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Abstract. Buildings consume almost a quarter of Worlds Energy Consumption and hence are 

one of the major sources of emissions globally. In commercial buildings, HVAC is by far the most 

energy intensive system, accounting for close to half of the total energy consumption. For this 

reason every efficiency improvement in HVAC performance can significantly reduce the energy 

profile of the building, turning HVAC optimisation into a core requirement to deliver energy 

efficiency. Fundamental to optimising large energy consumers in today’s modern buildings is 

the use of Machine Learning in order to dramatically improve the energy efficiency of modern 

central cooling and heating plants. This paper will demonstrate the techniques that have been 

implemented to deliver advanced Real-time Model Predictive Control on Edge Computing 

solutions that don't require Cloud connectivity or significant computing power. Through the use 

of deep domain knowledge and advances in Edge Computing, it is possible to 'learn' highly 

accurate models of how mechanical machines operate and apply those models to predict and 

then solve complex optimisation problems for advanced control and improvements in energy 

efficiency. The authors will show how, through the collection of real-time sensor data, our 

platform has successfully reduced energy consumption and electrical demand in real buildings 

without compromising space comfort in any way at all. The capability to generate self-adjusting 

control algorithms in an on-premises scenario not only delivers significant outcomes but lowers 

overall Total Cost of Ownership for the end client. The absence of ongoing subscription fees 

further improves the economic model and the case for on-premises, real-time, model predictive 

control. Furthermore, the paper will demonstrate how the same Digital Twins used for Model 

Predictive Control can be used for anomaly detection algorithms or Fault Detection and 

Diagnosis as well as Predictive Maintenance and that this will create new service opportunities 

and business models for smart companies of the future whilst continuing to deliver optimal 

performance of mechanical systems. 
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1. Introduction

Chilled water plants are widely used globally for air-
conditioning and refrigeration applications, and 
account for a large proportion of commercial 
buildings’ energy usage. As was highlighted again 
recently at the COP26 conference in Glasgow, 
curtailing CO2 emissions-driven global warming is 
one the biggest challenges of our time [1]. Reducing 
chilled water plants energy usage would contribute 
to this goal. Equipment efficiency has improved over 
the years, and variable speed drives (VSD) have 
been introduced to improve the part-load efficiency 
of the chillers, pumps, and cooling towers, and are 
now almost ubiquitous in new plants deployed 
around the world. However, those have also 

introduced many new variables to adjust by the 
supervisory control systems, such as the condenser 
water flow at each chiller for instance, and 
conventional controls solutions are not equipped to 
select the optimal setpoints in real-time as 
conditions vary throughout the days and seasons, 
and therefore do not allow these efficient machines 
to run together to their highest potential. Offline 
simulations have been carried out before to 
recommend some “rules-of-thumbs” that can be 
implemented in conventional control systems [2, 3], 
but those may not generalize well to every 
equipment sizing, performance, and systems design.  

In this study, a deployable on-premises real-time 
model predictive control approach to address these 
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challenges and minimize the energy usage of the 
chilled water plant is presented and assessed with 
actual site data and operation. It is intended to 
operate on site on the edge on an embedded 
controls platform, as displayed on Fig. 1. 

  
Fig. 1 – Embedded Edge hardware for real-time 
monitoring and controls of live equipment 

2. Modelling approach 

The setpoints of interest in this study are: 

- The leaving chilled water temperature 
(LCHWT) at each chiller 

- The condenser water (CW) flow at each 
chiller 

The former will dictate the loading of each chiller, 
when keeping the overall plant LCHWT as per 
specifications, and allow to set each chiller at or 
near their most optimal part-load point or “sweet-
spot”. The latter will tackle the trade-off between 
CW pump power (lower flow will result in lower 
power) and chiller power (lower flow will result in 
higher refrigerant discharge pressure and therefore 
higher power).  

It is important to note that neither of those would 
impact the chilled water production of the plant, as 
the chilled water flow and temperature leaving the 
plant are not affected, and therefore would not 
compromise comfort in the building. 

2.1 Optimization Formulation 

The optimization problem to solve as part of the 
Model Predictive Control approach is to minimize 
the power usage of the chillers and the CW pumps, 
as defined in Eq. (1). 

