
From Data To Control: Learning an HVAC Control Policy

Bram de Wit a, Lambert Schomaker b, Jaap Broekhuizen c

a Advanced Climate Systems, Groningen, the Netherlands, b.dewit@acs-buildings.com

b Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands, l.r.b.schomaker@rug.nl

c Advanced Climate Systems, Groningen, the Netherlands, j.broekhuizen@acs-buildings.com

Abstract. This study introduced a framework for smart HVAC controllers that can be used at 
scale. The proposed controllers derive their control policy solely from data. First a simulator of 
the process is learned, which we call the Neural Twin. The results showed that the Neural Twin 
framework is able to simulate several distinct processes with an average absolute error close to 
0.2 °C for all processes, even when predicting several hours ahead. Then, the Neural Twin was 
used to develop two different control algorithms. The first algorithm learned a control policy for 
a process using a neural network. The network was trained using Proximal Policy Optimization 
by gathering experience from the simulated environment provided by the Neural Twin. The 
second algorithm performed Model Predictive Control using the Neural Twin at real time during 
control. It used the Neural Twin to choose an optimal control sequence, given a set of possible 
control sequences. It selects the optimal control sequence based on a horizon, which is usually a 
few hours ahead. Both control algorithms were inspected in several environments and for one of 
those environments the best controller was tested on a physical room. The results show that the 
control algorithms were able to handle a wide variety of different processes, without manual 
tuning. The controllers achieved improved performance compared to the conventional control 
algorithms, which were manually tuned, mainly in terms of energy usage. It is estimated that the 
proposed controllers can lead to a 5% - 40% decrease in effective energy usage, while retaining 
the thermal comfort and stability. The controller trained using reinforcement learning showed 
the best performance. From the results it was concluded that the control methods pose an 
attractive alternative compared to conventional controllers.

Keywords. Deep Learning, Reinforcement Learning, HVAC control, system identification.

DOI: https://doi.org/10.34641/clima.2022.362

1. Introduction
Within a building the indoor climate is often actively
regulated. This regulation is performed by Heating,
Ventilating and Air Conditioning (HVAC) systems.
There are various motivations for indoor climate
regulation such as providing thermal comfort for
occupants of the building, maintaining good
conditions in greenhouses for growing crops or
storing wares which require certain climate
conditions.

According to the National Human Activity Pattern
Survey, a person spends approximately 87% of their
time indoors [1]. Furthermore, several studies have
already shown the negative impact of poor indoor
climate conditions, which can cause health issues
and decreased productivity for occupants of the
building, also known as the Sick Building Syndrome
[2]. For these reasons, maximizing the quality of the
indoor climate is desirable.

In general, regulating the indoor climate in buildings
results in both energy costs and carbon dioxide
emissions. Obviously it is desirable to reduce both of
these as much as possible. The International Energy
Agency claimed the following in their report of
2018: "The buildings and construction sector should
be a primary target for greenhouse gases (GHG)
emissions mitigation efforts, as it accounted for 36%
of final energy use and 39% of energy- and
process-related emissions in 2018." ([3] page 12).
The same report showed that 30% of the process
related energy is used by buildings alone and 28% of
the energy-related carbon dioxide emissions come
from buildings.

The goals above pose a conflict, as regulating the
indoor climate always increases energy demand
(compared to simply not regulating the indoor
climate). This means that in the end a tradeoff has to
be made between the quality of the indoor climate
regulation and the energy consumption.

Copyright ©2022 by the authors. This conference paper is published under a CC-BY-4.0 license. 1 of 8

mailto:b.dewit@acs-buildings.com
mailto:l.r.b.schomaker@rug.nl
mailto:j.broekhuizen@acs-buildings.com


Much research has already been done with respect
to machine learning and smart building controllers.
An extensive survey of AI-assisted HVAC control is
given in [4]. One of the difficult parts of HVAC
control is that often the underlying dynamics of a
building are unknown, and these dynamics can be
very complex. When finding optimal HVAC control
policies, it can be useful to try and understand the
underlying dynamics of the system one is trying to
control. This knowledge can then be exploited to
create a good control policy. The process of using
observed data of the process to build mathematical
models of that dynamical system is called system
identification.

