and 𝐼(𝑥)  mean the augmented image 
that brightness is changed, and original image, 
respectively; 𝐽(𝑥)  denotes a matrix having the 
brightness adjustment factor, which is a same 
matrix size as 𝐼(𝑥). By adding or subtracting 𝐽(𝑥) to 
current intensity of each pixel in original image 𝐼(𝑥), 
the augmented images with different lighting 
condition are generated. The acceptable intent of 
changed pixel by the brightness adjustment should 
be enough for recognition of window states. For 
example, suppose images of a sunny day with high 
illumination are collected mostly in whole dataset. 
In that case, dark day with low illumination is 
needed to be augmented by decreasing the pixel 
intensity with appropriate adjustment. However, if 
the pixel intensity of such a sunny day is highly 
increased, the visual information for recognising 
window states may be insufficient. 

2.2 Scale augmentation 

Various buildings have windows of different sizes. 
In addition, distance between building façade and 
photographic vantage point could be different due 
to visual obstacles such as cars and trees, even 
though similar buildings are recorded. By this 
reason, scale variation of building façade images is 
caused. To address this issue, scale augmentation, 
which is an affine transformation, can be utilised. 
The application process of scale augmentation is to 
first take an image and change its size along the 
coordinate axis relative to the original one. An 
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operation of this augmentation can be defined as 
followed in equation 2: 

(
𝑥′
𝑦′

) =  (
𝑆𝑥 0
0 𝑆𝑦

) * (
𝑥
𝑦)

(2) 

where 𝑥′ and 𝑦′ denote the resized coordinates of 𝑥 
and 𝑦 in a new image, respectively and, 𝑆𝑥 and 𝑆𝑦 

are scaling factors for determining how much 
coordinates of original image are scaled by entering 
scaling factors into the matrix. And 𝑥 and 𝑦 denote 
the coordinates of the original image, respectively. 
Scaled images are newly generated by multiplying 𝑥 
and 𝑦 by the scaling factors. Images are enlarged or 
reduced when scaling factors are more or less than 
1, respectively. Moreover, the values of directions 
should be carefully adjusted. Too zoomed in or out 
images that unlikely to happen in real world 
observations should be not generated. 

2.3 Weather augmentation 

The window states detection model can be used for 
the investigation of different weather effects on 
window states. It may be possible for different 
weather such as sunny, cloudy, and rainy days 
except for the unrecognisable cases where visual 
information for identification of window states 
disappears (e.g., heavy fog and torrential rain). 
Therefore, weather-influenced scenarios should be 
considered to develop a model robust to variable 
weather conditions. However, collecting weather 
data can take a long time. Specifically, rainy days are 
not frequent in some countries, making assembling 
these images more difficult. Weather augmentation 
can help address this problem. The following simple 
operation, which is called an image blending 
technique, for making weather-related images can 
be formally written in equation 3: 

𝑔(𝑥) = (1 − 𝛼) ∗ 𝑓₁(𝑥) + 𝛼 ∗ 𝑓₂(𝑥) (3) 

With 𝑔(𝑥) an artificially weather-influenced image, 
𝑓₁(𝑥) the original clear image, and 𝑓₂(𝑥) an image 
including weather information. Here 𝑎 is a linear 
weighting factor. To obtain the image 𝑔(𝑥) , 
transferring each source pixel's intensity value 
related to weather in the image 𝑓₂(𝑥) into a pixel 
position in the clear image 𝑓₁(𝑥). For weather image 
𝑓₂(𝑥), according to the included information in 
pixels, different weather is represented. For 
example, a rainy image can be made with the 
following steps: Gaussian noise following gaussian 
distribution is created over a binary image, 
representing black (0) or white colour (1). And the 
motion blur filter that travels in a single direction 
horizontally is applied to the created binary image. 
This filter ℎ(𝑥, 𝑦) can be in the form of equation (4) 
[12]: 

ℎ(𝑥, 𝑦) =  {

1

𝐿
, 𝑖𝑓√𝑥2 + 𝑦2 ≤ 𝐿/2, 𝑦/𝑥 = tan 𝜃

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4) 

