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Abstract. To evaluate the separate impacts on human health and establish indoor control 

strategies, it is crucial to estimate the contribution of outdoor infiltration and indoor emission 

to indoor PM2.5 in the built environment. This study applied an algorithm to automatically 

estimate the long-term time-resolved indoor PM2.5 of outdoor and indoor origin in real 

apartments with natural ventilation. The inputs for the algorithm were only the time-resolved 

indoor/outdoor PM2.5 concentrations and occupants’ window actions, which were easily 

obtained from the low-cost sensors. This study first applied the algorithm in an apartment in 

Tianjin, China. The indoor/outdoor contribution to the gross indoor exposure and time-

resolved infiltration factor were automatically estimated using the algorithm. Due to the year-

round monitoring, the probabilistic distribution of the time-resolved PM2.5 infiltration factor 

and indoor PM2.5 emission can be given over a year. The influence of outdoor PM2.5 data source 

on the estimated results was compared using the data from the low-cost light-scattering sensor 

and official monitoring station. Besides, the sensitive parameters to the algorithm were 

analyzed and their effects on the indoor emission contribution and estimated infiltration factor 

were investigated. Through the analysis, this study identified the practical applications that 

robust long-term outdoor PM2.5 monitoring for a specific building can use the data from nearest 

official monitoring station. This study demonstrated an algorithm for estimating long-term 

time-resolved indoor PM2.5 of outdoor and indoor origin in real naturally ventilated apartments 

with only the time-resolved indoor/outdoor PM2.5 concentrations and window behaviors.  

Keywords. Indoor PM2.5 exposure, indoor emission, real building monitoring, I/O ratio, year-
round distribution, natural ventilation 
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1. Introduction

Exposure to particulate air pollution poses one of 
the greatest risks to human health around the world 
[1]. In recent decades, PM2.5 (particulate matter with 
a diameter less than 2.5 µm) has been proven to 
have a strong association with various diseases, on 
the basis of a large amount of epidemiological data 
[2-4]. Given that people spend a significant fraction 
of their time in indoor environments [5], it is 
essential to reduce indoor exposure to PM2.5. Many 
studies have used the outdoor PM2.5 concentration 

as an indicator to estimate the indoor exposure to 
PM2.5 [6-7]. However, even when indoor PM2.5 
originates outdoors, the concentration of outdoor 
PM2.5 is not a suitable indicator, because building-
specific parameters such as air tightness and 
window-opening behavior would also influence the 
exposure [8-9]. Moreover, the existence of indoor 
PM2.5 emissions, such as those from cooking and 
smoking, would further differentiate ambient PM2.5 
and indoor PM2.5. Therefore, it is crucial to estimate 
the contribution of outdoor infiltration and indoor 
emissions to indoor PM2.5 for evaluating the 
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separate risk effects on human health. 

With the rapid development of low-cost light-
scattering PM2.5 sensors, it is now straightforward to 
monitor time-resolved outdoor and indoor PM2.5 
concentrations. Our previous study  proposed an 
algorithm that automatically differentiates the 
indoor PM2.5 of outdoor and indoor origin using 
time-resolved indoor-to-outdoor PM2.5 
concentration ratio and window status. The method 
was validated in a small-scale chamber in a 
laboratory with a low relative error of 0.32% [10]. 
However, its performance in real buildings is still 
unclear. Therefore, to facilitate practical 
applications, it is worthwhile to assess the 
performance of the method in differentiating indoor 
PM2.5 of outdoor and indoor origin in real buildings.  

This study aimed to differentiate the indoor PM2.5 of 
outdoor and indoor origin in real apartments with 
natural ventilation to demonstrate the robustness of 
the differentiation method proposed in our previous 
study [10]. Three inputs, the time-resolved 
concentrations of outdoor PM2.5 and indoor PM2.5 
and window/door status, were monitored for a one-
year period in 2017. The concentrations of indoor 
and outdoor PM2.5 were monitored by a low-cost 
light-scattering PM2.5 sensor, while official data from 
the national monitoring station near the target 
building were also obtained as alternative for the 
concentrations of outdoor PM2.5. The occupants’ 
window and door action was also monitored using 
low-cost sensors. Based on the differentiation 
method, the time-resolved indoor PM2.5 of outdoor 
and indoor origin and their contributions to the 
total indoor exposure were estimated. The time-
resolved infiltration factors were also obtained.  

