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Abstract. In Europe and Japan, owners of large refrigeration and air-conditioning equipment, 
such as chillers and VRFs, are required by law to carry out regular inspections for refrigerant 

leaks. There are two methods of regular inspection: the direct method, which uses visual 

inspection and leak detectors equipped with gas sensors; and the indirect method, which uses 
equipment operating data to estimate leaks. However, large equipment requires many inspection 
points and direct inspection is time-consuming and labor-intensive, placing a heavy burden on 
both the equipment owner and the inspector. On the other hand, the European F-gas regulation 
provides an incentive to halve the number of inspections if a permanent leakage detection system 
is installed, and similar incentives are being considered for other countries regulations. The 
authors developed a highly accurate refrigerant leakage detection system using machine learning 
techniques that can be used to meet incentive requirements. The details of the technology and 
the accuracy of the detection system tested on chillers and VRFs are discussed in this paper. 
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1. Introduction
The F-Gas Regulation, which came into force in 
Europe in 2006, requires refrigeration and air-
conditioning equipment with more than 3 kg of 
refrigerant to be tested for refrigerant leaks on a 
regular basis. However, it allows that the frequency 
of inspections to be halved if the equipment is 
provided with a leakage detection system. This led to 
a flurry of development of leakage detection systems. 

A leakage detection system using remote monitoring 
data for VRF was also developed by one of the 
present authors and his colleagues [1]. However, the 
demand for leakage detection systems didn't grow 
because there were no specific penalties for non-
compliance with regular inspection requirements. 

The revision of the F-gas regulation in 2015, which 
has led to the implementation of penalties in many 
countries, has once again energised the development 
of leakage detection systems. In recent years, the 
development of big data analysis technology has led 
to numerous proposals of machine learning based 
refrigerant leakage detection systems.  

According to Hosseini et. al. [2], 82 papers have been 
published worldwide on machine learning based air 
conditioner fault detection systems between 2016 
and 2020, 10 of which are on leakage detection. Out 

of these 10 papers on leakage detection, 6 papers are 
on VRF. In Japan, Wakui et. al. [3] reported on the 
simulation of a leakage detection system for VRFs 
using machine learning. 

However, most of these papers are validated using 
simulations or experimental data obtained in 
laboratories, and only few of them are validated 
using actual on-site operating data. Therefore, a 
leakage detection system for VRF equipment during 
cooling operation that uses machine learning 
operated on a remote monitoring system was 
developed, and its detection accuracy was validated 
using a large amount of on-site data [4-5]. Also, a 
leakage detection system for chillers was developed 
applying this technology [6], which has been 
launched in Europe. Leakage detection function in 
heating operation for VRFs has also been developed 
and validated using on-site data. In this paper, the 
leakage detection system for chillers and for cooling 
and heating of VRFs are discussed. 

2. Methodology
2.1 Overview of the detection sysytem 

The leakage detection system estimates the 
refrigerant charge amount from the operating data 
acquired from chiller and VRF equipment, and 
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automatically detects leakages. Fig. 1 shows an 
overview of the developed system.  

2.2 Refrigerant leak index (RLI) 

The leakage detection system calculates the RLI 
(Refrigerant Leak Index), an index strongly 
correlated with the refrigerant charge amount, from 
the operating data and detects leakages based on 
changes in this value. 

The RLI used in chiller and VRF cooling operations is 
a dimensionless value defined as the ratio of the area 
of the liquid region to the area of the saturated region 
on the T-S diagram, as shown in Fig. 1. As the 
refrigerant charge amount decreases due to leaks, 
the RLI also decreases.  

During the heating operations of the VRF, the degree 
of superheat of the compressor discharge 
temperature (DSH) is used instead of the above RLI. 
When the refrigerant amount decreases due to leaks, 
the discharge temperature rises and so does the DSH. 

The reason why RLI is not used during heating is that 
VRF operates multiple indoor units as condensers 
during heating, as shown in Fig. 2. The number and 
types of connected indoor units vary from one to 
another, and a machine learning model using the RLI 
obtained for each of these indoor units would make 
the logic very complicated. As a result, the amount of 
calculation increases, and implementation becomes 
difficult. Therefore, this VRF-specific challenge was 
solved by using DSH as an index for heating. 