Two parameters govern the motion blur filter: 
length L and angle θ. Length affects the perceived 
distance that the pixels are moved from their 
original positions so that a more significant length 
value will result in more blurring. Angle describes 
the actual angle of the movement. A setting of 𝛼 =
90𝑜 will produce a vertical blur, and a setting of 𝛼 =
0𝑜  will produce a horizontal blur. Like other 
techniques, ranges of parameters should be 
properly adjusted for being more realistic rainy 
image. In addition, too strong weather effects over 
images make window states unrecognisable with 
naked eyes. 

3. Methodology

This research aims to demonstrate the effectiveness 
of traditional augmentation techniques (brightness, 
scale, and weather augmentation) on window states 
detection.  Fig. 1 shows an overview of the 
experimental process for the demonstration. The 
augmented datasets are generated by 
independently applying each augmentation method 
to original training data. After that, the original and 
augmented datasets are prepared to train a Faster 
R-CNN model for detecting the window states on
building façade images. Finally, the models based on 
Faster R-CNN with or without proposed data
augmentation methods are compared. In this
chapter, the experimental process is described in 
detail.

Fig. 1 – Experimental process using different 
augmentation techniques 

3.1 Environmental settings 

The simulations were performed on Windows 10 

with an Intel Core i7-7700HQ CPU @ 2.80 GHz×8, 

an NVIDIA GeForce GTX 1080ti GPU and 32G 

RAM. 

3.2 Dataset preparation 

In this experiment, only non-residential buildings in 
the city of London, UK were captured as a case 
study. Various architectural designs including 
traditional (e.g. Victorian and Renaissance style) 
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and modern style (e.g. Sustainable and Postmodern 
architecture) were included in the dataset. 
Moreover, there exist different types of hinged and 
sliding windows including fixed window at the same 
time (e.g. awning, hopper window and, horizontal, 
and vertical sliding window). Concerning layout of 
window, while the most of windows are arranged as 
a symmetric structure, an unsymmetrical one was 
also contained. The detailed typology of building 
façade observed in this research can be downloaded 
here: (https://doi.org/10.5522/04/14993589) 

The augmentation techniques may be ineffective for 
sample data collection if the collected dataset 
includes many variations enough for reliable 
accuracy.  However, it is difficult to a priori define 
the required number of images. In this research, the 
used device for RGB camera was a smartphone with 
a polarising filter to reduce the veiling reflections. In 
total, 750 raw images of building façade with a 
resolution of 853×1440 pixels were collected, 
providing sufficient visual information for 
recognising the binary discretisation level. All 
images were taken during office hours (from 9am to 
5pm) in the summer (from 21 April to 3 May).  In 
addition, since photographs with different angles 
have severe angle variations, which can have an 
detrimental effect on the model accuracy [13]. For 
this reason, building facade images with the frontal 
view were collected as much as possible. In the case 
that tilted images were collected due to absence of 
photographic vantage points, they were rectified 
manually into frontal images, which is shown in Fig. 
22. The manual rectification of building façade
image is also time consuming and labour-intensive
process.

Fig. 2 - An example of rectified images (left: tilted 
images, right: rectified images) 

After the rectification process, the collected whole 
images were randomly divided into the training 
(60%) and test (40%) set with 450 and 300 images 
respectively. Then, defined parameters, brightness, 
scale, and weather augmentation were applied to 
only training data. The used hyperparameters were 
selected after a trial-and-error process ensuring 
whether images were realistic or not. Created 
dataset with ranges of parameters is shown in Tab. 
11. Firstly, for brightness parameters, pixel intensity 
between -30 and 30 randomly was added to the
pixel intensity of original images. In scale
augmentation, original images were randomly 
scaled up or down to a value of 80% to 120% in x
and y-coordinates of their original size. This was
performed independently per axis since there can 
exist a variety of window sizes according to 