2. Research Methods

2.1 Original data 

This study first focused on a naturally ventilated 
apartment located in Tianjin, China. The apartment 
was on the 16th floor of an 18-floor residential 
building. The indoor and outdoor PM2.5 
concentrations were recorded in the living room 
and the neighborhood, respectively, from January to 
December of 2017 using two low-cost light-
scattering sensors with a time resolution of 1 min. 
In addition, the window/door-opening/closing 
actions were monitored with window/door sensors. 
The details of the monitoring setup can be found in 
a previous study [11]. However, it was found that a 
significant amount of data were missing from the 
outdoor low-cost PM2.5 sensor due to bad weather 
and unstable power supply. Therefore, as an 
alternative, the outdoor PM2.5 concentrations with a 
time resolution of 2 h were also obtained from the 
nearest official monitoring station, Binshui West 
Road station, operated by the China National 
Environmental Monitoring Center.  

2.2 Data pre-processing 

The low-cost light-scattering sensor for indoor PM2.5 
monitoring was first calibrated by a standard 
gravimetric instrument under a controlled 
environment. Since previous studies found that an 
increase in relative humidity can result in an 
increase in PM2.5 concentration as measured by a 
light-scattering sensor, the indoor PM2.5 
concentrations were further calibrated based on the 
relative humidity [11]. 

Note that the original indoor PM2.5 data were 
recorded once every minute. However, our previous 
study found that a time step size smaller than 10 
minutes would result in significant errors in the 
differentiation algorithm [10]. Therefore, after the 
calibration, the concentrations of indoor PM2.5 were 
averaged every 10 minutes, so that the time step 
size was in line with that of the differentiation 
algorithm. The sensitivity analysis about the time 
step size will be discussed in Section 3.4.  In general, 
the low-cost sensor used indoors was stable. Over 
94% of the indoor PM2.5 data were successfully 
recorded throughout the year. Due to the relatively 
harsh environment, around 60% of the outdoor 
PM2.5 data from the low-cost sensor were missing. 
Only were the data in February to April relatively 
complete for the analysis. As an alternative, this 
study also obtained the outdoor PM2.5 data recorded 
once every two hours from the official monitoring 
station. Linear interpolation was used to convert the 
official monitoring outdoor PM2.5 data to that with a 
time step size of 10 minutes. This study first used 
both outdoor PM2.5 data from the low-cost sensor 
and the official monitoring station to estimate the 
indoor PM2.5 of outdoor and indoor origin in 
February to April, and discussed the differences. We 
then used the outdoor PM2.5 data from the official 
monitoring station to calculate the year-round 
indoor PM2.5 of outdoor and indoor origin to 
demonstrate of the proposed algorithm. 

Since the time step size was set at 10 minutes, this 
study counted effective window behavior with a 
time interval longer than 10 minutes from the 
previous and subsequent actions. 

Besides, any time periods with mechanical 
ventilation or air cleaners turned on were removed 
since the algorithm is applicable for natural 
ventilation. Furthermore, this study applied the 
differentiation algorithm to each day individually. 
The results would be unsatisfactory for periods 
shorter than four hours [10]. Thus, this study 
removed the data that were recorded in any period 
shorter than four hours. Furthermore, if the results 
from the differentiation algorithm indicated that 
indoor PM2.5 emissions occurred continuously 
throughout a whole day, there was no way to 
estimate the indoor PM2.5 of outdoor and indoor 
origin, then such days were also removed. With 
these considerations, there were 40 days with valid 
input data for the analysis using the outdoor PM2.5 
data measured by the low-cost sensor in February 
to April. For the year-round estimation using the 
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official monitoring outdoor PM2.5 data, there were 
275 days with valid inputs in this study.  

