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Abstract. Building models that can accurately predict hourly indoor air temperatures in free-

running situations are key to understanding overheating conditions and the resilience of passive 

cooling strategies under a changing climate. To accurately predict indoor temperatures it is 

necessary to properly model pressure-driven infiltration and natural ventilation. This can be 

achieved by coupling a building thermal model to an airflow network model. In this paper, the 

development of coupled building thermal and airflow network models is described to calibrate 

building models using field measurements of indoor air temperature. Building models of three 

types of buildings were configured: long-term care building, primary school and multi-unit social 

housing. The building models were developed in Design BuilderTM and exported for use in an 

EnergyPlus simulation package. From information obtained from building surveys, site visits and 

architecture drawings, building parameters and operation schedules were collected. The 

unknown parameters, which included envelope thermal properties, shading devices, internal 

heat gains, envelope air leakage, window and door openings, were then calibrated based on 

measured values of indoor temperature. Reasonable ranges in value of the unknown parameters 

were first retrieved from applicable building construction practice documents and building 

energy standards. Two rounds of calibration were conducted through parametric simulations 

using the Monte-Carlo sampling method. A sensitivity analysis was also conducted for ranking 

the importance of all building parameters. The values for indoor air temperature as obtained 

through simulation were compared with measurements and the RMSE (root mean square error) 

was calculated for all values. The parameter value combinations corresponding to the minimum 

RMSE were adopted for the building models. The calibration process ended when the value for 

RMSE was <1.5℃. Results showed that the detailed building model was capable of predicting 

room air temperatures with minimum error levels (0.56℃ ≤ RMSE ≤ 1.50 °C) within the limits of 

applicable building model calibration standards (MBE±10%, CVRMSE<20%). 

Keywords. Indoor air temperature, building thermal model, airflow network, calibration, field 
measurement 
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1. Introduction

Predicting indoor temperature accurately through 
building performance simulation is important to 
analyse the overheating situation of buildings in 
current and future projected climates. Previous 
studies mainly focused on the calibration of building 
energy performance [1]. A generalized and easily 
applied method is still needed to calibrate the indoor 
thermal performance. Before the calibration stage, 
the pre-modelling of buildings with proper 
consideration of natural ventilation and pressure-
driven infiltration also significantly affect the 
accuracy of prediction results. Airflow networks [2], 
therefore, can be coupled to the building models to 
calculate air flows through cracks, doors, windows 

ducts, and other flow paths between zones. 

In this study, three types of buildings are modelled 
through coupling with airflow network models and 
then calibrated based on the field measurements of 
indoor hourly air temperature. A framework of 
building calibration and validation is proposed, 
which can be applied to other building thermal 
simulation models. 

2. Methodology

2.1 Workflow overview 

Fig. 1 shows the procedure of building modelling and 
calibration. Through building survey, site visit and 
architecture plan, building parameters, operation 
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schedules, and HVAC systems information are 
collected. Airflow network (AFN) is applied to the 
building models. There are unknown parameters to 
be calibrated based on the measured indoor hourly 
temperature. The subsections below will introduce 
the procedure in detail with three measured and 
modelled buildings. 

Fig. 1 - Workflow overview 

2.2 Building measurement campaign 

A building measurement campaign was conducted to 
monitor the indoor and outdoor thermal conditions 
of different types of buildings in Montreal, Canada 
[3]. The indoor temperature and relative humidity 
(RH) in selected spaces on different floors and 
orientations of 13 buildings (three primary schools, 
three hospitals and four residential buildings) were 
monitored continuously over the summer seasons 
from 2020 to 2021. On-site weather stations were 
placed on the roofs of buildings to gather local 
weather data, including air temperature, relative 
humidity, solar radiation, wind speed and direction, 
and precipitation. With the monitored indoor and 
outdoor conditions, the overheating issues of these 
buildings can be assessed during the monitored 
period. However, with climate change, the 
overheating conditions in future climate projections 
need to be predicted and possible mitigation 
strategies need to be investigated using calibrated 
building models.  

2.3 Building modelling 

Among the monitored buildings, three buildings 
including a long-term care building (LTCB), a 
primary school (PS), and a multi-unit social housing 
(SH) are modelled in Design BuilderTM and exported for 
use in an EnergyPlus simulation package. 