2.3 Disturbance compensation for RLI 

The RLI changes not only due to the refrigerant 
amount, but also due to external disturbances such 
as outside temperature and compressor speed. 
Therefore, even though there is no refrigerant leak, 

the RLI may drop due to the disturbances and the 
detection algorithm may misjudge it as a leak. 

Fig. 2 – Example of VRF piping diagram 

To prevent this, the disturbances from RLI is 
removed and the index ΔRLI, which represents only 
the variation of the refrigerant charge amount, is 
calculated. As shown in Fig. 1, ΔRLI is the difference 
between the actual RLI calculated directly from the 
operating data and the predicted RLI under normal 
conditions. This predicted RLI is calculated by a 
prediction model created using machine learning 
(ML) from past normal operating data. The
disturbances for DSH, which is an index for heating,
is removed in the same way as above, and ΔDSH is
calculated as an index of the changes in only the
refrigerant charge amount. 

To create the RLI prediction model for the chillers 
and the RLI and the DSH prediction models for the 
VRFs, ML methods were used according to the 
characteristics of the respective training data. The 
specific ML methods and training data acquisition 
methods for each prediction model are described in 
the next section. 

Fig. 1 – Overview of the leakage detection system  
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2.4 How to obtain training data for VRFs and 
create prediction models 

Since VRFs have enough operating data stored in the 
data centre, it is possible to create an RLI prediction 
model for normal conditions using these as training 
data. However, the stored data contain both normal 
data and anomalous data. Normal data means that all 
functions are normal, and the refrigerant charge 
amount is appropriate. Anomalous data may be due 
to malfunctioning components or sensors, or 
insufficient or excessive refrigerant charge amount. 

Therefore, in the process of data cleaning, only 
normal data were extracted from the stored data as 
training data for the creation of RLI prediction 
models. The extraction was carried out in the 
following two stages. 

First, the data of equipment without failure records 
and equipment with completed failure repairs were 
extracted. 

Next, the mean value of RLI, an index of refrigerant 
charge amount, was then calculated for each 
extracted equipment. The relative frequency 
distribution of these values is close to the black line 
of normal distribution curve shown in Fig. 3; the RLI 
value, in other words, the refrigerant charge amount, 
vary within the range not to be regarded as a failure 
shown in Fig. 3. This variation is caused by the 
refrigerant charging process during installation and 
the refrigerant recovery and recharging process 
before and after component replacement. 

The equipment with a value near the centre of the 
distribution curve (the red area in the figure) is the 
equipment charged with the appropriate amount of 
refrigerant, and its operating data is determined to 
be available for training. 

Fig. 3 – Distribution of RLI 

Using the training data extracted in this way, a 
prediction model of normal RLI was created by 
LightGBM [7]. The explanatory variables used in the 
model were outdoor temperature, compressor speed, 
compressor current, and opening of the expansion 
valve for subcooling heat exchanger control (“EV2” in 
Fig. 2). For the training data, data obtained from 
several different units of the same type were used, 
instead of using only the data of the target VRF 
system itself. This is for reducing the operating cost. 
Therefore, the prediction model will be a common 
model for that type. The normal DSH prediction 
model for heating was also created in the same way: 

the explanatory variables in the case of the DSH 
prediction model were outdoor temperature, 
compressor speed, total capacity of indoor unit in 
operation and opening of the expansion valve for 
subcooling heat exchanger control. 

The leaks found in the first process and the data 
during the failure period were labelled according to 
the failure and used as the anomaly data for the 
validation of leakage detection accuracy. 

2.5 How to obtain training data for chillers and 
create prediction models 

The prediction model for the chiller was created in a 
different way from that for the VRF. For chillers, the 
stored data could not be used as training data 
because there was almost no data of models 
equipped with a temperature sensor to measure the 
condenser outlet temperature used for RLI 
calculation. Therefore, a chiller equipped with a 
sensor for measuring the condenser outlet 
temperature was installed in a climate chamber, and 
tests were carried out under various conditions 
simulating actual operating conditions to obtain 
training data. 

The four test conditions to be varied were outdoor 
temperature, compressor load ratio, leaving water 
temperature (LWT) and refrigerant charge amount 
as leak condition. For each condition, the range of 
variation and the test points within that range were 
investigated. 

If the conditions are set to cover the entire variation 
range of all parameters uniformly, the number of test 
man-hours will be huge. Therefore, to create an 
accurate prediction model while reducing the 
number of test man-hours, the test conditions were 
chosen from the frequently occurring operating 
conditions from the on-site data stored in the data 
centre. 