An important part of system identification for
building control is indoor temperature prediction.
Many machine learning methods have been used for
this purpose and have proven to be successful [5]. In
[6], a Long Short-Term Memory-based (LSTM-based)
sequence-to-sequence framework was proposed,
achieving good results in predicting indoor
temperatures 6 hours ahead at a 10 minute interval.
The Neural Twin framework presented in this study
was heavily based upon this work.

The recent developments in the field of Deep
Reinforcement Learning (DRL) have also been
applied to HVAC control. A recent survey showed the
potential of these methods [7]. Although promising,
the survey concluded that most DRL-based methods
are studied within a simulation setting, and gives as
reason that DRL-based agents require much time to
train, making online deployment simply not
desirable. Another survey showed that of the 77
articles that were studied [8]:

1. The majority of the DRL agents in the
studies did not control the actuators of the
building directly. Instead, they controlled
for example the setpoint that a controller
needs to regulate. Classic controllers were
still needed to track the setpoints
determined by the DRL agent;

2. 91% of the studies did not include previous
states as inputs;

3. 90% of the studies used data simulated by
simulation software such as EnergyPlus;

4. 83% of the studies did not include
predictions as inputs;

5. Only 11% of the studies implemented and
tested their approaches in an actual
building.

Both surveys agree on the fact that no standardized
benchmark exists for this problem, which have
advanced the research in computer vision, speech
recognition and reinforcement learning.

Reinforcement Learning has been applied onto
many different parts of the building's control. In [9],
the main supply temperature is determined and
compared to the baseline as provided by ASHRAE,

which is based on the outside air temperature.
Another study trained different Q-networks for all
zones in the building [10]. There, temperature
violations were kept approximately constant but the
cost of regulating was decreased significantly. In
[11], 5% - 12% energy savings were achieved, also
by controlling supply temperature setpoints. It made
the action space discrete by letting the agent choose
between five different supply temperatures. All
three studies mentioned above used simulated data
and evaluated the performance using a simulator.

To the best of the authors’ knowledge, only one
study tried learning a DRL using an environment
based on a model which learned the system
dynamics of the building [12] (hence, it did not need
a simulator). In that study, an LSTM was used to
approximate state transitions from state action
pairs, on which an agent was trained. The agent
learned to determine optimal setpoints for three air
handling units (trained separately), decreasing the
energy consumption with 27%-30% while retaining
thermal comfort.

This study contributes to the literature presented
above by:

1. Introducing a scalable approach for
learning a HVAC control policy, solely using
sensor data gathered from real buildings
(instead of a simulated buildings);

2. Controlling the actuators of a building,
rather than the setpoints. Therefore, it
completely substitutes classical control
methods;

3. Testing the approach on a variety of
environments, with different physical
properties and different HVAC controls,
showing the scalability of the approach;

4. Testing the obtained controller on a real
building, validating its performance in the
physical world.

2. Research Methods

2.1 Data

In order to use the approach described in this study,
a time series data set is needed which reveals the
dynamics of the system at interest. A constant
interval is assumed, which can and should be varied
for different processes, i.e. for fast processes this
interval can be 2 minutes, whereas for a slow
process (regulating a swimming pool for example)
the interval can be 10 minutes.

The data was retrieved from Climatics, the building
management system of the buildings used in this
study. Data from Climatics is always available at a 2
minute interval, hence it should be re-sampled when
training for relatively slow processes.

At every timestep t, all sensor values are observed,
which will be denoted as the observation vector ot.

2 of 8



From the day a building starts logging, up until now,
it will collect these observation vectors at a fixed
time interval (every 2 minutes), creating a sequence
of observations {o0, o1, …, oT} where T is the current
time. It is important to note that a single observation
does not yield the full system state, as a state will
consist of temperatures and values moving in a
particular direction and this direction is not
included in ot.

An observation at a specific time step consists of
several components.