The monitored LTCB is an L-shaped building facing the 
northwest direction and is composed of five floors 
above the ground and below-grade basement floor. The 
total length and width of the building are 44m and 42m, 
respectively. The size of a typical private patient room 
in the building is 5.4m x 3.6m. The building was 
constructed in 1980 with exterior walls made of 
concrete and solid brick veneer cladding. There were no 
central cooling systems in the building. As for the 
mechanical ventilation system, five lounge spaces used 
a central system to provide fresh air.  

The PS building is a 3+1 story building originally built in 
1930. The building was partially retrofitted six times 
including the extension in 1955, adding boiler room in 
2008, masonry in 2009, plumbing in 2014, and new roof 
in 2015, sanitary blocks and foundations in 2019. The 
building can accommodate 396 students and 24 
teaching staff. The total length and width of the building 
are 53m and 46m, respectively. The size of a typical 
private classroom in the building is 9.4m x 8.1m. The 
building was constructed with exterior walls made of 
concrete panels and solid brick veneer claddings. There 
were no cooling systems or mechanical ventilation 
system in the buildings. The classrooms were cooled by 
natural ventilation by opening windows and portable 
fans (in some classrooms). 

The SH building is a three-story building built in 2008 
and mainly occupied by older people. The total length 
and width of the building are 105m and 18.5m, 
respectively. The size of a typical unit in the building is 
9.2m x 8.2m. The building is composed of 54 suites 
(dwelling units) with one bedroom. Each unit was 
occupied by one or two people. There were no cooling 
and mechanical ventilation system in the dwelling units. 
An activity room on the first floor is cooled by a rooftop 
unit. 

Indoor sensors were installed in selected rooms in the 
above buildings to monitor the air temperature and 
relative humidity. In each building, all the sensors were 
installed in the same locations in each room, about 1.7-
meter height near the corner. Outdoor weather stations 
were installed on the roof of the buildings to monitor 
the air temperature, relative humidity, wind speed, and 
solar radiation. The monitored data were collected 
during the summer 2020. 

According to the information collected through building 
surveys, site visits and onsite measurement, the original 
building models were developed. The 3D models of the 
three buildings are shown in Fig. 2.  

(a) 

(b) 

(c) 
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Fig. 2 -  3-D view of the as-simulated building models 

The unknown building parameter values were 
calculated through building model calibration using the 
monitored temperature data. The ranges of the 
unknown parameter values were taken from related 
published literature and the national building code of 
Canada. Tab. 1 summarizes the ranges of the unknown 
building parameters for building calibration of the 
LTCB. Unknown parameters and ranges of the primary 
school and social housing are also analysed in a similar 
way, the tables of which are not listed here due to the 
page’s limitation. 

Tab. 1 - Unknown parameters and ranges of the Long-
term care building 

Building Parameter Range Unit References 

Wall 
U-Value 

0.25-
0.62 

W/m2K 

RDH 
(2017)  

Thermal 
mass 

150-
350 

W/m2K 

Roof 
U-Value 

0.15-
0.39 

KJ/km2 

Thermal 
mass 

150-
350 

KJ/km2 

Window 

U-Value 
2.38-
3.31 

W/m2K 
Double 
glazing 
with 
aluminum 
frame 

SHGC 0.3-0.7 / 

Shading 
Slat angle 5-175 Deg Blind 

shading 
parameter 

Solar 
reflectance 

0.4-0.9 / 

Internal 
heat gain 

Lighting 
power 
density 

6.6-
11.3 

W/m2 NECB2017  

Equipment 
power 
density 

2.5-10 W/m2 NECB2017  

Infiltration 

Air mass 
flow 
coefficient 
at reference 
crack 
condition 

Walls:  
0-
0.0040 
Roof: 
0-
0.0045 

kg/s 
RDH 
(2017)  

Natural 
ventilation 

Natural 
ventilation 
temperature 
set point 

22-26 ℃ 
Comfort 
range 

Window 
opening 
factor 

0-0.1 / 

Site visit 

Room door 
opening 
factor 

0-1 

/ Exterior 
doors 
opening 
factor 

0.025 

2.4 Airflow network (AFN) 

The airflow network models are applied to the 
building models. The buildings are treated as a 
collection of nodes representing thermal zones in the 
building and flow elements representing cracks, 
doors, ducts, and other flow paths between the 
zones. Conservation of mass flows between the zones 
generates simultaneous nonlinear equations, which 
can be solved to determine the resultant flow 
through the building.  

Using an airflow network model to predict 
ventilation rates in a building allows the inclusion of 
external weather data in the calculation. The natural 
variability of the ventilation drivers such as wind 
speed and direction and thermal effects can be 
incorporated into the calculation, providing more 
realistic ventilation predictions than using a fixed 
ventilation rate based on open window area alone.  