First, the variation range of the outdoor temperature 
was set to be between 5 and 35°C, taking into account 
the European climate. The compressor load ratio was 
set to vary between 33% and 100%, in line with the 
specifications of the chiller to be tested. The 
frequency distributions of the outdoor temperature 
and the compressor load ratio in the chiller in 
operation on-site are shown in Fig. 4.  

Fig. 4 – Distribution of the combination of outdoor 
temperature and compressor load ratio 
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Fig. 4(1) shows the distribution for the air-
conditioning application. It shows a similar trend to 
the ESEER condition which the load ratio is 
proportional to the outdoor temperature. The centre 
of the distribution is slightly lower than that of the 
ESEER condition, which is thought to be due to the 
larger installed capacity compared to the actual load.  

Fig. 4(2) shows the distribution for the process 
temperature control application in the factory, which 
is quite different from the distribution for the air-
conditioning application: it operates more frequently 
around the maximum and minimum loads, 
regardless of the outdoor temperature.  

Considering both characteristics, the combinations 
of test conditions set within the variation range of 
outdoor temperature and compressor load ratio are 
shown in Fig. 5. In the 27 conditions set, priority is 
given to the ESEER condition and the area below the 
ESEER condition (1), which has a high frequency of 
occurrence in air-conditioning applications, and to 
the area (2), which has a high frequency of 
occurrence in process temperature control 
applications. 

Fig. 5 – Combination of outdoor temperature and 
compressor load ratio set for the test 

The relative frequency distribution of the stored 
LWT data is shown in Fig. 6. It is generally distributed 
in the range of 2 to 20°C because it is adjusted 
according to the application and load ratio. The four 
conditions of 5, 7, 11 and 13°C were chosen to focus 
on the areas with the highest frequency of 
occurrence. 

Fig. 6 – Distribution of leaving water temperature 

The data obtained from the tests carried out based on 
the above test conditions were used as training data, 

and a normal RLI prediction model was developed 
using random forest regression. The six explanatory 
variables used in the prediction are outdoor 
temperature, compressor load ratio, LWT, main 
expansion valve opening (“main” in Fig. 7), 
economizer expansion valve opening (“ec” in Fig. 7) 
and compressor current. 

Fig. 7 – Piping diagram of the tested chiller  

The training data for the prediction model are 
randomly selected from 70% of the data with 100% 
refrigerant charge amount. The remaining data with 
100% refrigerant charge amount and the data with 
120, 90, 85 and 80% refrigerant charge amount were 
used as the test data for the validation of leakage 
detection accuracy. 

2.6 Automatic leakage detection logic 

The automatic leakage detection logic outputs 
judgement results of leakage based on the decrease 
in ΔRLI. Fig. 8 shows an overview of the logic for the 
automatic judgement of refrigerant leakage based on 
the changes in ΔRLI time series data. 

The detection logic consists of a moving window with 
N terms, a planar mapping section, an anomaly 
calculation section and a judgement section. The 
planar mapping section maps the points whose 
coordinates are two adjacent points ΔRLI(t-1) and 
ΔRLI(t) onto the plane whose axes are ΔRLI(t-1) and 
ΔRLI(t) at any given time. 

Fig. 8 – Overview of the automatic leakage detection 
logic 
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The mapping plane is pre-classified into normal, 
undercharged, and overcharged areas based on the 
decision boundaries plotted by machine learning. The 
undercharged area is in the third quadrant and the 
overcharged area is in the first quadrant. The 
anomaly calculation section calculates the anomaly 
score defined by the following equation (1) when the 
N-1 points created from the N data in the moving
window have been mapped to another plane.

𝐴𝑛𝑜𝑟𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒 

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑢𝑛𝑑𝑒𝑟𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑟𝑒𝑔𝑖𝑜𝑛

𝑁 − 1
 (1) 

The anomaly score is the ratio of the number of N-1 
points mapped from the moving window to the 
number of points mapped in the undercharged area. 
When this value exceeds a certain threshold, it is 
judged that there is a leak. If the distribution of points 
is mapped in the undercharged area from the 
beginning of operation, it is judged to be 
undercharged initially. If the distribution of points is 
mapped in the overcharged area from the beginning 
of operation, it is judged to be overcharged initially. 