1. Values for all sensors of the building
relevant for the specific process. These can
be splitted into three types of sensors: the
sensors to model (room temperatures),
actuator sensors and remaining/external
sensors that cannot be modelled or
controlled, but are relevant for the process.

2. Values for weather data. In this study,
weather data is retrieved using the DarkSky
API, which provides hourly weather data. In
the data set, weather data is padded (thus
during an hour the weather data remains
constant).

3. Encoded cyclic time information. Three
cycles can be identified for a data set of a
building: a day cycle, a week cycle and a
year cycle. All cycles are mapped to a unit
circle, and the corresponding x and y
coordinates are fed to the network as input.

In general, the data was used to simulate short
episodes of historical data. In order to do this, a
certain start time t is considered. Then the input
sequence will be several hours leading up to t. The
target sequence will be several hours after time t.
During real-time control, t will be the current time.

2.2 Environments

This study tested on four different environments.
The environments all vary in some factor, either in
size, geographic location or HVAC control system.
The four environments are:

1. Sports hall, Slochteren. A relatively large
room heated by a radiator. A schematic of
the control system for this room is given in
Figure 1.

2. Sports hall, Hoogezand. A comparable room
heated by a radiator, located in Hoogezand.

3. Changing rooms, Hoogezand. A relatively
small room, heated by a radiator.

4. Central hall, Kalckwijck. A large entry hall
heated by an air handling unit.

Fig. 1 - This figure was taken from Climatics. It shows
the schematic for environment 1: the sports hall in
Slochteren. The schematic shows the relevant sensors
for this environment. Sensor 1: air temperature of the
sports hall. Sensor 2: CO2 sensor, measuring parts per
million (PPM), i.e. the concentration of the air. Sensor 3:
valve position for the radiator. Sensor 4: central supply
temperature. Sensor 5: outside air temperature.

2.3 Neural Twin

The Neural Twin is an Encoder-Decoder model
based on Gated Recurrent Units (GRUs). A GRU
retains its state over time, which is often called the
hidden state. The sensor data fed to the network
modifies this hidden state over time. In the context
of control systems, Encoder-Decoder architectures
can be interpreted as follows: Both the encoder and
the decoder share the same memory structure (the
GRUs have the same hidden size). The encoder will
encode all past observations {ot-h, ..., ot-2, ot−1} in
order to yield a compact representation of the state
of the process. The hidden state of the encoder is
then used as the initial hidden state of the decoder.
Then, when feeding a new observation to the
decoder, it predicts the process values one timestep
in the future. This can be realised by stacking a
Multilayer Perceptron on the decoder, which
interprets the hidden state at that time. However, as
opposed to the encoder input, the input of the
decoder might consist of only the process and
control values of the system (excluding any external
variables such as weather variables) depending on
the use case of the Neural Twin. For
Model-Predictive Control the latter is desirable
because at inference time the model will not have
access to the future values of external variables.
When constructed like this, one can use the outputs
of the decoder in combination with newly generated
control values to simulate a trajectory over a short
horizon. If, however, the goal of the model is to
simulate the system as accurately as possible, one
can choose to let the input of the decoder consist of
the full observation. In this case, one can use
historical data for these external variables
concatenated with the output of the decoder and
generated control values as input for the decoder.
This might be desirable when one wants to train a
Reinforcement Learning agent in a simulation

3 of 8



setting. Then, the Neural Twin will not be needed
during inference, as in that case the trained agent
will take over the control, which does not require
future values of external variables.

A schematic view of an Encoder-Decoder network in
the context of a control system is given in Figure 2.
This figure shows the case where the decoder
network omits external variables in its input. If this
would be added, it would mean that at every
timestep historical values for these external
variables should be added.

Figure 2 - A schematic view of a Neural Twin model
where the decoder model expects a different
number of inputs then the encoder model. The black
vertical line represents the split between past
observations and future observations. Past
observations {ot−h,…,ot−2,ot−1} are fed into the
encoder. Next, an initial observation ot is fed to the
decoder and from there the decoder simulates using
its previous output yt+1 and newly generated control
values ut+1 to generate output yt+2, and so on.