The airflow through each leakage component is 
assumed to follow the leakage relationship of a crack 
flow, which is characterized by the air mass flow 
coefficient (C) and exponent (n) as in Eq. 1. 

𝑚𝑎̇ = 𝑉�̇� × 𝐴 × 𝜌 = 𝐶 ∙ ∆𝑃𝑛  (1) 

Where 𝑚𝑎̇  is the maximum mass flow rate of each 
surface (kg/s), 𝑉�̇�  is the maximum volume flow rate 
per area (m3/s/m2), A is the component surface area 
(m2), ρ is air density (kg/m3),  ∆P pressure 
differential across the leakage component (Pa), n is 
the leakage exponent coefficient, defaulted to 0.65.  

In the pre-modelling stage, the design infiltration 
rate for good airtightness of 0.4 ACH [4] for the whole 
building is set, and the DesignBuilder software 
automatically creates the leakage data of each 
exterior and interior surface. However, the 
infiltration rate is dynamic, affected by wind 
pressure and surface leakage characteristics. For old 
buildings (1980), the maximum leakage rate for the 
entire similar buildings was found to be 0.72 
CFM/SF@75Pa = 3.66L/s/m2@75Pa, according to 
RDH (2017) [5]. For retrofit or new buildings, 
referring to ASHARE 90.1 [6], ABAA and NECB [4], 
the maximum air leakage for the entire building built 
after 2005 is 2.0L/s∙m2@75Pa.  Therefore, to make 
the leakage data closer to the actual situation, 
calculations of the maximum air mass flow 
coefficient for the exterior surfaces of the monitored 
rooms, assuming a uniform distribution over 
exterior building surfaces, are shown in Tab. 2.  

Tab. 2 - Calculated air leakage data of the monitored 
natural ventilated rooms (using the Long-term care 
building as an example) 

Surface 

Air 
leakage 

limit 
@75Pa 

(L/s/m2) 

Area 
(m2) 

Air 
density  

(Referenc
e 

condition
) (kg/L) 

n 
C 

(max) 

Roof 3.66 
20.29

7 
0.0012 

0.7 0.0043 

Wall_ 
North 

3.66 
13.09

5 
0.0012 

0.7 0.0028 

Wall_ 
West 

3.66 2.987 0.0012 
0.7 0.0006

3 
Wall_ 
South 

3.66 
18.89

3 
0.0012 

0.7 0.0040 

In the airflow model, the exterior windows are 
opened when the indoor temperature is higher than 
the outdoor temperature and a given set point 
temperature (the natural ventilation setpoint 
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temperature will be calibrated based on the 
monitored data). The thermal and ventilation 
conditions in the zones are affected by the window 
and door operations (the opening area percentage 
will be calibrated based on the monitored data), 
infiltration through the crack of roofs, walls, and 
partitions, as well as the air released through exhaust 
fans. The airflow path through the large horizontal 
openings is applied to the vertical stairway and 
elevator thermal zones.   

2.5 Building calibration and validation 

The building calibration process is composed of five 
steps: parametric simulation with all variables, the 
first-round calibration, sensitivity analysis, 
parametric simulation with the most important four 
variables, second round calibration, as shown in Fig. 
2. 

Fig. 3 - Building calibration procedure 

In the first step, the unknown model parameters with 
their practical ranges are defined. The Hamiltonian 
Monte-Carlo (HMC) sampling method is used for 600 
random samplings within each parameter range. HMC is 
a random sampling algorithm applicable when the 
model parameters are continuous rather than discrete 
and able to suppress random walk behaviour through a 
clever auxiliary variable scheme that transforms the 
problem of sampling from a target distribution into the 
problem of simulating Hamiltonian dynamics [7]. So 
600 combinations of all the defined parameters are 
obtained, and then 600 parametric simulations are 
performed. The parametric simulations are realized 
with an R package named “eplusr”, which enables to use 
EnergyPlus directly in the R language. The input-output 
dataset can be used to do sensitivity analysis to identify 
the most important parameters of the building thermal 
model, as explained in the next paragraphs. The input-
output dataset can also be used to do the first round 
calibration of all the defined parameters. In this round 
calibration, the simulated indoor air temperatures are 
compared with measurements, and the RMSE (root 
mean square error, Eq. 2) is calculated. The parameter 
combination corresponding to the minimum RMSE is 