Minimize
𝐿𝑜𝑎𝑑𝑖 ,   𝐹𝑙𝑜𝑤 𝐶𝑊,𝑖

∑ 𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟,𝑖(𝐿𝑜𝑎𝑑𝑖 ,

𝑛

𝑖=0

𝐹𝑙𝑜𝑤 𝐶𝑊,𝑖)

+ 𝑃𝐶𝑊 𝑝𝑢𝑚𝑝,𝑖(𝐹𝑙𝑜𝑤𝐶𝑊,𝑖) 

s. t.: ∑ 𝐿𝑜𝑎𝑑𝑖  =  

𝑛

𝑖=0

𝐿𝑜𝑎𝑑𝑃𝑙𝑎𝑛𝑡,𝑇𝑎𝑟𝑔𝑒𝑡 

         𝐿𝑜𝑎𝑑𝑀𝑖𝑛,𝑖 ≤  𝐿𝑜𝑎𝑑𝑖  ≤   𝐿𝑜𝑎𝑑 𝑀𝑎𝑥,𝑖 

         𝐹𝑙𝑜𝑤𝐶𝑊,𝑀𝑖𝑛,𝑖 ≤ 𝐹𝑙𝑜𝑤𝐶𝑊,𝑖 ≤

         𝐹𝑙𝑜𝑤 𝐶𝑊,𝑀𝑎𝑥,𝑖                                                       (1) 

The decisions variables here are the cooling load 
and the CW Flow of each chiller. The LCHWT of each 
chiller can be derived from their load and the 
overall plant LCHWT target. The problem is treated 
as steady-state as it only selects setpoints that are 
then fed to lower-level control loops tasked to reach 
and maintain them, and also due to the absence of 
other time-dependent state variables such as 
storage-related for instance. As such, the 
optimization is carried out on a single point short-
term horizon, with the target overall plant load 
being computed based on the measured and 
recorded cooling load and regression-based 
prediction of its future value in the near future. The 
computed optimum decision variables can then be 
fed to the lower-level systems: The LCHWT setpoint 
command is communicated to the chillers via high-
level or low-level communication, and the CW flow 
setpoint can be passed to a PID controller with the 
CW pump speed as output command. The 
optimization is repeated on a regular basis, every 1 
minute or less, to account for continuous changes of 
conditions on site. 

Additionally, this mathematical program can be 
repeated for each number of chillers in the plant 
and used to select the most efficient number of 
chillers. It is also flexible and can be simplified to 
only include one set of decision variables, in case of 
site limitations, for instance if the CW pump speed is 
not equipped with VSD. 

2.2 Equipment models 

The power usage of a chiller is modelled as a 2nd 
order multivariate polynomial function of its cooling 
load; the difference between the entering condenser 
water temperature (ECWT) and the LCHWT; and the 
CW Flow, as per Eq. (2). 

𝑃𝑐ℎ𝑖𝑙𝑙𝑒𝑟 = 𝑓(𝐿𝑜𝑎𝑑, 𝑇𝐸𝐶𝑊 − 𝑇𝐿𝐶𝐻𝑊, 𝐹𝑙𝑜𝑤𝐶𝑊)         (2) 

Chiller models have been proposed in [4, 5]. The 
selected model follows a similar direction with 
some modifications to further suit the requirements 
of live learning with potentially limited data, and of 
the optimization problem. Indeed, using the 
difference of water temperatures allow to capture 
the variation of power usage due to compression 
ratio without having to record significant data 
coverage of both chilled water and condenser water. 
Additionally, the use of the CW Flow and ECWT 
separately simplifies the optimization problem as 
they are both controllable variables, whereas LCWT 
is itself a function of the chiller power and would 
result in a recursive function that would add 
unnecessary complication to the downstream 
optimization algorithm. For air-cooled chillers, or 
water-cooled chillers with no CW Flow metering, 
the model can be simplified by omitting the CW 
Flow variable. 



 

The efficiency of the chiller (and by extension the 
plant) is usually reported as Coefficient Of 
Performance (COP), following Eq. (3). 