The Neural Twin is trained using gradient descent. It
is trained for several epochs using mini batches. An
important concept called teacher forcing is used
during training. Teacher forcing means that during
training the decoder receives the target value of the
previous timestep as input, instead of its own output
from the previous timestep. This helps speed up
convergence at the beginning of training, as in the
beginning it is likely that at the end of a target
sequence the inputs for the decoder will be far from
the realistic inputs when using its own outputs.
During the course of training, less teacher forcing
will be used and eventually the decoder will only use
its own outputs. Then, when teacher forcing is no
longer used, the learning rate is decreased
exponentially over the remaining epochs. In order to
enforce regularization, simple weight decay is used.
This forces the weights to remain smaller, which
helps against overfitting.

2.4 DRL Control Agent

The trained Neural Twin can be used as a simulator
for a DRL agent that will try to learn an optimal

control policy. In this case it is desirable to provide
full input to the decoder of the Neural Twin, as it will
only be used as a simulator. Historical data was used
for the external variables during simulation.

In this study, a Multilayer Perceptron is used to
parameterize the control policy learned by the
agent. These types of networks expect only a single
vector as input. However, giving only the current
observation ot as input for the network will not be
enough, as the network will not be able to extract
higher order movements of the system (for example
is the temperature increasing or decreasing?).
Inspired by [13], the past n observations will be
concatenated. In addition to this, the agent will need
to know the desired setpoint of the room. The
setpoint will be concatenated to the past
observations and these will serve as inputs for the
policy network.

Figure 3 - A schematic view of the policy network
used by the agent.

In order to perform exploration during training, the
network is designed to output a mean and a
standard deviation for every actuator of the control
problem, i.e. μt and σt . During training, a value will
be sampled from the distributions formed by these
outputs, i.e. at∼N(μt ,σt). During inference, the means
will be used as actions. The action eventually
produced by the agent will be offsets for the current
control values. Hence, if there is a single actuator
that has a current value of 50 and the output of the
network is -2, the actuator's value will become 48. A
schematic view of the policy network is given in
Figure 3.

Proximal Policy Optimization [14] is used to train
the agent. The Neural Twin of the environment is
used to simulate episodes. It will take historical start
moments, but then use the control values generated
by the agent to simulate short episodes and gather
experience to learn from.

Reinforcement Learning algorithms are designed to
optimize a reward function. The reward function

4 of 8



describes quantitatively how ‘good’ the current state
is. The reward function in this study consists of
three weighted parts. The weights allow one to
prioritize certain factors of control more compared
to others. The reward function account for the
following three factors:

1. Thermal comfort: the agent is rewarded by
being close to the setpoint.

2. Stability: the agent is rewarded when its
control is considered stable. The first order
movements of the control values are used
to measure this.

3. Energy consumption: the agent is rewarded
more when using less energy.

This leads to the total reward:

Rtotal = Rthermal +αRstability +βRenergy

Here, α and β can be used to weigh the different
parts of the reward. The aim of the agent is to find a
policy that maximizes this reward function.

2.5 Model-Predictive Control

Another way to utilize a trained Neural Twin is by
using it for Model-Predictive Control (MPC). Note
that for MPC the decoder of the Neural Twin can
only accept the control values and the values it
predicts as input. At run time future values for other
sensors will not be available.

In this study, the random-sampling shooting method
was used for MPC. When applied to the process of
controlling a room, it generates K random action
sequences for a specific horizon h. The Neural Twin
is now used to simulate many trajectories y for each
of these control sequences. For all the trajectories a
cost can be calculated, and the first action of the
control sequence that yielded the lowest-cost
trajectory will be executed. This is repeated at every
timestep. Also here, the actions that are denote
offsets for the current control value. The actions
were within the range of -50% and 50%.

The cost function plays the key role in MPC, as it
determines what is the best trajectory, and hence
what will be the next control value. The cost
function used will be the conjugate of the reward
function used for DRL, hence both algorithms will
optimize for the same objective: DRL optimizes the
reward, whereas MPC minimizes the cost.