adopted for the building model. In the second step, the 
most important four parameters (obtained from the 
sensitivity analysis) are further calibrated. HMC is again 
used for 1000 random samplings within each parameter 
range, resulting in 1000 combinations of all the defined 
parameters, and then 1000 parametric simulations are 
performed. The simulated indoor air temperature is 
compared with measurements, and the RMSEs are 
calculated. The parameter combination corresponding 
to the minimum RMSE is adopted for the building 
model. The calibration process stops when the RMSE 
reaches its low-level value of below 1.5℃. This low-level 
value is taken from the study of [8] about the error of 
predicting air temperatures in a naturally ventilated 
building. After calibration, validation is then done with 
the other set of measured data during the different 
periods for the calibration stage. All the above steps are 
realized and automated using a script developed in the 
R programing language. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛
 (2) 

Where 𝑦𝑖  and �̂�𝑖  are the simulated and measured hourly 
temperatures, respectively, and n is the number of 
hours. 

Typical building calibration metrics in existing 
standards [9] include:  the coefficient of variance root 
mean square error (CVRMSE) and the mean bias error 
(MBE), as calculated in Eq. 3 and Eq. 4, are used to 
evaluate the calibration and validation results, to check 
if the result errors meet the standard requirements. Eq. 
4 indicates that the positive value of MBE means the 
simulated data are in general higher than the measured 
data; the negative value of MBE means the simulated 
data are in general lower than the measured data. The 
threshold limits of the two metrics for hourly 
calibration are shown in Tab. 1.   

𝐶𝑉𝑅𝑀𝑆𝐸(%) =
𝑅𝑀𝑆𝐸

∑ �̂�𝑖
𝑛
𝑖=1

𝑛⁄
× 100%  ( 3) 

𝑀𝐵𝐸 (%) =  
∑ (𝑦𝑖−�̂�𝑖)𝑛

𝑖=1

∑ �̂�𝑖
𝑛
𝑖=1

× 100%   (4) 

Tab. 3 - Threshold limits of building calibration metrics 
in compliance with ASHRAE (2002), IPMVP (2003) and 
FEMP (2008) 

Metrics ASHRAE IPMVP FEMP 

MBE [%] ±10 ±5 ±10 

Cv(RMSE) [%] 30 20 30 

Typically, there are six steps for implementing 
sensitivity analysis in building performance analysis: 
determine input variations; create building energy 
models; run energy models; collect simulation 
results; run sensitivity analysis; presentation of 
sensitivity analysis results. The first four steps have 
been finished after the first round of parametric 
simulation. So that the input-output dataset from the 
first round parametric simulations is collected to 
feed the sensitivity analysis to identify the most 
important parameters.  

4 of 8



In this study, three different approaches are utilized 
to offer robust analysis results: SRC, t-value, and 
random forest variable importance. High SRC means 
more important of the variable. The t-value is the 
statistic used to test whether the coefficient of the 
corresponding variable is zero. The higher the 
absolute value of t, the more important is the 
corresponding variable. The conditional variable 
importance from the random forest applies to 
correlated inputs. If there is a large variation of the 
outputs unexplained (i.e., non-linear effects in the 
model), the conditional variable importance from the 
random forest can be used. The three approaches are 
integrated into one index called  Sensitivity Value 
Index (SVI) [13] to avoid the potential inconsistency.  

After calibration, the building models are validated 
with measured indoor temperature data (over 
different periods of time). For the LTCB, the 
monitored data were collected from July 14, 2020 to 
August 13, 2020. Therefore, the data from July 14 to 
July 28 were selected for model calibration so that all 
the parameters to be calibrated have significant 
effects on indoor temperature, and the data from July 
29 to August 13 were selected for model validation. 
For the PS, the monitored data were collected from 
August 04, 2020 to September 30, 2020. Therefore, 
the data from August 26 to September 13 (school 
occupied) were used for the calibration and the data 
from September 14 to 30 were used for validation. 
For the SH, the monitored data were collected from 
May 01 to 26, 2021. However, from May 01 to 13, the 
outdoor temperature was from 5℃ to 20℃ and the 
simulated indoor temperature was lower than 22℃, 
which made natural ventilation not activated. 
Therefore, the data from May 14 to 20 were used for 
the calibration and the data from May 21-26 were 
used for the validation. 