𝐶𝑂𝑃 =
𝐿𝑜𝑎𝑑

𝑃𝑜𝑤𝑒𝑟
                                                                (3) 

The power usage of a CW pump is modelled as a 2nd 
order polynomial function of the CW Flow, as in Eq. 
(4) 

𝑃𝐶𝑊 𝑝𝑢𝑚𝑝 = 𝑓(𝐹𝑙𝑜𝑤 𝐶𝑊)                                           (4) 

The above model is applicable to cases where there 
is a 1-to-1 relationship between chillers and pumps 
in the plant (often referred to as “dedicated” in the 
industry). Note that plants with 1-to-many chiller-
pump relationship have been addressed by the 
authors separately but are not included in the 
present study. 

2.3 Machine learning approach 

The machine learning solution is intended to run 
autonomously on site and learn the performance of 
the site’s equipment live, without human 
interaction. As such, one of the challenges is to 
handle cases where limited data is available, 
whether it is due to a small sample size or the 
dataset only spanning a small area of the operating 
range. After several previous site deployment 
reviews it was found that in numerous cases, the 
autonomously learnt model exhibited undesirable 
features, such as negative power values within the 
operating range in areas where little to no data had 
been available. 

In addition to further data pre-processing, a 
solution that was investigated was to add 
constraints to the least-square learning of the model 
to  further leverage the subject-matter experts’ 
knowledge. Expected behaviours – for instance that 
the power usage of the equipment should always be 
positive in the operating range or that the power 
usage of a pump is expected to increase when the 
flow increases and all other values being equal – are 
embedded as linear constraints to the learning. 

The resulting constrained least-square problem of a 
polynomial model with linear constraints is a 
standard convex Quadratic Program (QP) as defined 
in Eq. (5) and for the number of variables of the 
application (order of magnitude of 10 variables) can 
be solved in real-time well below 1 second on 
modern embedded hardware using state-of-the-art 
algorithms, such as an Interior Point method [6]. 

Minimize
𝑥

 ‖𝐴𝑥 − 𝑏‖2
2 

s. t. : 𝑐 . 𝑥 ≤ 0                                                              (5) 

In Eq. (5), the matrix A contains all the input data, 
the vector x the model coefficients, the vector b the 
output data (power usage in this case), and the 
vector c the linear constraints features. 

2.4 Solving the optimization problem 

The simplest but most computationally costly way 
to solve an optimization problem is an exhaustive 
search, a method that cycles through all the possible 
combinations of all the decisions variables. In the 
present application, the computational complexity 
grows exponentially with the number of variables, 
and even with a small number of chillers in the plant 
it quickly becomes impractical for real-time 
controls. For instance, with a 3 chillers plant, which 
results in 6 decision variables (3 loads and 3 CW 
flows), and assuming 100 points being checked for 
each variable, it would result in 100^6, or a trillion, 
iterations, each of which consists of several 
operations to compute the total power to be 
minimized. Even assuming each iteration can be 
computed within 1 micro-second, which is a 
generous assumption, this would result in 1 million 
seconds of computational time, which is obviously 
not acceptable for real-time supervisory controls 
that may require sub-minute or even sub-second 
decisions in some cases. 

The proposed approach is to use an Interior-point 
method for non-linear optimization [7]. The 
optimization problem is a QP, with a quadratic 
objective as a sum of quadratic functions, and linear 
constraints. Provided that the objective function is 
convex, which is expected for the pump power and 
chiller power based on their affinity law, an 
Interior-point method can typically find the global 
minimum of a QP with dozens of variables within 
milliseconds on modest modern hardware [6]. Note 
that even if the objective function is not convex, a 
sequential quadratic program method [7] was found 
to provide a good local optimum in similar time for 
all cases tested. Additionally, specific constraints 
can be added to the models’ learning to enforce 
their convexity. 

3. Modelling results 

3.1 Model learning results 

The chiller power model learning results are 
reported for 2 separate anonymised sites, with 
roughly 1 year of 15 minutes interval data each. Site 
A is equipped with 2 multi-centrifugal-compressors 
chillers rated at 1,700 kW of refrigeration, and site B 
with 2 centrifugal-compressors chillers of 1,800 kW 
of refrigeration. Chillers on Site A and B are from 
different manufacturers. As shown on Tab. 1 the 
proposed chiller power model captures with a good 
accuracy the actual measured trend for all tested 
chillers, and therefore proves to be a suitable 
predictor for the application, for several separate 
sites and chillers.  

 

 

 



 

Tab. 1 – Chiller model learning results with site data. 