Note that after training a Neural Twin, no additional
training is needed, and it can be used directly for
MPC. The algorithm’s performance is heavily
dependent on the hyperparameters h and K. The
horizon h must be long enough to be able control the
process accurately, but short enough in order for the
Neural Twin to remain accurate. The number of
sequences K must be large enough in order to
generate enough sequences such that a good control

sequence will be found, but small enough such that
it remains computationally feasible.

2.6 Experimental Setup

The ultimate goal of the study was to obtain a
control policy that maximizes performance. Before
such a policy is obtained, several steps need to be
taken. For each of these steps, experiments were
conducted for a total of 4 different environments.
For every environment, the following experiments
were performed:

1. One in which the validity of Neural Twins of
an environment is verified. The error of the
predictions of the Neural Twin was
reported.

2. One in which the validity of training a DRL
agent on a Neural Twin of an environment
is verified. The reward of the trained agents
was reported.

3. One that reveals the influence of the
hyperparameters for MPC control. The cost
of control was reported for various
combinations of hyperparameters.

4. One in which the two control methods are
compared, based on control on the Neural
Twin. The cost/reward of the control
algorithms were compared when
controlling on the Neural Twin.

5. One in which the two control methods are
verified by trying them out in a physical
environment. This was done only for the
sports hall in the Duurswoldhal, because
testing on buildings can be costly and the
authors got permission for this location.

3. Results
Figure 4 shows the result of the training of a Neural
Twin for environment 1. The figure shows the mean
and standard deviation of the training and validation
loss over time for ten Neural Twins. As can be seen
from the figure, the training and validation loss
converge after approximately 25

Figure 4 - Neural Twin training results for
environment 1.

epochs around the same value, with low variance.

5 of 8



The same was observed for the other environments,
but the graphs are excluded for brevity. Table 1
shows the error of the Neural Twins on the test set
measured in ◦C for all environments.

Tab. 1 - Neural Twin results on the test data. The mean
and the standard deviation of the ◦C error on the test
data for the 10 training procedures are given.

Env Error in ◦C

1 0.24 ± 0.21

2 0.23 ± 0.32

3 0.16 ± 0.13

4 0.20 ± 0.16

Figure 5 shows the results of training an DRL agent
10 times on the Neural Twin for environment 1. The
graphs for the other environments are excluded for
brevity. It can be observed that the training and
validation reward converges over time, both to
approximately the same value with low variance.
Other environments showed the same behaviour.

Figure 5 - DRL agent training results for
environment 1.

Figure 6 shows the results for the hyperparameter
experiment for environment 1. The graphs for the
other environments are excluded for brevity. It is
observed that the cost decreases for longer horizons
and for a larger number of random sequences. The
optimal combination of hyper parameters lies
somewhere around the horizon of nine or ten
timesteps ahead with at least 200 sequences, as
there the cost is the lowest.

Table 2 shows the results when comparing the DRL
agents to the conventional controller used when
collecting the data, based on simulations with their
corresponding Neural Twin. A negative percentage
denotes an improvement, whereas a positive
percentage denotes a decrease in performance. It
can be observed that the DRL agents were able to
decrease the energy usage for all environments
while approximately retaining the same amount of
comfort and stability. Table 3 shows the same but for

the MPC algorithm.

Figure 6 - MPC hyperparameter experiment results
for environment 1.

Tab. 2 - Comparison of DRL control agent with the
conventional controller. Negative values denote an
increase in performance.

Env Energy usage Setpoint
deviation

Roughness

1 -15.4% -2.8% -2.4%

2 -7.46% -2.7% -1.9%

3 -5.3% -3.0% +1.5%

4 -46.9% -3.7% +1.7%

Tab. 3 - Comparison of MPC algorithm with the
conventional controller. Negative values denote an
increase in performance.

Env Energy usage Setpoint
deviation

Roughness

1 -17.5% -3.3% -2.5%

2 -5.7% -3.2% -2.4%

3 +25% -4.8% -1.0%

4 +37.2% -6.1% +2.3%

It was observed that in some cases the MPC
algorithm decreased the energy usage, but in other
cases also significantly increased the energy usage
compared to the conventional controller. The
deviation from the setpoint and the stability of the
controller remained approximately equal.