2.3. Differentiation algorithm 

After the data pre-processing, the three inputs, 
concentrations of outdoor PM2.5 and indoor PM2.5 
and window action, were used with the 
differentiation algorithm to estimate indoor PM2.5 of 
outdoor and indoor origin. This sub-section briefly 
describes the differentiation algorithm developed in 
our previous study [10].  

Step 1 is to obtain indoor-to-outdoor PM2.5 ratio. To 
consider the change in concentrations of outdoor 
and indoor PM2.5 simultaneously, this study utilized 
the indoor-to-outdoor ratio time-resolved PM2.5 
concentration (I/O ratio), IO(t), to start the 
differentiation method: 

𝐼𝑂(𝑡) =
𝐶𝑖𝑛(𝑡)

𝐶𝑜𝑢𝑡(𝑡)
 (1) 

where Cin(t) and Cout(t) (µg/m3) are the averaged 
indoor and outdoor PM2.5 concentrations, 
respectively, in the t-th time step. The size of time 
step was set at 10 minutes [10].  

Step 2 is to process the change-point analysis. 
Normally, indoor PM2.5 emissions can affect indoor 
PM2.5 concentrations. The method of change-point 
analysis was used to detect significant changes in 
the time-series I/O ratios statistically [12]. The 
method also provided the confidence level for each 
change point. The details of the change-point 
analysis method can be found in [10]. Note that 
except for indoor emission of PM2.5, window actions 
and fluctuations in infiltration rate can make a 
difference in the time-series I/O ratios and result in 
the change points as well. Therefore, this step was 
taken mainly to identify candidates for change 
points due to indoor PM2.5 emissions.  

Step 3 is to handle time periods no window status 
change. For the periods without window actions, 
significant increases in the I/O ratio were ascribed 
to either the indoor emission of PM2.5 or the change 
of infiltration rate. To differentiate these two 
scenarios, three criteria were employed. First, when 
the I/O ratio was greater than 1, the period must 
have had an indoor emission of PM2.5. Second, if the 
outlier was more than 1.5 interquartile over the 
third quartile in the I/O ratio, the period was 
considered to contain an indoor emission. Third, a 
detected change might arise from either a sudden 
increase in infiltration rate or an indoor PM2.5 
emission. Sudden increase in infiltration rate would 
increase the indoor concentration smoothly, while 
an indoor emission would increase the 
concentration with relatively strong fluctuations 
[10]. In a large-scale simulation, Shi et al. [9] 
obtained the infiltration rate distribution in Beijing 
residences with a 15th percentile of 0.09 h-1 and an 
85th percentile of 0.32 h-1. Considering a relatively 

extreme case in which the infiltration rate suddenly 
increased from 0.09 to 0.32 h-1, the infiltration 
factor would increase by 0.22 (from 0.40 to 0.62), 
assuming the penetration factor and deposition rate 
to be 0.8 and 0.09 h-1, respectively. Namely, if a 
detected change is caused by a sudden increase in 
infiltration rate, it is unlikely that the I/O ratio 
would increase by 0.22. Therefore, when the 
difference between the maximum and minimum 
values of the I/O ratio in the period was over an 
empirical threshold of 0.22, the period was 
regarded as containing an indoor PM2.5 emission.   

Step 4 is to handle the time periods having window 
status change. For the periods with window 
behavior, the I/O ratio would follow an exponential 
regression deducted from the mass balance 
equation without indoor particle emission [13]:  

𝐼𝑂(𝑡) = 𝑐1 + 𝑐2 ∙ 𝑒−𝑐3(𝑡−𝑡0)  (2) 

where c1 (unitless), c2 (unitless), and c3 (h-1) are 
constants as a function of the air exchange rate, 
PM2.5 deposition rate and penetration factor. If the 
time-series I/O ratio fitted very well with equation 
(2), it is likely that there was no indoor source. 
Therefore, the R2 value of the regression was used 
to determine the existence of indoor emission of 
PM2.5. If the data fitting yielded a satisfactory R2 
value above 0.8, an empirical value according to Xia 
and Chen [10], then the period was regarded as free 
of indoor-generated PM2.5. Otherwise, there existed 
indoor emission of PM2.5. 