 Site A Site B 

Chiller n° 1 2 1 2 

MAE (kW) 7.1 4.5 6.3 6.4 

MAE/Mean 
(%) 

5.17 4.98 5.49 4.32 

R-squared 0.962 0.978 0.957 0.961 

 

For chiller 1 of Site A, the fit of the predicted power 
in regard to the actual power is displayed on Fig. 2 
and shows a good fit. The predicted power is also 
displayed on Fig. 3 in regard to the Load, the 
temperature difference, and the CW Flow. 

 
Fig. 2 – Site A, Chiller 1 predicted power compared to 
the actual measured power. 

Fig. 3 – Site A, Chiller 1 predicted power in regard to 
the cooling load, difference of temperature and CW 
Flow. Surface plot: Predicted power. Scatter plot: 
Actual data.  

The CW pumps power model was tested on the 
same sites, with the dedicated pump of each chiller. 
As shown on Tab. 2 the proposed pump power 
model performs well overall with low error and 
high correlation fit in all cases. 

 

Tab. 2 – Pump model learning results with site data. 

 Site A Site B 

Pump n° 1 2 1 2 

MAE (kW) 0.56 0.31 0.38 0.41 

MAE/Mean 
(%) 

4.78 3.47 3.57 3.66 

R-squared 0.978 0.988 0.958 0.947 

 

For pump 1 of Site A, the fit of the predicted power 
and actual power in regard to the flow is displayed 
on Fig.4. 

Fig. 4 – Site A, Pump 1 predicted and actual power in 
regard to the flow. 

3.2 Optimization offline simulations 

The optimization algorithms were initially run 
offline with models learnt from site data, to assess 
the validity of the premise as well as the savings 
potential.  

As an example, the optimization of CW Flow 
setpoint was simulated for Site A’s Chiller n°1 with 
its dedicated CW pump n°1. The rated data for this 
pair of equipment is a CW Flow of 86 L/s and a 
pump power of 22 kW. The power of each 
equipment individually and their sum is displayed 
on Fig. 5 and Fig. 6, for set conditions of LCHW and 
ECW temperatures, and respectively a low load of 
30% and medium-high load of 70%. Those figures 
show the trade-off between pump power and chiller 
power and how at different conditions the optimal 
flow point is different. This illustrates the benefit of 
predictive modelling and continuous optimization 
to accurately assess  the best CW Flow setpoint at all 
times under varying conditions. 



 

 
Fig. 5 – Site A, Chiller and Pump n°1 optimal CW Flow 
of 50 L/s (58% of design flow) under low load. 

  

Fig. 6 – Site A, Chiller and Pump n°1 optimal CW Flow 
of 72 L/s (83% of design flow) under medium-high 
load. 

At most sites, operators and conventional controls 
system typically maintain a constant CW Flow at all 
conditions, as the trade-off between the pump and 
chiller usage is not obvious. There is no clear rule-of-
thumbs that can be followed. Indeed, as is shown on 
Fig.7, for a theoretical different pump sizing, at the 
same conditions and with the same chiller, the optimal 
CW Flow is very different. 

Fig. 7 – Optimal CW Flow comparison with a 
theoretical 2nd option of Pump sizing design. 

Savings on Site A’s Chiller and Pump n°1 power for the 
case of optimal CW Flow in comparison with the 
baseline case with constant CW Flow set at design 
value can be computed from the predictive models, as 
displayed on Fig. 8. The savings’ opportunities are 
significant, at low and medium loads in particular, for 
this specific site. 

Fig. 8 – Site A, Chiller and Pump n°1 percentage 
savings for the optimal CW Flow setpoint, at different 
cooling loads and ECW temperatures. 

On Site B, the combined impact of the optimal CW 
Flow and LCHWT is shown on Fig. 9, 10 and 11. The 
ECWT is configured to 28°C, the Plant LCHWT to 
10°C, 2 chillers are running at the same time, and 
the simulation is run for plant cooling load points on 
their whole range of operation. The savings are 
computed by comparing with a case of constant CW 
Flows at each chiller and equal load distribution 
between the chillers. 

 
Fig. 9 – Site B, optimal CW Flow setpoints, at different 
plant cooling loads. 



 

 
Fig. 10 – Site B, optimal chiller loads, at different plant 
cooling loads. 

 
Fig. 11 – Site B, computed power savings at different 
plant cooling loads. 