In the case of heating, the leakage index is ΔDSH, 
which increases opposite to ΔRLI during leakage, 
thus the undercharged area is distributed on the first 
quadrant. 

3. Results and discussion
3.1 VRF data validation results 

The responses of ΔRLI and ΔDSH in VRF equipment 
were evaluated. Fig. 9 shows the examples during 
cooling operation; the upper plot for normal 
equipment and the lower plot for equipment where 
15% of the refrigerant charge amount was recovered 
during operation to simulate a leak. 

Fig. 9 – RLI and ΔRLI responses to normal and leak data 
during cooling operation 

Fig. 10 shows the examples during heating operation, 
the upper plot for normal equipment and the lower 
plot for leaking equipment. In both Fig. 9 and 10, the 
red line represents the actual RLI and DSH calculated 
directly from the operating data, the blue line 
represents the RLI and DSH predicted by the normal 
prediction model and the grey line at the bottom 
represents their differences ΔRLI and ΔDSH, the red 
areas labelled "Leak" are the period during which the 
detection logic judged as a leak. 

Fig. 10 – DSH and ΔDSH responses to normal and leak 
data during heating operation 

In normal equipment, the actual values for both 
cooling and heating are close to the predicted values 
and the differences, ΔRLI and ΔDSH are almost 0. On 
the other hand, during the period when the 
refrigerant charge decreases in leaking equipment, 
the actual values for both cooling and heating differ 
significantly from the predicted values. Thus, the 
ΔRLI and ΔDSH values are sufficient for the automatic 
detection logic to detect the leak correctly. 
Next, the leakage detection was carried out for 
several test data obtained from the stored data and 
the accuracy of the detection was evaluated from the 
confusion matrix of the detection results. The 
confusion matrix is a combination of the correct and 
incorrect judgment results for the actual equipment 
state (normal or leaking), and its definition is given 
in Tab. 1. The judgment performance was evaluated 
by two indices, accuracy and false discovery rate 
(FDR), as shown below.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

𝐹𝑎𝑙𝑠𝑒 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 (𝐹𝐷𝑅) =
𝐹𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

The accuracy is the ratio of correct predictions 
among the total number of test cases. The FDR is the 
proportion of normal equipment misclassified as 
leaks among the equipment classified as leaks. 
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Tab. 1 - Definition of confusion matrix 

Predicted 

Normal Leak 

Actual 
Normal 

TN 
(True Negative) 

FP 
(False Positive) 

Leak 
FN 
(False Negative) 

TP 
(True Positive) 

When assuming the actual operation of a refrigerant 
leakage detection system, it is important to keep the 
FDR as low as possible. This is because misjudgement 
of normal equipment as leaking equipment not only 
increases operating costs due to the unnecessary 
dispatch of service personnel, but also leads to a loss 
of user confidence in the detection system. 
Considering these factors, the target accuracy and 
FDR of the current fault diagnosis by remote 
monitoring is set to be 80% or higher and 10% or 
lower, respectively. The detection sensitivity of the 
automatic leakage detection logic was adjusted to 
meet the above indices. 

Tab. 2 - Confusion matrix of leakage detection 
evaluation results during cooling 

Cooling 
Predicted 

Normal Leak 

Actual 
Normal 93.7% (119) 6.3% (8) 

Leak 14.9% (7) 85.1% (40) 

Tab. 3 - Confusion matrix of leakage detection 
evaluation results during heating 

Heating 
Predicted 

Normal Leak 

Actual 
Normal 98.8% (82) 1.2% (1) 

Leak 21.5% (6) 78.5% (22) 

Tab. 2 and Tab. 3 show the confusion matrices for 
cooling and heating, respectively, that were 
calculated after adjusting the detection sensitivity. 
Each element of the confusion matrix in the table 
shows the incidence rate of normal and leakage 
detection against the actual number of normal and 
leak equipment. The number in () is the number of 
detections. 

Equations (2) and (3) were used to obtain the 
accuracy and the FDR from the confusion matrices 
for cooling and heating, respectively. The accuracy of 
80% or higher and the FDR of 10% or lower were 
achieved in both cooling and heating. The incidence 
rates in the tables were used for the calculations. The 
reason is that if there is a large difference between 
the number of normal equipment and the number of 
leaking equipment, the judgment result is affected by 
it. By using the incidence rates, this effect can be 

eliminated. 