Figure 7 shows the performance of the DRL agent on
the physical room, i.e. the agent controlled the
physical room in real time. It should be noted that
the setpoint was enhanced by Climatics to warm up
the room before the actual setpoint jump around

6 of 8



06:00 AM, which is not visible in the figure. This was
done automatically to make sure the occupants did
not enter a cold room in the morning.

Figure 7 - Performance of the DRL agent controller
on the physical room, i.e. the sports hall in
Slochteren.

4. Discussion
The results of Table 1 show that all Neural Twins
were able to converge to an error of approximately
0.2 ◦C. Furthermore it should be noted that there is
some degree of variance in the error of the Neural
Twins across environments. This can be explained
due to the fact that all processes are different, and
some can simply be more complex to model. The
changing room environment consisted of a small
room with almost no windows, making it easier to
model. This is confirmed by the small error of
0.16◦C. Figure 4 shows how the loss converged over
time when training the Neural Twin for environment
1. It can be observed that in the first 10 epochs the
loss does not decrease much, and there is a high
variance for the validation loss. This is because
during these epochs teacher forcing was used with a
decreasing chance the more epochs had passed.
Hence, the training gradually became more difficult
during these epochs. After 10 epochs, no teacher
forcing was used and from there it can be seen that
the training loss and validation loss converge to
approximately the same value with low variance.

Figure 5 shows the learning scheme of the DRL
agent on the Neural Twin of environment 1. It can be
seen that the return converges over time. The return
on the validation set is slightly higher than the
return on the training set. This is because when
validating the agent, the agent acted
deterministically, whereas during training the agent
acted stochastically. From the figure it can be
concluded that a Neural Twin can serve as a valid
simulator for a DRL agent to learn a policy on, and a
DRL agent is able to control the simulator (note that
it does not yet say anything about the validity of this
policy on the physical process).

In Figure 6 the influence of the two
hyperparameters for MPC can be clearly seen. It is
observed that the cost decreases when the horizon

is increased. This makes sense, as a large room like a
sports hall often has a large time delay when
reacting to changes in control. Hence, when taking a
larger horizon into consideration when determining
the optimal control values, it is expected that the
MPC algorithm performs better. The number of
random sequences generated at every time step
does not seem to have a big influence on the cost, as
long as it is larger than 100 sequences. This makes
sense, as too few sequences will not cover the
control space well enough to get good sequences to
begin with, hence the algorithm will never be able to
pick a good one. However, it seems that as soon as
200 or more sequences are generated, the cost does
not decrease anymore, hence the extra sequences
only introduce extra computational cost.

Table 2 and Table 3 compare the performance of the
controllers with the conventional controller, i.e. the
one that currently controls the process. This
controller was manually tuned during the time it
operated. From these results it can be concluded
that the DRL agent improved upon the performance
of the conventional controller for all four
environments. It decreased the energy usage for all
four environments while retaining the thermal
comfort and stability of control. It also performed
better compared to the MPC algorithm, which in 2
environments led to an increase in energy usage. For
example in environment 4 the energy usage
increased 37%. This can be explained by the fact
that this environment was controlled by multiple
control values, as opposed to the other
environments. As the number of control values
increases, the space of possible control values grows
exponentially. This highlights an important
bottleneck for the MPC algorithm, as a large number
of control values means generating exponentially
more sequences before the algorithm starts to work.
The DRL agent decreased the energy usage for this
environment with 47%. After consideration this is
considered as optimistic, because this environment
was controlled by an air handling unit, where the
current controller controls for both the CO2 level
and the temperature level. The DRL agent was only
focussed on the temperature level, although this can
be easily extended to other factors as well in future
research. As a result, the comparison might not be
completely valid. It does show that the DRL agent
was able to control a more complex environment
with an air handling unit and multiple control
values. Furthermore, the reward function can easily
be modified to include the CO2 level as well.