Step 5 is to estimate the indoor PM2.5 of outdoor and 
indoor origin. For the periods without indoor PM2.5 
emissions, the infiltration factor, Fin, was equal to 
the I/O ratio. For the periods with indoor PM2.5 
emissions, the infiltration factor was estimated with 
the use of equation (2), as demonstrated by Xia and 
Chen [10]. The indoor PM2.5 of outdoor origin, Cin,out, 
in the periods with indoor PM2.5 emissions was then 
calculated by: 

𝐶𝑖𝑛,𝑜𝑢𝑡(𝑡) = 𝐹𝑖𝑛(𝑡) ∙ 𝐶𝑜𝑢𝑡(𝑡)  (3) 

The indoor PM2.5 of indoor origin, Cin,in, can be 
expressed as: 

𝐶𝑖𝑛,𝑖𝑛(𝑡) = 𝐶𝑖𝑛(𝑡) − 𝐶𝑖𝑛,𝑜𝑢𝑡(𝑡)  (4) 

To compare the contributions of outdoor infiltrated 
PM2.5 and indoor emitted PM2.5, we calculated the 
ratio of indoor exposure to PM2.5 of outdoor and 
indoor origin, respectively, to the gross indoor 
exposure for each day, denoted as the “indoor 
contribution” and “outdoor contribution”, 
respectively, as follows: 

𝐸𝑖𝑛,𝑖𝑛

𝐸𝑖𝑛

=
∫ 𝐶𝑖𝑛,𝑖𝑛(𝑡)𝑑𝑡

𝑡𝑒𝑛𝑑,𝑑

𝑡𝑠𝑡𝑎𝑟𝑡,𝑑

∫ 𝐶𝑖𝑛(𝑡)𝑑𝑡
𝑡𝑒𝑛𝑑,𝑑

𝑡𝑠𝑡𝑎𝑟𝑡,𝑑

 (5) 
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𝐸𝑖𝑛,𝑜𝑢𝑡

𝐸𝑖𝑛

=
∫ 𝐶𝑖𝑛,𝑜𝑢𝑡(𝑡)𝑑𝑡

𝑡𝑒𝑛𝑑,𝑑

𝑡𝑠𝑡𝑎𝑟𝑡,𝑑

∫ 𝐶𝑖𝑛(𝑡)𝑑𝑡
𝑡𝑒𝑛𝑑,𝑑

𝑡𝑠𝑡𝑎𝑟𝑡,𝑑

 (6) 

where Ein,out and Ein,in ((µg∙10min)/m3) are the daily 
indoor exposure to PM2.5 of outdoor and indoor 
origin, respectively, and Ein ((µg∙10min)/m3) is the 
daily gross indoor exposure to PM2.5. The start time, 
tstart,d, and end time, tend,d, of the daily gross indoor 
exposure are the start and end of an effective day. 
Here it was assumed that the occupant stayed 
indoors all the time. For different occupancy 
schedules, the corresponding exposures can be 
calculated accordingly based on the estimated 
concentrations of indoor PM2.5 of outdoor and 
indoor origin.  

Note that the indoor PM2.5 sensor was placed in the 
living room. The indoor PM2.5 emissions that 
occurred in other rooms, e.g., the kitchen and 
bedroom, may have contributed to the PM2.5 
concentration in the living room. In the 
differentiation algorithm, although the non-living-
room PM2.5 emissions were also detected, the 
estimated emission strength was equivalent to the 
portion that actually influenced the living room. In 
other words, these PM2.5 emissions were also 
regarded as indoor sources that were located in the 
living room.  