buildings. In addition, the scaled-down images have 
void space. Since deep learning-based methods 
require fixed length vectors as input data, the 
augmented images should be the same size. 
Therefore, zero-value pixels were padded on the 
void space in the reduced image when scale is less 
than 1. In the case of weather augmentation, when 
images are taken, original images included only 
rainy images so that among weather, rainy effect 
was considered. To achieve this, two parameters 
length 𝐿 and angle 𝜃, which range from 3 to 7 and 
45 to 60 randomly, respectively were selected. 
Based on 450 original training images, respective 
augmented image dataset (450 images) from each 
augmentation method using the described 
parameters were generated. Examples of the 
original and each augmented image is shown in Fig. 
33. For demonstrating the effectiveness of
augmented datasets, five different datasets were
prepared: one original training dataset, four
augmented datasets (original training dataset with
brightness, scale, weather augmentation, and a sum
of all augmentation techniques.

Tab. 1 - Created dataset with ranges of parameters 

Dataset Ranges of parameters 
Number 

of images 

Original - 450 

Brightness [-30, 30] 450 

Scale [0.8, 1.2] 450 

Rainy L = [3, 7], θ = [45, 60] 450 

Total - 1,800 

The subsequent process is to annotate the window 
states with binary discretisation level. As a result, 
localisation of each window as bounding box and 
binary state of corresponding window as each 
bounding box's class, which is "background", 
"opened", or "closed" were annotated. LabelImg 
[14] was used for this annotation process of ground-
truth labels, which generates XML files containing
information on the class of each object and the
corresponding bounding boxes. In addition, when 
openable windows are together with fixed window,
fixed window needs to be regarded as background 
since it is not openable, which is always closed 
states. However, especially distinguishing fixed and 
hinged window is difficult in certain case. For this
reason, fixed windows were annotated as closed 
window. In addition, to effectively label a lot of 
augmented images, the following method was 
applied. In the case of the two methods (brightness 
and weather), we used the same label information 
as that of original images because the bounding box
position of objects in augmented images does not 
change. On the other hand, scale transformation is a
method to augment images by changing aspect ratio 
of original images at 2D axis. Thus, the label
information representing the bounding box position
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of windows were adjusted in accordance with the 
scale change of corresponding images. 

Fig. 3 - Examples of images: (a) original image, (b) 
brightness augmentation, (c) scale augmentation, (d) 
rainy augmentation 

3.3 Faster R-CNN 

To perform the binary window-state detection, 
window data with localisation and state information 
is required. To achieve this, object detection, which 
creates a bounding box for localisation and 
classification, can be applied. Faster R-CNN [15] has 
been widely used as an object detection method 
based on deep learning due to its high 
generalisation ability in computer vision tasks [16]. 
In particular, Faster R-CNN has shown reliable 
accuracy in window detection tasks [17], similar to 
window states detection. Therefore, Faster R-CNN 
was selected as a method for the object detection in 
this research. We used Detectron2 [18], which is a 
Facebook AI Research's next-generation software 
system for the implementation of Faster R-CNN. 

3.3.1 Architecture 

The Faster R-CNN model mainly comprises three 
components: (1) feature extractor, (2) RPN (Region 
Proposal Network), and (3) classifier and regressor. 
The feature extractor extracts features related to a 
task of window states detection from building 
façade images using CNN (Convolutional Neural 
Network). The function of RPN is to generate 
possible region proposals containing objects with a 
wide range of aspect ratios and scales using 
anchors. The classifier and regressor components 
compute the class probability of identified objects, 
and each such thing is localised. 