Due to the difference of part-load performance of 
the chillers, different optimal CW Flows and loads 
are found for each chiller, resulting in significant 
savings compared to the conventional case of 
maintaining constant CW Flow and equal loads on 
the chillers. 

4. Real-time controls results 

The approach has been implemented on site on 
embedded hardware for real-time direct controls of 
equipment via common high-level communication 
protocol such as Modbus or BACnet. This was 
integrated within the existing chiller plant controls 
hardware & software embedded solution 
PlantPRO®, which delivers a comprehensive on-
premises controls solution that can fully manage the 
plant independently or in parallel with a Building 
Management System (BMS). The advantage of this 
implementation approach is that it does not rely on 
other control systems to manage the equipment, 
and contrarily to cloud-hosted solutions, it does not 
require a cloud subscription fee and removes 
downtime due to internet connection issues.  

Two separate hardware platforms were used, 
initially a BeagleBone Black-based platform, with 1 
core CPU and 500MB of RAM, and subsequently a 
Raspberry Pi 3+ compute module-based platform 
with a 4-core CPU and 1GB of RAM, as PlantPRO® 

transitioned to the latter. The solution was initially 
implemented as a prototype during the research 
phase with customizations on a site-by-site basis 
and has since then been implemented in the 
commercial product with full-suite of GUI and 
flexible configuration for various chiller plant 
configurations.  

Resulting operational data further to deployments 
on Sites A, B & C were analysed. During operation on 
Site A, at a period of relatively constant conditions, 
the optimal CW Flow was overridden to the design 
CW Flow, to confirm that during actual operation 
the expected energy savings were indeed observed. 
As shown on Tab. 3, the optimal CW Flow brought 
savings of 10.4 kW of instantaneous power usage, or 
22.6%. Albeit in a punctual scenario of low load, this 
site experiment does contribute to further validate 
the opportunities of optimizing over this variable in 
the plant. 

Tab. 3 – Site A recorded site data comparison between 
optimal and standard CW Flow. 

Case Load 
(kW) 

CW 
Flow 
(L/s) 

Chiller 
Power 
(kW) 

Pump 
Power 
(kW) 

Total 
Power 
(kW) 

Optimal 325 52.1 30.4 5.3 35.7 

Standard 322 80.9 29.1 17.0 46.1 

 

On Site C – which is equipped with 2 chillers of 3000 
kW and 1 chiller of 1000 kW of refrigeration – the 
number of chillers and the loads were optimized but 
not the CW Flow due to sensor limitations at the 
condenser side. The overall plant COP was observed 
to increase noticeably at medium and high loads, 
which coincides with periods with more than 1 
chiller enabled, when there are opportunities for 
varying the load proportion between chillers. This 
can be observed on Fig. 12. Note that periods with 
faulty equipment were removed. 

 
Fig. 12 – Instantaneous Plant COP at Site C with 
conventional controls period compared to optimal 
controls period, from measured data.  



 

On Fig. 13 and 14, respectively the actual cooling 
and LCHWT of each enabled chiller is displayed 
during a few hours of operation, illustrating how – 
as a result of the optimal controls approach – the 
load is not distributed equally between each chiller 
as it would typically be with conventional controls, 
while still targeting to meet the plant level 
production requirement. 

 
Fig. 13 – Cooling load distribution per chiller at Site C 
from measured data (with only chillers 2 and 3 running 
during that time period). 

 
Fig. 14 – LCHWT distribution per chiller at Site C (with 
only chillers 2 and 3 running during that time period). 

On Site B, both CW Flow and Loads were optimized. 
As shown on Fig. 15, the plant efficiency increased 
notably after deployment, compared to the previous 
conventional controls method. 

 
  
Fig. 15 – Daily Plant COP at Site B conventional 
controls period compared to optimal controls period, 
from measured data. 

Measurement and verification (M&V) studies were 
carried out, following the guiding principles from 
the International Performance Measurement and 
Verification Protocol (IPMVP) [8], to assess the 
actual energy savings achieved while accounting for 
changes in conditions appropriately. For all 3 sites, a 
baseline was computed to represent the energy 
usage of the plant without optimal control and 
compared with the actual energy usage measured 
during the optimal controls period. For Site A, a 
calibrated simulation approach (IPMVP’s option D) 
was used to simulate operation with constant CW 
flow, and the optimal controls period was of roughly 
2 months. For Sites B and C, the measured energy 
usage of the plant prior to deployment was 
modelled as a function of the cooling load and 
outdoor air conditions (IPMVP’s option B), and the 
optimal controls period was of roughly 1 month 
each. The savings are displayed on Tab. 4.  