3. Results and discussion

3.1. Examples of estimated indoor PM2.5 of 
outdoor and indoor origin    

Fig. 1 illustrates the estimated time-resolved 
concentrations of indoor PM2.5 of outdoor and 
indoor origin and the infiltration factor on Feb 21, 
Feb 14, and Mar 19. The inputs, outdoor and indoor 
PM2.5 concentrations, are also shown in the figure. 
The area under the estimated indoor PM2.5 of 
outdoor origin line (in orange) represents the daily 
indoor exposure to PM2.5 of outdoor origin (Ein,out). 
The area under the indoor PM2.5 line (in green) 
represents the daily gross indoor exposure to PM2.5 
(Ein). The total area of the four purple shaded zones 
represents the daily indoor exposure to PM2.5 of 
indoor origin (Ein,in). equations (5) and (6) were 
used to calculate the daily indoor and outdoor 
contribution to the total indoor exposure, 
respectively. On Feb 21, four indoor emission events 
were detected with the differentiation algorithm, as 
shown in Fig. 1(a). The latter three detected PM2.5 
emissions were likely attributed to cooking 
considering the normal time periods for preparing 
breakfast, lunch, and dinner. In this apartment, the 
occupants often prepare late-night snacks. 
Therefore, the first emission might be from a late-
night cooking activity. Based on the algorithm, the 
daily indoor and outdoor contribution was 32.5% 
and 67.5%, respectively. However, it should be 
noted that the first detected emission was weak, 
which might be a misclassification. If this weak 
emission was not considered as a real emission, the 

daily indoor and outdoor contribution would be 
altered by only 1.7%. Namely, the detected small 
emission did not alter the results of indoor/outdoor 
contribution in a major way. By characterizing the 
indoor PM2.5 emission, the differentiation algorithm 
can then calculate the time-resolved infiltration 
factor (Fin(t)). As shown in Fig. 1(a), the real-time 
infiltration factor fluctuated in a wide range from 
0.16 to 0.51. The daily averaged infiltration factor 
was 0.34±0.09. Similar results can be found on Feb 
14, as shown in Fig. 1(b). The indoor emission 
events were also likely from cooking activities for 
late-night snack, breakfast, lunch, and dinner. After 
breakfast and lunch, there might be cleaning or 
other activities leading to emissions. The estimated 
daily indoor and outdoor contribution was 19.1% 
and 80.9%, respectively, and the averaged 
infiltration factor was 0.23±0.08. On Mar 19, the 
algorithm only detected one indoor emission event, 
which was likely from preparing the lunch. Since 
Mar 19 was a weekend, the occupants might get up 
late and skip the breakfast, and have their dinner in 
a restaurant. The estimated daily indoor and 
outdoor contribution was 3.0% and 97.0%, 
respectively, and the averaged infiltration factor 
was 0.45±0.11. The plausible explanation for the 
detected indoor emissions in these examples can 
partially support the feasibility of the algorithm. 

Fig. 1 - Estimated concentrations of indoor PM2.5 of 
outdoor and indoor origin and infiltration factor on 
(a) Feb 21, (b) Feb 14, and (c) Mar 19 using the
differentiation algorithm. (The purple shading
represents indoor exposure to PM2.5 of indoor
origin.)

3.2. Comparison of results based on outdoor 
low-cost sensor and official monitoring station 

(a)

(b)

(c)
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As discussed, due to bad weather and unstable 
power supply, the outdoor PM2.5 data from the low-
cost light-scattering sensor were only available in 
February to April. The alternative was the outdoor 
PM2.5 data recorded from the nearest official 
monitoring station. The mean ± standard deviation 
of the outdoor PM2.5 data measured by the light-
scattering sensor in February to April (68.9 ± 71.4 
μg/m3) was close to that measured by the official 
monitoring station (69.4 ± 60.7 μg/m3). This study 
first compared the results based on the 1-min 
outdoor low-cost sensor and 2-h official monitoring 
station in February to April. Both datasets were 
averaged or interpolated to a 10-min resolution. Fig. 
2 compares the probabilistic distribution of the 
daily indoor/outdoor contribution estimated based 
on the two outdoor PM2.5 datasets. The general 
distributions were similar, but discrepancies can 
also be observed. It was estimated that, on average, 
the indoor PM2.5 emissions and outdoor PM2.5 
infiltration contributed 23.2% and 76.8% of the 
daily total indoor exposure, respectively, if the 
outdoor PM2.5 data from the low-cost sensor were 
used. When using the data from the official 
monitoring station, the average indoor and outdoor 
contribution was estimated to be 17.8% and 82.2%, 
respectively. Interestingly, the indoor contribution 
over 70% only occurred when the low-cost light-
scattering sensor was used and the outdoor PM2.5 
concentrations were low. The outdoor PM2.5 
concentrations at the low level tended to be under-
reported by the light-scattering sensor, which 
would result in a higher indoor contribution. The 
under-reported outdoor PM2.5 concentration by the 
low-cost light-scattering sensor could be another 
possible reason for the long continuous indoor 
emission. In conclusion, the proposed algorithm can 
effectively differentiate indoor PM2.5 of outdoor and 
indoor origin and estimate their contributions to the 
total indoor exposure. However, the average results 
of daily indoor/outdoor contributions estimated 
based on the two outdoor PM2.5 datasets had an 
around 5% difference.  

