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Abstract. Heat prosumers will become important participants for future district heating (DH) 

systems. However, the current unidirectional heating price models reduce interest in 

prosumers and hinder the promotion of prosumers in DH systems, because the prosumers gain 

no economic benefit from supplying heat to the central DH system. This study aimed to break 

this economic barrier by introducing water tank thermal energy storage (WTTES) and 

optimizing the operation of heat prosumers with WTTESs, considering the widely used heating 

price models in Norway. Firstly, a generalized heating price model was introduced, which could 

represent the current widely used heating price models in Norway. Secondly, the WTTES was 

integrated into the heat prosumer to improve the self-utilization rate of the prosumer's heat 

supply from its distributed heat sources, meanwhile, shave the prosumer's peak load. 

Afterwards, an optimization framework was formulated to optimize the operation of the 

prosumer with the WTTES under the generalized heating price model. Finally, a numerical 

method for solving the proposed nonlinear optimization problem was given. A case study 

showed that the proposed method could cut the prosumer's annual heating cost by 7%, and the 

investment of WTTES could be recovered in four years. 
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1. Introduction

The widely used heating price models in Norway 
charge a heat prosumer's heating bill mainly based 
on heat prosumer's heat use and peak load [1]. 
Accordingly, two potential ways to minimize a heat 
prosumer' heating cost in a district heating (DH) 
system are: 1) decreasing the heat supply from the 
central DH system by increasing the heat supply 
from prosumer's distributed heat sources (DHSs), 
which are free and may come from renewables and 
waste heat, and 2) shaving the peak load by shifting 
the heat supply from peak hours to non-peak hours. 

Thermal energy storages (TESs) may be used to 
achieve the above two goals. Firstly, TESs can 
increase the self-utilization rate of the heat supply 
from DHSs, because for the periods when the heat 
supply from the DHSs is higher than the demand of 
the prosumer, the surplus heat can be stored into 
the TESs and used for later heat supply instead of 
being fed into the central DH system [2, 3]. 
Secondly, TESs can shave the prosumer's peak load, 
because the peak demand can be satisfied by the 
stored heat from the non-peak hours [4, 5]. 
However, TESs are investment intensive. The high 
investment costs and the long payback periods are 

hindering the implementation of TESs in DH 
systems.  

This study proposed a comprehensive method for 
optimal design and operation of prosumer-based 
DH systems with short-term TESs. The method was 
based on the heating price models in Norway but 
can also give references for DH systems outside 
Norway. 

2. Method

This section explains the proposed method. Firstly, 
a generalized heating price model is introduced, 
which may represent the current widely used 
heating price models in Norway. Secondly, WTTES is 
integrated into the heat prosumer-based DH system 
to improve the self-utilization of the heat supply 
from the DHSs and shave the peak load. Afterwards, 
an optimization framework is formulated to 
optimize the operation of the proposed DH system 
under the generalized heating price model. Finally, a 
numerical method for solving the proposed 
nonlinear optimization problem is given. 
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2.1 The method to obtain a generalized 
heating price model 

Although heating price models may vary in Norway, 
this study introduced a generalized heating price 
model, which could approximate and generalize the 
widely used heating price models. According to the 
review article [1], a heating price model may include 
four components: energy demand component 
(EDC), load demand component (LDC), fixed 
component (FXC), and flow demand component 
(FDC). The EDC is charged based on the heat use, 
and it is used to cover the fuel cost. The LDC is 
charged according to the peak load, and it aims to 
maintain a certain capacity of heat production. The 
FXC is the fee for connecting to the central heating 
grid. The FDC motivates the low return 
temperature, and it is charged based on the volume 
of the circulating water.  

Fig. 1 gives the existence and the average share of 
each component for investigated heating price 
models in Sweden. Firstly, it can be found from Fig. 
1 that, the LDC and the EDC are the most important 
components, which together share 96% of the total 
heating cost. Moreover, 87% of the investigated 
heating price models have the LDC and all the 
heating price models have the EDC. In contrast, the 
FXC and FDC play limited roles in the investigated 
heating price models, which only share less than 2% 
of the total heating cost. Furthermore, only about 
half of the investigated heating price models have 
the FXC and FDC.  