3. Results

3.1 Evaluation of calibration and validation 
results 

Tab. 4(a) shows the evaluation criteria (RMSE, 
CvRMSE and MBE) of the calibration and validation 
results for each room and their spatial averages in 
LTCB. At a room level, the RMSE of the calibration 
and validation are from 0.56℃ to1.09℃, which are 
less than the 1.5℃ requirement (O’Donovan et al. 
2019). The MBE is within ±1.2% and the CvRMSE is 
less than 3.65%, which are well within the 
requirement of standards (±5% and 20% as listed in 
Tab. 3). At a building level (calculated by averaging 
the data of the three rooms), the validation results 
show that the RMSE is  0.54℃, the MBE is 0.58% and 
the CvRMSE is 1.85%, which are all within the error 
limit requirements. Tab. 4(b) shows the evaluation 
criteria results of PS. At room level, the RMSE of the 
calibration and validation are from 0.63℃ to 0.78℃. 
The MBE is within ±1.39% and the CvRMSE is less 
than 3.19%. At the building level (calculated by 
average data of the two rooms), validation results 
show that the RMSE is  0.67℃, the MBE is -0.12% and 

the CvRMSE is 2.78%. The errors are all within the 
error limit requirements. Tab. 4(c) shows the 
evaluation criteria results of SH. At room level, the 
RMSE of the calibration and validation are from 
0.56℃ to1.50℃. The MBE is within ±4.9% and the 
CvRMSE is less than 5.28. In building level (calculated 
by average data of the four rooms), validation results 
show that the RMSE is  0.71℃, the MBE is 0.47% and 
the CvRMSE is 2.55%, which are all within the error 
limit requirements. The positive MBE value means 
the simulated data are in general slightly higher than 
the measured data. The negative MBE value means 
the simulated data are in general slightly lower than 
the measured data. 

Tab. 4 - Error metrics for the predictions of the hourly 
indoor air temperatures of monitored rooms in (a) 
LTCB (b) PS and (c) SH 

(a) 

Error 
metrics 

Room 1 Room 2 Room 3 
Room 

Average 

Cal. Val. Cal. Val. Cal. Val. Cal. Val. 

RMSE 
(°C) 

0.56 0.66 0.57 0.55 1.09 1.08 0.46 0.54 

MBE 
(%) 

0.25 0.90 
-

0.70 
0.57 1.182 0.285 0.244 0.58 

CvRMSE 
(%) 

1.93 2.31 1.89 2.02 3.63 3.61 1.54 1.85 

(b) 
Error  

metrics 
Room 1 Room 2 Room Average 

Cal. Val. Cal. Val. Cal. Val. 

RMSE (°C) 0.73 0.7 0.63 0.78 0.63 0.67 

MBE(%) -0.82 1.17 -0.90 -1.39 -0.86 -0.12

CvRMSE(%
) 

2.57 3.12 2.22 3.19 2.21 2.78 

(c) 
Erro
r  
metr
ics 

Bedroo
m 1 

Livroom 
1 

Bedroo
m 2 

Livroom 
2 

Room 
average  

Ca
l 

Va
l 

Ca
l 

Va
l 

Ca
l 

Va
l 

Ca
l 

Va
l 

Ca
l 

Va
l 

RMS
E 
(°C) 

0.
63 

1.
05 

0.
56 

0.
91 

1.
49 

0.
77 

1.
21 

1.
50 

0.
59 

0.
71 

MBE 
(%) 

1.
19 

1.
08 

1.
25 

0.
52 

-
4.
90 

-
0.
67 

-
3.
72 

0.
99 

-
1.
65 

0.
47 

CvR
MSE 
(%) 

2.
44 

3.
86 

2.
16 

3.
33 

5.
28 

2.
71 

4.
35 

5.
51 

2.
18 

2.
55 

3.2 Comparison of the measured and simulated 
indoor temperature 

Fig. 4 compares the measured and simulated indoor 
temperature (average values of the three monitored 
rooms of LTCB) after applying the calibrated 
parameter values during the calibration and 
validation periods. To analyse whether the simulated 
data can capture the peak indoor temperatures, the 
distribution of the measured and simulated hourly 
temperatures during the validation period are 
shown in Fig. 5. During the validation period, there 
are 11 hours when the measured temperature is 
above 30.4℃ (the last bin in Fig. 5(a)), and 8 hours 
when the simulated temperature is above 30.4℃ (the 
last bin in Fig. 5(b)). Therefore, the simulated data 
can capture 73% of the peak temperatures. 
Comparing the three bins of 29.8℃ to 30.4℃, the 
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simulations overestimate the hours between 29.8℃ 
to 30.4℃ by 85 hours, but underestimate the 
temperature in the bins of 28.4℃ to 29.4℃ by 87 
hours. This deviation might be because of occupant 
behaviour in adjusting window and door openings 
under different weather conditions to control nature 
ventilation, whereas in the simulation the opening 
factors of windows and doors are kept constant 
during the simulation period. 