Fig. 2 - Comparison of the probabilistic distribution 
of the daily indoor/outdoor contribution estimated 
based on the outdoor PM2.5 data from the low-cost 
sensor and official monitoring station in February to 
April 2017. 

Fig. 3 compares the probabilistic distribution of the 

time-resolved infiltration factor estimated based on 
the outdoor PM2.5 data from the low-cost sensor and 
official monitoring station in February to April. 
Again, the general distributions were similar, but 
discrepancies can be observed. The average 
infiltration factor estimated using the outdoor PM2.5 
data from the low-cost sensor was 0.46, which was 
equal to that estimated based on the official 
monitoring data, 0.46. Therefore, the proposed 
algorithm can effectively calculate the time-resolved 
infiltration factor using only the inputs of time-
series indoor/outdoor PM2.5 concentrations and 
window behavior. Furthermore, the average 
infiltration factors obtained from the two outdoor 
PM2.5 datasets were similar, but discrepancies can 
be observed in terms of the probabilistic 
distribution.  

Fig. 3 - Comparison of the probabilistic distribution 
of the time-resolved PM2.5 infiltration factor 
estimated based on the outdoor PM2.5 data from the 
low-cost sensor and official monitoring station in 
February to April 2017.  

Theoretically, using the same light-scattering 
sensors with careful calibration for both indoor and 
outdoor PM2.5 monitoring would yield more 
accurate results than using the official monitoring 
outdoor data since the light-scattering sensor can 
effectively capture the peak outdoor PM2.5 
concentration with a 10-min time step size but the 
official monitoring data with a 2-h sampling interval 
cannot. In addition, the nearest official monitoring 
station may still be far away from the target 
building, which would result in inaccurate input of 
outdoor PM2.5. Therefore, from the theoretical 
perspective, we would recommend using the same 
low-cost light-scattering sensors with careful 
calibration for both indoor and outdoor PM2.5 
monitoring. 

However, using the low-cost light-scattering sensor 
to monitor long-term outdoor PM2.5 in a 
neighborhood is practically challenging for general 
customer use. Several problems were identified in 
the monitoring of this study. First, the current low-
cost light-scattering sensors available on the market 
suffers from severe data loss due to bad weather, 
unstable power supply, or even accidental damage. 
The general users, such as the participants in this 
study, would not spend time on regular 
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maintenance for the outdoor sensor. Furthermore, 
most of them do not have the technical skills to fix a 
light-scattering sensor. Second, the outdoor sensor 
should be placed somewhere in the neighborhood 
which is a public area. Thus, the outdoor monitoring 
requires the permission from the neighborhood 
committee, which would become impractical if a lot 
of residents request a public area for outdoor 
monitoring. Therefore, from the practical 
perspective, we would recommend using the 
outdoor PM2.5 data from the nearest official 
monitoring station as the input for the algorithm if 
the year-around results are to be obtained.     