Based on the above situations, a generalized heating 
price model used to approximate a prosumer's 
heating cost was introduced as Equation (1), in 
which the total heating cost includes the LDC and 
the EDC. 

𝐶𝑡𝑜𝑡 = 𝐶𝑙𝑑𝑐 + 𝐶𝑒𝑑𝑐  (1) 

where 𝐶𝑡𝑜𝑡 refers to the total heating cost, 𝐶𝑙𝑑𝑐  and 
𝐶𝑒𝑑𝑐  are the LDC and the EDC, respectively, which 
can be obtained by Equation (3) and Equation (4). 

𝐶𝑙𝑑𝑐 = 𝐿𝑃 ∙ 𝑄̇𝑝𝑒𝑎  (2) 

𝐶𝑒𝑑𝑐 = ∫ 𝐸𝑃(𝑡) ∙ 𝑄̇(𝑡)𝑑𝑡
𝑡𝑓

𝑡0

(3) 

where 𝐿𝑃 and 𝐸𝑃(𝑡) are the LDC heating price and 

EDC heating price, respectively. 𝑄̇𝑝𝑒𝑎  refers to the 

yearly peak load [6, 7] and 𝑄̇(𝑡) is the heat supply 
flow rate. 

Fig. 1. The existence (a) and average share (b) of each 
component in investigated heating price models [1] 

2.2 System design for heat prosumer-based 
DH system with TES 

As introduced in Section 2.1, to minimize the 
heating cost of a heat user, it is required to decrease 
the LDC and the EDC heating cost, which are related 
to the peak load and the heat use, respectively. 
Moreover, as explained in Section 1, TESs may be 
used to achieve the above goals. Fig. 2 illustrates the 
proposed system for a heat prosumer-based DH 
system, which integrates a TES. In Fig. 2, DHS was a 
low-temperature heat source utilizing free heat 
from renewables or waste heat. DHS was integrated 
into the prosumer's local DH system using the R2R 
mode, in which DHS extracted water flow from the 
return line and fed it back into the return line after 
the heating process. The R2R mode was used 
because it is preferable for a low-temperature heat 
source [8]. 

Fig. 2. System design for a heat prosumer's local DH 
system with TES 

Moreover, MS in Fig. 2 referred to the main 
substation, which connected the central DH system 
with the prosumer's local DH system. Two types of 
heat exchanger (HE) were installed in the MS. HE1 
was used for charging the TES. For the period with 
low heat demand, HE1 supplied heat to the local DH 
system through TES when the heat supply from the 
DHS was not enough. For the period with high heat 
demand, HE1 was used for peak load shaving by 
charging heat at non-peak hours. HE2 in the MS 
functioned as a high-temperature heat source, it 
boosted the supply temperature of the local DH 
system to the required level when the water 
temperature after the DHS was not high enough. 
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In addition, the TES was a short-term TES. As 
introduced in Section 1, the TES functioned in two 
ways to minimize the prosumer's heating cost. 
Firstly, it improved the self-utilization rate of heat 
supply from the DHS. For the period with low heat 
demand, the DHS from renewables and waste heat 
may have a higher heat supply than the demand, 
and the surplus heat supply would be stored in the 
TES and for later use instead of being supplied to 
the central DH system. Secondly, the TES may shave 
the prosumer's peak supply from the central DH 
system. For the periods around the peak periods, 
the central DH system may charge the TES at non-
peak hours and the stored heat may shave the heat 
supply at the peak hours. 

Fig. 2 gives an example of a community heat 
prosumer, which has a cluster of buildings as the 
heat users. However, for the cases of individual heat 
prosumers, the heat user is a single building. 

2.3 Optimization framework for the operation 
of heat prosumer-based DH system 

An optimization framework for the operation of a 
heat prosumer-based DH system is proposed in this 
section. The framework was based on the system 
design presented in Section 2.2, considering the 
generalized heating price model introduced in 
Section 2.1. The mathematical formulation of this 
framework is presented in Equations (4), (5), (6), 
(7), and (8). Equation (4) is the objective function, in 
which the first part is the EDC heating cost, and the 
second part is the LDC heating cost. Equation (5) 
represents the effort to shave the peak load, 
Equation (6) describes the system dynamics and 
Equation (7) defines the initial states of the system. 
Equation (8) is the system constants.  