Figure 7 shows that the policy learned on the
simulator transfers to the physical world as well.
The figure shows how the process value reaches its
setpoint and how the control value is adjusted
correspondingly. Unfortunately, due to time
constraints it was not possible to gather enough
information about the comparison with the
conventional controller, as the agent would have had
to control the room for several weeks or months in
order to obtain a quantitative measure. Hence, these

7 of 8



results only show that the gap from the simulator to
the physical world is small enough to be able to train
policies on the simulator, i.e. the Neural Twin.

5. Conclusion
To summarize:

● The Neural Twin framework can be used to
accurately simulate the dynamic processes
of various environments. The average
prediction error was approximately 0.2 °C.

● The Neural Twin was used to train/develop
two different control policies, one based on
DRL and one based on MPC.

● The DRL agent showed the best control
performance, outperforming the
conventional controller in all four different
environments. It was able to reduce the
energy usage significantly between 5% and
40%, while retaining thermal comfort and
stability.

● The policies learned on the Neural Twin
transferred to the physical world, as the
controller was able to control the physical
process in real time as well.

● The simulators and policies were learned
without manual tuning of
hyperparameters, showing the scalability
of the approach.

● Control using MPC degraded as the action
space growed. DRL still handled this well,
but it remains unknown whether the
approach will work for large action spaces
(i.e. a complex air handling unit with 7
actions).

6. Acknowledgements
The authors would like to thank Advanced Climate 
Systems (https://acs-buildings.com/en/) for letting 
us use their high resolution data and their platform: 
Climatics. Furthermore the authors would like to 
thank the building owners for allowing us to publish 
the results based on their data and letting us test the 
controller on the physical room.

The datasets generated during and/or analysed 
during the current study are not publicly available 
because the data is private but can be made 
available when requested in order to continue 
further research in cooperation with ACS. In that 
case, please contact the first author!

7. References
[1] Klepeis, Neil E., et al. The National Human

Activity Pattern Survey (NHAPS): a resource for
assessing exposure to environmental pollutants.
Journal of Exposure Science & Environmental
Epidemiology, 2001, 11(3): 231-252.

[2] Mayowa, M. O., Rowland, A. G., Babatunde, H. T., &
Mumuni, A. Indoor air quality and perceived

health effects experienced by occupants of an
office complex in a typical tertiary institution in
Nigeria. Science Journal of Public Health, 2015,
3(4): 552-558.

[3] IEA, I. E. A. Global status report for buildings and
construction. 2019.

[4] Cheng, C. C.; Lee, D. Artificial intelligence assisted
heating ventilation and air conditioning control
and the unmet demand for sensors: Part 1.
Problem formulation and the hypothesis.
Sensors, 2019, 19(5): 1131.

[5] Alawadi, S., et al. A comparison of machine
learning algorithms for forecasting indoor
temperature in smart buildings. Energy Systems,
2020, 1-17.

[6] Mtibaa, F., et al. LSTM-based indoor air
temperature prediction framework for HVAC
systems in smart buildings. Neural Computing
and Applications, 2020, 32(23): 17569-17585.

[7] Yu, L., et al. Deep reinforcement learning for
smart building energy management: A survey.
arXiv preprint arXiv:2008.05074, 2020.

[8] Wang, Z., Hong, T. Reinforcement learning for
building controls: The opportunities and
challenges. Applied Energy, 2020, 269: 115036.

[9] Jia, R., et al. Advanced building control via deep
reinforcement learning. Energy Procedia, 2019,
158: 6158-6163.

[10] Wei, T., Wang, Y., Zhu, Q. Deep reinforcement
learning for building HVAC control. Proceedings
of the 54th annual design automation conference
2017. 2017. p. 1-6.

[11] Brandi, S., et al. Deep reinforcement learning to
optimise indoor temperature control and heating
energy consumption in buildings. Energy and
Buildings, 2020, 224: 110225.

[12] Zou, Z., Yu, X., Ergan, S. Towards optimal control
of air handling units using deep reinforcement
learning and recurrent neural network. Building
and Environment, 2020, 168: 106535.

[13] Mnih, V., et al. Playing atari with deep
reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[14] Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
& Klimov, O. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347,
2017.

8 of 8

https://acs-buildings.com/en/