In the future, efforts should be made in the 
following aspects to facilitate the practical 
application of the proposed algorithm by using low-
cost light-scattering sensor for outdoor PM2.5 
monitoring. First, the sensors should be further 
developed for robust and stable long-term 
measurements in relatively hash environments. 
Currently, there are some well-designed PM2.5 
monitors specifically for outdoor monitoring 
available on the market. However, the cost would be 
too high for general customer use. Low-cost 
solutions would significantly facilitate the practical 
applications. Second, the neighborhood-based 
outdoor PM2.5 monitoring should be conducted by 
the neighborhood property manager and the data 
should be shared in real-time with all the residents 
in the neighborhood. This would require both 
technical development in terms of data sharing and 
policy development in terms of neighborhood-based 
air quality monitoring. 

3.3. Year-round results 

Based on the discussion above, this study then used 
the outdoor PM2.5 data from the official monitoring 
station to calculate the year-round indoor PM2.5 of 
outdoor and indoor origin as a full demonstration of 
the proposed algorithm. Furthermore, the seasonal 
characteristics were analyzed in addition to the 
year-round results. Division of the time into four 
seasons was based on the five-day moving average 
temperature according to the definition of climatic 
season in Chinese national standard QX/T 152-2012 
[14]. According to this standard, in 2017, spring in 
Tianjin was from March 16 to May 10, summer from 
May 11 to October 2, autumn from October 3 to 
November 11, and winter from January 1 to March 
15 and November 12 to December 31.  

Fig. 4 displays the year-round distribution of the 
daily indoor/outdoor contribution for the 275 days, 
with a wide range from 0 to 94.2%.  On average, the 
indoor PM2.5 emissions and outdoor PM2.5 
infiltration contributed 26.3% and 73.7% of the 
daily total indoor exposure, respectively. In other 
words, for most of the time, the outdoor PM2.5 
infiltration contributed to the indoor PM2.5 more 
than the indoor emission did. The results 
demonstrated that the proposed algorithm can 
automatically differentiate indoor PM2.5 of indoor 

and outdoor origin and estimate their contributions 
to the total indoor exposure, even for a whole year. 
The automated estimation of indoor and outdoor 
contributions would support the large-scale 
exposure and health risk assessment as well as the 
development of effective strategies for controlling 
indoor particulate air pollution.  

Fig. 4 - Year-round probabilistic distribution of the 
daily indoor/outdoor contribution to total indoor 
exposure in 2017.  

Fig. 5 shows the year-round probabilistic 
distribution of the time-resolved PM2.5 infiltration 
factor with a mean value ± standard deviation of 
0.56 ± 0.22. The median value was 0.55. The results 
were comparable to the annual-averaged infiltration 
factor for residences in Beijing, 0.48 ± 0.07 [9]. The 
year-round infiltration factor showed a great span 
ranging from 0.001 to 0.993 in the same apartment. 
The great variation in the infiltration factor was 
attributed to the window behavior, outdoor wind 
speed, etc. Note that measuring time-resolved 
infiltration factor in a real building with indoor 
PM2.5 sources is very challenging using the existing 
methods in the literature [13]. However, with the 
approach proposed in this study, the real-time PM2.5 
infiltration factors can be obtained by using only the 
concentrations of outdoor PM2.5 and indoor PM2.5 
and window actions.  

Fig. 5 - Year-round probabilistic distribution of the 
time-resolved PM2.5 infiltration factor in 2017.  

3.4. Sensitivity analysis 

The sensitivity analysis in this study was to test how 
the empirically determined setting parameters, i.e., 
time step size, infiltration factor range (in Step 3), 

6 of 8



and R2 value (in Step 4), would alter the results of 
indoor/outdoor contribution and infiltration factor 
based on the outdoor low-cost sensor data shown in 
Section 3.2.  

Time step size: In general, a smaller time step size 
would result in greater uncertainties due to data 
fluctuation, while a larger time step size would 
result in greater error in quantifying indoor 
emission. The validation using the ground truth data 
in the laboratory tests in our previous study [10] 
indicated that the time step size of 10 min yielded 
the best estimation of the indoor/outdoor 
contribution. This study further tested how the time 
step size of 2, 5, 10, 15, and 20 min affected the 
results in the Tianjin apartment. The average daily 
indoor contribution increased with the time step 
size, while the infiltration factor decreased. The 
change point analysis in Step 2 may generate more 
change points with a smaller time step size due to 
data fluctuation. If a real indoor emission was 
divided into several time periods by the additional 
change points, the algorithm might misclassify these 
short time periods as without emission. 
Consequently, the average daily indoor contribution 
would be underestimated, while the infiltration 
factor would be overestimated. On the other hand, a 
larger time step size might result in the 
overestimation of indoor contribution when 
calculating the integral in the numerator of 