The components of Faster R-CNN can have various 
architectures for specific tasks by modifying the 
original Faster R-CNN [15]. In deep learning, 
deeper architectures often have an advantage over 
shallow ones since the stacking of multiple layers 
can improve the representational capacity of model 
[19]. In this research, ResNet-101 was used as an 
architecture of feature extractor. One main reason is 
that deeper neural networks in deep learning have a 
limitation: with the network depth increasing, the 
accuracy becomes saturated and then degrades 
rapidly. This issue is called gradient vanishing. 
During training the model through 
backpropagation, the gradient of earlier layers is 
calculated by multiplying the gradients of later 
layers. When the gradient of later layers is less than 
one, the gradients in earlier layers close to almost 

zero. To overcome this problem, ResNet-101 
preserves the information of prior layers by adding 
the output of the last layer to the next, thus allowing 
the network to remember the previous layer's 
information [20]. Faster R-CNN models with 
ResNet-101 developed for many tasks have shown a 
faster convergence early and a good trade-off 
relationship between the network speed and 
accuracy in many research [21]. For classifier, as an 
objective of this research is to detect binary 
classifications (open/closed) of window states, the 
number of output neurons in the last layer were 
modified into three neurons, including background 
class. The rest of the architectures including RPN 
and regressor followed the same original paper 
[15]. 

Meanwhile, generally training deep learning 
architecture, including ResNet-101, requires a lot of 
data and takes a long time to train a model from 
scratch. As an alternative, a pre-trained model can 
be utilised by using a model developed in advance. 
In other words, once trained using another dataset, 
the model can use the learned features to perform 
many other tasks. Moreover, its effectiveness can be 
more increased when different but more related 
data is pre-trained to target model tasks [22]. 
ImageNet [23], which was designed for the 
academic purpose of computer vision research, 
could be a pre-trained model. ImageNet is a large 
database of over 14 million images with many 
categories, including building façade images. 
Therefore, in this research, the feature extractor 
based on ResNet-101 was initialised using pre-
training with ImageNet. 

3.3.2 Hyperparameter settings 

The training process aims to minimise the overall 
loss in Faster R-CNN. There are many tuneable 
hyperparameters (e.g. batch size, momentum, and 
epochs) for training the model. Since 
hyperparameters have a great impact on the 
model's performance, their combinations are 
carefully optimised through experiments. However, 
the main aim of this research is not to achieve 
reliable accuracy through careful optimisation but 
to demonstrate the impact of traditional 
augmentation techniques on window states 
detection. In this research, setting the hyper 
parameters were achieved by modifying the 
Detectron2 configuration. Expressly, the possible 
value for the batch size is limited by the available 
GPU memory. It was set to 2, considering the 
capabilities of the hardware system used. In the case 
of epochs, it can significantly affect our research 
question. Although the training time is shortened 
with fewer epochs, the original and augmented 
dataset may be less trained. Thus, 20,000 epochs 
were considered enough value for demonstrating 
the proposed method. All other configurations were 
kept as the default settings from Detectron2. 
Interested readers can refer to here [18] for detailed 
configurations. 
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4. Results

To evaluate the performance of proposed 
augmentation techniques, the overall loss of training 
set, AP50 (Average Precision), and mAP (mean 
Average Precision), of test set were used as metrics. 
These metrics have been used generally in academia 
to measure object detection performance. Detailed 
descriptions of each metric can be found in the 
paper [24]. Tab 2. shows the experimental results. 
All models were trained enough until reaching the 
described training loss. A model using only original 
training data showed reliable accuracy with 0.89 in 
mAP to some extents. In addition, all augmentation 
methods improved the detection accuracy of Faster 
R-CNN. In independent applications of each
augmentation method, while weather augmentation 
relatively more increased the model performance, 
brightness and scale augmentation relatively less 
increased one. The most effective method was using 
original images with brightness, scale, and weather
augmentation simultaneously. Compared to only

using the original dataset, the model performance in 
mAP of such method increased from 0.89 to 0.95. 
Fig. 4 shows the examples of visually detected 
results in the same scenes of testset using Faster R-
CNN with original images (left) and images with all 
techniques (right). In Fig. 4 (the first row), both 
models detected all window states correctly with 
100% accuracy. As shown from Fig. 4 (the second 
middle), only a model using all augmentation 
techniques had 100% accuracy, but the original 
model regarded opened window states as closed 
ones. Although a model with all augmentation 
techniques showed better accuracy than the original 
one, wrong results were still observed. In Fig. 4 (the 
third row), while both models incorrectly detected 
door parts as a closed window, a model using the 
augmented dataset was less frequently wrong. This 
result may be caused by one possible reason that 
images including such similar objects to windows 
are not included enough in the training dataset. 