Tab. 4 – Accuracy and FDR in cooling and heating 
operation 

Operation mode Cooling Heating 

Accuracy 89.4% 88.7% 

FDR 6.9% 1.5% 

Finally, the sensitivity of leakage detection was 
evaluated by obtaining estimates of the leakage 
amount at the time when the automatic detection 
logic judged a leak for true positive (TP) equipment. 
In this paper, the definition of refrigerant leak rate is 
the ratio of leaked refrigerant amount to the initial 
charge amount, as commonly used in refrigerant 
regulations. To estimate the leakage amount at the 
time of the detection, the conversion coefficient of 
the changed refrigerant charge amount (% of total 
refrigerant amount) and RLI and DSH were 
determined first. To do this, the data of equipment 
for which the leakage amount could be identified 
from the repair records and equipment with 
intentionally adjusted refrigerant charge amount 
were used. The leakage amount at the time of the leak 
detection was calculated by multiplying the change 
in RLI and DSH by the conversion coefficient. The 
relative frequency distribution of the estimated 
leakage amounts obtained for all the true positive 
(TP) equipment is shown in Fig. 11. The distribution 
can be approximated by a normal distribution, and 
assuming that the mean value of the distribution is 
defined as the mean detection sensitivity, it was 
12.3% for cooling and 13.9% for heating. Assuming a 
normal distribution as shown by the dotted line in 
Fig. 11, the worst detection sensitivity is defined as 
the value of μ+3σ, which is determined from the 
mean value μ and variance σ, and is estimated to be 
19.3% for cooling and 20.3% for heating. Since the 
current detection logic for VRF has a detection 
sensitivity of more than 50%, this method improves 
the detection sensitivity by 30% over the 
conventional method. 

Fig. 11 – Sensitivity of leakage detection in cooling and 
heating operation 

3.2 Chiller data validation results 

ΔRLI was calculated using the RLI prediction model 
created with the training normal data obtained in the 
test chamber, and the responses of ΔRLI to normal 
and leak data were evaluated. Fig.12 shows the 
examples of measured RLI, predicted RLI and ΔRLI 
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responses to test data containing normal and leak 
cases. The test data was taken recovering the 
refrigerant from 100% to 80% in charge amount. The 
ΔRLI, which was zero at the start of the test, 
decreases as the refrigerant charge decreases, and 
the automatic leakage detection logic judges the 
refrigerant to be leaking around the middle of the 
transition from 100% to 80%. 

Fig. 12 – Response of RLI and ΔRLI to changes in 
refrigerant charge amount 

Tab. 5 shows a confusion matrix of the results 
obtained by performing the same evaluation as 
above on test data for various operating conditions 
varying outdoor temperature, compressor load ratio, 
LWT and refrigerant charge amount. The breakdown 
of test conditions is 56 conditions of normal data 
with 100% refrigerant charge amount, and 52 
conditions of leak data with 85% and 80% 
refrigerant charge amount. 86.5% of the accuracy 
and 0% of the FDR are calculated by the same method 
as VRF. However, all normal data are judged as 
normal, but 14 out of 52 leak data are judged as 
normal, which means that 26.9% of leak cases are 
overlooked. This is the reason why the accuracy is 
lower.  

Tab. 5 - Confusion matrix of leakage detection results 

Predicted 

Normal Leak 

Actual 
Normal 56 0 

Leak 14 38 

It was found that 12 out of 14 conditions where the 
leak was misjudged as normal had a compressor load 
ratio of 58% or less and a LWT of 10°C or more. Fig. 
13 shows the correlation between refrigerant charge 
amount and ΔRLI when the outdoor temperature and 
LWT are fixed, and the compressor load ratio is 
varied. As the compressor load ratio decreases, the 
change in ΔRLI for the same change in refrigerant 
charge amount also decreases, thus reducing the 
detection sensitivity. Next, to confirm the effect of the 
LWT on the changes in RLI and ΔRLI, the occurrence 
rate of subcooling (SC) at different LWT was checked. 
Fig. 14 shows the relative frequency distribution of 
SC for 100% and 85% refrigerant charge amount 
under the conditions of 7°C and 13°C LWT. When the 
LWT is 7°C, the SC distributions for 100% and 85% of 
the refrigerant charge amount are separated by a 

boundary of SC =5, whereas when the LWT is 13°C, 
the SC distributions for each refrigerant charge 
overlap, making leakage detection difficult. 
Furthermore, the accuracy and the false negative 
rate (FNR), where a leak is overlooked and judged 
normal, were recalculated separately for cases with 
LWT below 10°C and the other above 10°C. As a 
result, the accuracy was 94.2% below 10°C and the 
FNR was 11.5%. On the contrary, for cases with LWT 
above 10°C, the accuracy was 78.8%, and the FNR 
was 42.3%. 