Minimize: 

∫ 𝐸𝑃(𝑡) ∙ 𝑄̇(𝑡)𝑑𝑡
𝑡𝑓

𝑡0

+ 𝐿𝑃 ∙ 𝑄̇𝑝𝑒𝑎 (4) 

subject to: 

𝑄̇(𝑡) ≤ 𝑄̇𝑝𝑒𝑎 (5) 

𝐹(𝑡, 𝒛(𝑡)) = 0 (6) 

𝐹0(𝑡0, 𝒛(𝑡0)) = 0 (7) 

𝑧𝐿 ≤ 𝒛(𝑡) ≤ 𝑧𝑈 (8) 

where 𝑄̇(𝑡) is heat supply flow rate from the central 

DH system. 𝑄̇𝑝𝑒𝑎  is the peak load, which is a 

parameter to be minimized. 𝐿𝑃 and 𝐸𝑃(𝑡) are the 
heating price for the LDC and the EDC, respectively. 
𝒛 ∊  ℝ𝑛𝑧  are the time-dependent variables, including 
the manipulated variable 𝒖 ∊  ℝnu , the differential 
variable 𝒙 ∊  ℝnx , and the algebraic variable 𝒚 ∊
ℝny . 𝑧𝐿 ∊  [−∞,∞]nz  and 𝑧𝑈 ∊  [−∞,∞]nz are the
lower bounds and upper bounds, respectively. The 

system dynamics described in Equation (6) 
contained the dynamics of the MS, DHS, TES, 
distribution network, and buildings. The 
interactions between these subsystems were 
defined in Equations (9), (10), (11), (12), and (13).  

𝑄̇(𝑡) = 𝑄̇𝐻𝐸1 + 𝑄̇𝐻𝐸2 (9) 

𝑄̇𝐻𝐸1 + 𝑄̇𝐻𝐸2 + 𝑄̇𝐷𝐻𝑆

= 𝑄̇𝐵𝑢𝑖 + 𝑄̇𝑇𝐸𝑆

+ 𝑄̇𝑙𝑜𝑠𝑠,𝑇𝐸𝑆

+ 𝑄̇𝑙𝑜𝑠𝑠,𝑝𝑖𝑝

(10) 

𝑄̇𝐻𝐸1 = 𝑐 ∙ 𝑚̇𝐻𝐸1 ∙ (𝑇𝐻𝐸1,𝑠𝑢𝑝

− 𝑇𝐻𝐸1,𝑟𝑒𝑡)
(11) 

𝑄̇𝐻𝐸2 = 𝑐 ∙ 𝑚̇𝐻𝐸2 ∙ (𝑇𝐻𝐸2,𝑠𝑢𝑝

− 𝑇𝐻𝐸2,𝑟𝑒𝑡)
(12) 

𝑄̇𝐷𝐻𝑆 = 𝑐 ∙ 𝑚̇𝐷𝐻𝑆 ∙ (𝑇𝐷𝐻𝑆,𝑠𝑢𝑝

− 𝑇𝐷𝐻𝑆,𝑟𝑒𝑡) 
(13) 

where 𝑚̇𝐷𝐻𝑆, 𝑚̇𝐻𝐸1, and 𝑚̇𝐻𝐸2 refer to the water 
mass flow rate of DHS, HE1, and HE2, respectively. 

𝑄̇𝐷𝐻𝑆, 𝑄̇𝐻𝐸1, and 𝑄̇𝐻𝐸2 represent the heat supply flow 
rate of the DHS, HE1, and HE2, respectively. 𝑄̇𝑇𝐸𝑆 is 
the heat flow rate of the TES for discharging 
(negative values) and charging (positive values). 