While augmentation techniques showed better 
accuracy than the original one, the extent of 
effectiveness for real applications of proposed 

Rank 
Training 

Dataset 

Final 

training loss 

AP: opened 
window 

AP: closed 
window 

mAP 

5 Original images 0.21 0.875 0.905 0.89 

3 Original + Brightness 0.19 0.91 0.94 0.925 

4 Original + Scale 0.20 0.896 0.93 0.913 

2 Original + Rainy 0.17 0.924 0.94 0.932 

1 Original + All techniques 0.18 0.94 0.96 0.95 

Tab. 2 – Model performance with different training dataset 

Fig. 4 - Comparison of the visual results using the models trained with different datasets: original images (left), 
images with all techniques (right) 
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methods may differ from the collected dataset on 
window states detection. In the case where a data 
distribution of train and test dataset in variations is 
bigger, the certain augmentation may be more 
effective. For example, weather augmentation may 
be not useful if the weather condition of application 
sites is constant (e.g., only summer or winter). 
Besides, a Faster R-CNN model with all 
augmentation techniques could achieve a good 
detection result in most complex scenarios included 
in an experimental dataset (e.g. intensive lighting 
conditions, different scales). However, a low 
generalisation ability was observed in one scenario 
where similar objects such as doors exist. For 
practical applications, the generated model may be 
used practically to investigate window states except 
for one scenario of similar objects. In addition, 
although incorrectly detected closed window will 

always be closed states and its implication on indoor 

environment might be negligible, the improvement 

of model in this scenario is required in the future 

research. 

The proposed methods can be reproduced with the 
following guideline. Deep learning-based models 
typically are initialised with a random sampling 
approach before training the weights in trainable 
layers. For this reason, even with the exact same 
dataset, different and uncontrolled weight 
initialisation may yield different models with each 
performance. However, even if the exact same 
initialisation for the weights is applied, a lack of 
reproducibility may still be observed with many 
reasons such as software versions, implementation 
variations, and hardware differences.  

5. Conclusion

This study described the impact of traditional 
augmentation techniques (brightness scale and 
rainy augmentation) on window states detection 
using deep learning. For demonstrating the 
proposed methods, window states detection with 
binary discretisation level was performed using 
Faster R-CNN. Building façade images (750 images) 
acquired by the RGB camera were spilt into two 
sets: a training set (450 images) and a test set (300 
images). By applying each augmentation method to 
only train datasets, five datasets were prepared: the 
original dataset, and four augmented datasets with 
brightness, scale, rainy technique, and a 
combination of all methods. Each augmentation 
technique showed better accuracy than only using 
original images. The most effective augmentation 
method was simultaneously utilising original 
images with brightness, scale, and weather 
augmentation. It could improve the accuracy of 
detection in mAP by 95%, which was higher than a 
model accuracy of 89% when only the original 
dataset was used. The result shows that proposed 
augmentation techniques can be used for simply 
and quickly creating a large size dataset without 
much effort of collecting the data in the real sites. 

Although the effectiveness of augmentation 
methods was demonstrated to window states 
detection, such ways may also be practical for other 
similar applications such as building age 
classification and window detection as potential 
applications. Furthermore, the generated model can 
be used as a pre-trained model for subsequent 
future research of window states detection. And, 
when the annotation of images of window states is 
required, the generated model can make pre-
annotated boxes. 

In this research, 95% accuracy was finally achieved 
through the used dataset and proposed method 
with defined hyperparameters. More datasets with 
careful optimisation should be performed to reach 
more reliable accuracy. As a limitation of this study, 
elastic augmentation methods such as techniques 
based on GAN are not considered. It may generate 
realistically visual information such as texture or 
colour for window states detection. Through such 
augmentation methods, further research is needed 
to demonstrate that window states detection 
models with more discretised levels (e.g., three or 
percentage states level). 
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