(a) 

(b) 
Fig. 4 - Comparison of the measured and simulated data 
(room averages of LTCB) during (a) calibration period 
and (b) validation period 

(a) 

(b) 
Fig. 5 - Distribution of average room data of LTCB 
during the validation period: (a) measured and (b) 
simulated temperatures 

Fig. 6 shows a comparison between the measured 
and simulated data (average data of the two rooms in 
PS) after applying the calibrated parameter values, 
and the distribution of the measured and simulated 
hourly temperatures during the validation period is 
shown in Fig. 7. There are 26 hours when the 
measured temperature is above 31.2℃, and 42 hours 
when the simulated temperature is above 31.2℃. 
Therefore, the simulated data can capture 100% of 
the peak temperatures with a slight overestimation. 
The hours of the measured and simulated 
temperature above 28℃ are as well comparable: 514 
hours versus 522 hours, respectively. 

(a) 

(b) 
Fig. 6 - Comparison of the measured and simulated data 
(room averages of PS) during (a) calibration period and 
(b) validation period

(a)
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(b) 
Fig. 7 - Distribution of average room data of PS during 
the validation period: (a) measured and (b) simulated 
temperatures 

Fig. 8 shows the comparison of the measured and 
simulated data (average data of the four rooms in SH) 
after applying the calibrated parameters. The 
distribution of the measured and simulated hourly 
temperatures during the validation period is shown in 
Fig. 9. There are 10 hours when the measured 
temperature is above 30.0℃, and 8 hours when the 
simulated temperature is above 30.0℃. Therefore, the 
simulated data can capture 80% of the peak 
temperatures. The hours of the measured and simulated 
temperatures above 29℃ are comparable: 36 hours 
versus 41 hours, respectively. 

(a) 

(b) 
Fig. 8 - Comparison of the measured and simulated 
data (room averages of SH) during (a) calibration 
period and (b) validation period 

(a) 

(b) 
Fig. 9 - Distribution of average room data of SH during 
the validation period: (a) measured and (b) simulated 
temperatures 

3.3 Calibrated building parameter values 

The calibrated values of the unknown parameters of the 
LTCB model are shown in Tab. 5. The tables for PS and 
SH are not listed here due to the pages limitation. 

Tab. 5 Calibrated parameter values of LTCB 

Object Parameter Unit 
Final 
value 

Wall Wall  U-Value W/m2K 0.3 
Roof Roof  U-Value W/m2K 0.25 
Wall Wall  thermal mass KJ/km2 220 
Roof roof thermal mass KJ/km2 335 
Window Window U-Value W/m2K 2.72 
Window Window SHGC - 0.37 

Interior blinds 
Slat angle Deg 59 
Solar reflectance 0.6 

Equipment 
Equipment power 
density W/m2 2.93 

Lighting 
Lighting power 
density W/m2 9.94 

Air mass flow 
through cracks  

Air mass flow 
coefficient at 
reference crack 
condition of walls 
and roof surfaces 

kg/m∙s 0.0025 

kg/m∙s 0.0012 
Natural 
ventilation 
control 

Natural ventilation 
set point ℃ 26 

Interior room 
door opening 
factor 

Width factor for 
door opening  

% 47 
Room window 
opening factor % 10 

4. Discussion

The mechanical ventilation systems are not 
considered in the three building models in this study. 
The calibration method is only demonstrated in the 
naturally ventilated buildings. Future studies can be 
conducted to apply the method to building models 
with mechanical cooling or ventilation systems. 

5. Conclusion

This study developed building performance 
simulation models coupled with airflow networks. A 
two-round calibration framework was proposed to 
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calibrate the building models based on measured 
hourly temperature data. The results showed that 
the detailed building model was capable of 
predicting room air temperatures with minimum 
error levels (0.56℃ ≤ RMSE ≤ 1.50 °C) within the 
limits of applicable building model calibration 
standards (MBE±10%, CVRMSE<20%). As a future 
work, the calibrated building models will be used to 
implement and evaluate strategies to reduce 
overheating risk arising from extreme heat events of 
current and projected climates.  
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