Tab. 4 – Energy savings. 

Sites Variables 
Savings 
(kWh) 

Savings 
(%) 

Site A  CW Flows 15,948 3.6 

Site B 
CW Flows 
and Loads 

7,358 7.1 

Site C Loads 4,056 5.1 

 

The savings achieved in most cases are significant 
given that no mechanical equipment was replaced, 
and they are solely due to control strategies 
variations, moreover, only affecting 1 or 2 sets of 
setpoints (CW Flows and Loads) amongst all the 
variables in the plant. The efficiency of the plants 
prior to the implementation of the optimal controls 
features were already good in all cases, with 
conventional control strategies following best 



 

practices in the field. Site A and C already had 
PlantPRO® installed and had had extensive manual 
tuning by experienced operators to extract as much 
savings as possible with conventional approaches. 
Note that for Site C, the LCHWT allowable range 
configuration for each chiller was extended to allow 
for the chillers’ loads to be distributed as per the 
optimization live decisions. For Site B, a BMS was 
controlling the plant prior to deployment, and the 
plant COP was also reasonably high, as shown 
previously on Fig. 15, in particular given that it is 
located in a hot-and-humid climate. Note that for 
that site, the transition to optimal controls included 
the installation of PlantPRO®, and there could have 
been some minor additional changes in regard to 
other control strategies. Due to the solution being 
deployable within an existing controls solution 
providing additional benefits, on low-cost 
embedded hardware, the cost of adoption is 
expected to be relatively low, and the level of 
savings to provide adequate benefits to the 
stakeholders. 

The computing time to solve the optimization 
problem on the embedded hardware was also 
measured for a few key cases, as displayed on Tab. 
5, and were fast enough for real-time controls, as 
demonstrated by the successful site deployments. 

Tab. 5 – Loads-only optimization algorithm computing 
time on Raspberry Pi 3+ based platform – Average of 
1,000 runs. 

2 Chillers 5 chillers  10 Chillers  

46.1 ms 54.2 ms 64.4 ms 

 

5. Further use: Predictive 
maintenance 

The models to predict the power usage of the 
chillers and condenser pumps, that have been 
developed and validated in this study, can also be 
used to track and detect performance degradation 
of the equipment. Operators are often unable to 
properly assess this due to only limited data at full-
load being available from the manufacturer. As seen 
above, chiller power usage and efficiency are 
affected by the cooling load, water temperatures, 
condenser flow, and it can be hard to discern if a 
lower efficiency than surmised is due to 
performance degradation or simply to the 
conditions. With the predictive models, 
performance of the equipment can be captured 
initially based on manufacturer data or initial 
operation. This baseline calibrated model can then 
be continuously compared in the plant management 
system with actual measured efficiency of the 
equipment based on the live conditions, to alert the 
operator if it has decreased over time.  

This can be used as a predictive maintenance tool to 
address otherwise undetected issues that would 
increase the power usage of the plant and may be 

early signs of a potential future failure that may cost 
more to be fixed later on than if prevented. 

6. Conclusions 

A real-time model-based optimal controls approach 
was proposed, validated from site data, and 
deployed in actual chiller plants to demonstrate its 
resulting operation and benefits. The performance 
of the equipment was predicted using machine 
learning models that demonstrated generally high 
prediction accuracy. The optimization models were 
used to run offline simulations and showed notable 
potential energy savings. Finally, the solution was 
deployed on several sites, and demonstrated actual 
energy savings in the range of 3.6% to 7.1%, while 
maintaining both reliability of operation and 
comfort in the buildings. The solution was also 
designed to operate at low computing cost and be 
deployable on modern low-cost embedded 
controllers, eliminating the hurdles encountered 
with cloud-hosted approaches such as on-going 
maintenance fees and security and reliability 
concerns due to reliance on internet connection for 
equipment controls. The predictive models can also 
be applied to further use, such as predictive 
maintenance and fault detection, and deliver 
additional indirect benefits. 
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