𝑄̇𝐵𝑢𝑖 represents the building heat demand. 𝑄̇𝑙𝑜𝑠𝑠,𝑝𝑖𝑝 

and 𝑄̇𝑙𝑜𝑠𝑠,𝑇𝐸𝑆 refer to the heat loss flow rate from the 

pipeline and the TES, respectively. 𝑇𝐷𝐻𝑆,𝑠𝑢𝑝 , 𝑇𝐻𝐸1,𝑠𝑢𝑝 , 

and 𝑇𝐻𝐸2,𝑠𝑢𝑝 represent the supply temperature of 

DHS, HE1, and HE2, respectively. 𝑇𝐷𝐻𝑆,𝑟𝑒𝑡 , 𝑇𝐻𝐸1,𝑟𝑒𝑡, 

and 𝑇𝐻𝐸2,𝑟𝑒𝑡 refer to the return temperature of DHS, 
HE1, and HE2, respectively. 𝑐 is the specific heat 
capacity of water. 

The manipulated variables 𝒖 in this study were 
𝑇𝐻𝐸1,𝑠𝑢𝑝 , 𝑇𝐻𝐸2,𝑠𝑢𝑝, 𝑚̇𝐻𝐸1, 𝑚̇𝐻𝐸2, and 𝑚̇𝐵𝑢𝑖.  

This article focuses on the introduction of the 
optimization framework, the detailed information 
on the sub-system models is given in the journal 
articles [9] and [10].    

2.4 Algorithm to solve the optimization 
problem 

Section 2.3 defines a dynamic optimization problem, 
which is challenging to solve because of the 
nonlinearity of the dynamic model. This study used 
the direct collocation method [11] to transform the 
original infinite-dimensional nonlinear 
programming (NLP) problem into a finite-
dimensional NLP, which could be solved by NLP 
solvers.   

Fig. 3 illustrates the direct collocation method. A 
time grid from 𝑡0 to 𝑡𝑁 was created over the 
optimization horizon by dividing the horizon into 𝑁 
internals with a constant interval. Afterwards, the 
state variables 𝑥(𝑡) were discretized on each time 
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grid, and thus the state points from 𝑠0 to 𝑠𝑁 were 
obtained. The manipulated variables 𝑢(𝑡) were 
parameterized at each time grid, and thus on each 
interval [𝑡𝑘 , 𝑡𝑘+1], a constant control signal 𝑞𝑘  was 
yielded. Moreover, for each collocation interval 
[𝑡𝑘 , 𝑡𝑘+1], a set of collocation points were generated 
from 𝑡𝑘,1 to 𝑡𝑘,𝑑 , and then a polynomial 𝑝𝑘(𝑡, 𝑣𝑘) 
was used to approximate the trajectory of the state 
within the interval. Therefore, Equation (6) was 
discretized into Equation (14) in the time interval 
[𝑡𝑘 , 𝑡𝑘+1]. 

𝑐𝑘(𝑣𝑘 , 𝑠𝑘 , 𝑞𝑘)

=

[

𝑣𝑘,0 − 𝑠𝑘

𝐹(𝑝̇𝑘(𝑡𝑘,1, 𝑣𝑘), 𝑣𝑘,1, 𝑡𝑘,1, 𝑞𝑘)

⋮
𝐹(𝑝̇𝑘(𝑡𝑘,𝑖 , 𝑣𝑘), 𝑣𝑘,𝑖 , 𝑡𝑘,𝑖 , 𝑞𝑘)

⋮
𝐹(𝑝̇𝑘(𝑡𝑘,𝑑 , 𝑣𝑘), 𝑣𝑘,𝑑 , 𝑡𝑘,𝑑 , 𝑞𝑘)]

= 0 
(14) 

Besides, continuity conditions should be satisfied at 
the time grid points 𝑘 = 0,1,⋯𝑁 − 1, i.e., the 
lengths of the red lines in Fig. 3 should be zero. 
Therefore, Equation (15) was added for these 
points. 

𝑝𝑘(𝑡𝑘+1, 𝑣𝑘) − 𝑠𝑘+1 = 0 (15) 

Fig. 3. Illustration of the direct collocation method 

Finally, an NLP was yielded and it can be described 
in the following general form as Equations (16), 
(17), (18), (19), and (20). 