equation (5). As a result, the average daily indoor 
contribution would be overestimated, while the 
infiltration factor would be underestimated. When 
the time step size ranged from 5 to 15 min, the 
average daily indoor contribution in the range of 
21.3% to 24.1% with an absolute difference of 2.8%, 
and the average infiltration factor was in the range 
of 0.47 to 0.50 with an absolute difference of 3%. 
Therefore, if an uncertainty of 5% in 
indoor/outdoor contribution is acceptable, the time 
step size can be set between 5 to 15 min. 
Furthermore, the time step size between 5 to 15 
min is also suitable considering the light-scattering 
PM2.5 sensor performance and typical indoor 
emission duration [10]. 

Infiltration factor range threshold: The infiltration 
factor range threshold of 0.22 in Step 3 was 
determined according to the reasonable inputs from 
the literature. The validation using the ground truth 
data in the laboratory tests [10] also indicated that 
the threshold of 0.22 yielded the best estimation of 
the indoor/outdoor contribution. This study tested 
how the threshold of 0.15, 0.19, 0.22, 0.28, and 0.35 
affected the results in the Tianjin apartment in 
February to April. These values corresponded to the 
75th/25th, 80th/20th, 85th/15th, 90th/10th, and 95th/5th 
percentiles of the upper/lower limits of the 
infiltration rate, respectively [9]. A larger infiltration 
factor range threshold resulted in a lower the 
indoor contribution and a higher infiltration factor. 
When the infiltration factor range threshold ranged 
from 0.15 to 0.35, the average daily indoor 
contribution was in the range of 21.7% to 24.8% 

with an absolute difference of 3.1%, and the average 
infiltration factor was in the range of 0.47 to 0.48 
with an absolute difference of only 0.01. Therefore, 
the results were insensitive to the infiltration factor 
range threshold between 0.15 and 0.35. 

R2 value: The algorithm used an R2 value of 0.8 in 
the data regression analysis in Step 4 for identifying 
whether there was PM2.5 emission in a period with a 
window-opening action. Again, the validation using 
the ground truth data in the laboratory tests [10] 
also indicated that the R2 value of 0.8 yielded the 
best estimation of the indoor/outdoor contribution. 
This study tested how the R2 value of 0.65, 0.7, 0.8, 
0.9, and 0.95 affected the results in the Tianjin 
apartment in February to April. when the R2 value 
range threshold ranged from 0.65 to 0.95, both the 
average daily indoor contribution and the average 
infiltration factor almost remain unchanged. 
Therefore, the results were insensitive to the R2 
value in the range of 0.65 to 0.95.  

4. Conclusions

This study used an indoor/outdoor PM2.5 
differentiation algorithm in real residential 
apartments to automatically estimate the long-term 
time-resolved indoor PM2.5 of outdoor and indoor 
origin. The inputs for the differentiation algorithm 
were only the concentration values of outdoor and 
indoor PM2.5 and occupants’ window actions, which 
were easily obtained from the low-cost sensors. The 
indoor/outdoor contribution to the gross indoor 
exposure and the time-resolved infiltration factor 
were calculated using the algorithm. Within the 
scope of this study, the following conclusions can be 
made: 

1. The proposed algorithm can automatically
estimate the long-term time-resolved indoor PM2.5

of outdoor and indoor origin in naturally ventilated
buildings using only the inputs of time-resolved
indoor/outdoor PM2.5 concentrations and window
behavior.

2. The indoor/outdoor contribution to the gross
indoor exposure and time-resolved infiltration
factor can also be automatically estimated using the
algorithm.

3. This study identified several directions for
further development, such as robust long-term
outdoor PM2.5 monitoring using low-cost light-
scattering sensors, which would facilitate the
practical applications of the algorithm.
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