Fig. 13 – Effect of compressor load ratio on the 
correlation between refrigerant charge amount and 
ΔRLI 

Thus, it was found that the chiller operated under the 
condition of low compressor load ratio and high LWT 
may increase the number of false judgments due to 
the decrease of leakage detection sensitivity. As a 
result of analysing the operating data of chillers in 
operation stored in the data centre, it was found that 
there are only a few chillers that are always operated 
at LWT of 10°C or higher. It was also found that even 
if the air-conditioning load decreases during the 
winter, the chiller operates at a high load and low 
LWT during start-up, so the chiller operates under 
conditions with high detection sensitivity at least 
once a day. Therefore, most of the chillers can be 
operated with this detection logic without any 
problems. 

Fig. 14 – Effect of LWT on SC distribution for different 
refrigerant charge amount 
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3.3 Consideration of the limit of detection 
sensitivity by indirect method 

To clarify the theoretical detection sensitivity limit 
and the feasible detection sensitivity of the indirect 
method of refrigerant leakage detection, a 
comparison was made between the simulation study 
and the results obtained in this study. 

Wakui et. al. [3] evaluated the refrigerant leakage 
detection sensitivity of the VRF for several operating 
conditions using a steady-state refrigeration cycle 
simulator and a support vector machine classifier. 
They found that the leak from VRF becomes 
detectable under some conditions when the leakage 
amount exceeds 3% of the total charge amount, and 
when the leakage amount reaches 5%, the leak from 
VRF becomes detectable with a 100% positive 
response rate. Therefore, the worst value of the 
theoretical detection sensitivity characteristics 
(μ'+3σ') is assumed to be 5%. 

On the other hand, as shown in Fig. 11, 
approximation of the estimated detection sensitivity 
of VRF during cooling proposed in this study using a 
normal distribution, the average sensitivity is 12.3% 
(μ) and the worst detection sensitivity (μ + 3σ) is 
19.3%. Fig. 15 shows a schematic diagram comparing 
these two leakage detection sensitivity distributions. 

Fig. 15 – Comparison of theoretical and proposed 
sensitivity of leakage detection in VRF cooling mode  

The detection sensitivity distribution by this method 
has a large variance compared to the theoretical 
detection sensitivity distribution by the simulation. 
This is because the machine learning model has not 
yet properly eliminated the disturbances that affect 
the detection sensitivity. As a result, when the 
decision threshold is adjusted so that the accuracy of 
the leakage detection is 80% or more and the FDR is 
10% or less as the required level for operation, the 
detection sensitivity is significantly lower than the 
theoretical value. However, there is room to improve 
sensitivity by about 15% by improving the 
disturbance compensation. 

There are two possible reasons for the lower 
disturbance compensation capability of the machine 
learning model used in this method compared to the 
simulation. 

The first reason is that the simulation uses steady-
state data with fixed compressor inlet pressure and 

superheat at the evaporator outlet and subcooling 
HEX outlet for both model training and leakage 
detection, whereas this method uses non-steady-
state daily operating data for both. One possible 
countermeasure is to periodically set up operating 
conditions which are fixed to obtain steady-state 
operating data while VRF is in operation. 

The second reason is that the simulation uses a 
dedicated prediction model for detection, which is 
created by learning the operating data of the target 
VRF system itself, while the present method uses a 
common prediction model as mentioned in chapter 
2.4. If a dedicated model is used, sensitivity can be 
easily improved. 

4. Conclusions

An indirect refrigerant leakage detection system 
based on machine learning was developed and its 
performance was validated on VRFs and chillers. The 
detection sensitivity was normally distributed 
according to the operating conditions and equipment 
characteristics and was able to detect leaks of 15% of 
the initial refrigerant charge amount on average and 
20% at worst. There is room for improvement in 
accuracy by modifying the machine learning model 
and the training data. The next target is to improve 
the accuracy to detect 10% of leaks in the future. 
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