Minimize: 

∑ 𝐿𝑘(𝑣𝑘 , 𝑠𝑘 , 𝑞𝑘) ∙ (𝑡𝑘+1 − 𝑡𝑘) + 𝑃

𝑁−1

𝑘=0

 (16) 

subject to: 

𝑥(0) = 𝑠0 (17) 

𝑐𝑘(𝑣𝑘 , 𝑠𝑘 , 𝑞𝑘) = 0 (18) 

𝑝𝑘(𝑡𝑘+1, 𝑣𝑘) − 𝑠𝑘+1 = 0 (19) 

ℎ(𝑠𝑘 , 𝑣𝑘) ≤ 0 (20) 

where 𝑘 = 0,1,⋯𝑁 − 1. Equation (16) is the 
discretized form of Equation (4). In Equation (16), 
the first term approximates the integration term of 
Equation (4), and the second term represents the 

parameter to be minimized in Equation (4). 
Equation (17) represents the initial conditions 
described in Equation (6), Equations (18) and (19) 
discretize the system dynamics in Equation (6), and 
Equation (20) is the discretized constraints in 
Equation (8). 

The NLP was solved by NLP solvers. Firstly, the 
inequality constraints were got rid of using the 
interior-point method, and then a local optimum 
was obtained via solving the first order Karush-
Kuhn-Tucker condition using iterative techniques 
based on Newton’s method. The optimization 
process was conducted using the open-source 
platform JModelica.org [12]. 

3. Case study

A DH system at a university campus in Norway was 
used as the case study, as presented in Fig. 4. The 
studied DH system was a prosumer, which got heat 
supply from the central DH system via the MS, 
meanwhile, recovered the waste heat from the 
university DC [2, 3].  

Fig. 4. DH system at the university campus [2, 3] 

Fig. 5 presents the measured building heat demand 
and waste heat supply. The following problems can 
be observed 1) the mismatch between the waste 
heat supply from the DC and the building heat 
demand, which led to the surplus waste heat supply 
as shown with the red line in Fig. 5 and reduced the 
self-utilization rate of the heat supply from DHSs. 2) 
the high peak load during the wintertime as shown 
with the yellow line in Fig. 5. 
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Fig. 5. Measured building heat demand, waste heat 
supply from the DC, and surplus waste heat 

This study introduced a WTTES into the university 
DH system as proposed in the system design in 
Section 2.2 and used the optimal operation strategy 
proposed in Section 2.3 to optimize the economic 
performance of the studied DH system. The size of 
the WTTES was 1,700 m3 and the heating price was 
obtained from the website of the local DH company 
[13]. 

4. Results

This section presents the simulation results, which 
demonstrate the improved economic performances 
of the heat prosumer by applying the proposed 
method. The scenario Ref and WTTES refer to the 
situation before and after introducing WTTES, 
respectively. 

Fig. 6 and Fig. 7 present the annual heat use and the 
yearly peak load for the scenario before and after 
introducing WTTES, respectively. These two 
indicators quantified the heat supply from the 
central DH system to the heat prosumer through the 
MS. It can be observed from Fig. 6 that introducing 
WTTES reduced the annual heat use from 26.2 GWh 
to 25.9 GWh, meaning a heat use saving of 1%. 
Compared to this less significant heat use saving, a 
more obvious peak load shaving was obtained as 
shown in Fig. 7, the yearly peak load was shaved 
from 12.4 MW to 9.5 MW, a shaving of 24%.  

Fig. 6. Annual heat use for the scenario before and 
after introducing WTTES 

Fig. 7. Yearly peak load for the scenario before and 
after introducing WTTES 

The resulting annual heating cost for the scenario 
before and after introducing WTTES is presented in 
Fig. 8. The proposed method cut the annual heating 
cost from 20.7 million NOK to 19.3 million NOK, 
which meant a cost saving of 7% was achieved. 
Moreover, this cost-saving could recover the 
investment of the WTTES in four years. These 
economic performances proved that the proposed 
system design and the operation strategy were 
economically feasible. 

Fig. 8. Annual heating cost for the scenario before and 
after introducing WTTES 

5. Conclusions

This study proposed a method to improve the 
economic performance of heat prosumers under the 
heating price models in Norway. The method 
included a type of system design, which integrated a 
WTTES into the heat prosumer-based DH system, 
and an operational strategy to minimize the heating 
cost considering the widely used heating price 
models in Norway. A case study showed that the 
proposed method was economically feasible. The 
method could cut the prosumer's annual heating 
cost by 7% and recover the investment of WTTES in 
four years. 
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