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Abstract. Floor heating systems are typically characterized by a relatively high thermal inertia, 
thus they react slowly to setpoint changes. When the system turns on, an under-heating period 
could occur for a relative long period, vice versa when the setpoint is decreased the floor 
thermal inertia could lead to overheating. In residential applications, the users try to avoid 
these discomfort problems by using a constant setpoint, higher than the setback. In this way the 
average energy consumption as well as the user’s bill increases. A smarter solution to mitigate 
this problem is to include a pre-on period parameter, so that the system will turn on a certain 
time before the increase in setpoint to avoid the under-heating period and a pre-off period so 
that it will switch off before overheating. Predictive controllers can be a solution to compensate 
the slow response of the radiant floor system. However, besides the need for more data, the 
computational power goes beyond what is available in heating systems micro controllers for 
residential cases. To avoid these issues, in this paper the optimal control trajectory obtained 
using a Model Predictive Control (MPC) approach is used to identify the pre-on and pre-off 
parameters to be periodically updated in the micro controller (e.g. monthly). A simulation work 
was carried out to compare the performance between a baseline Rule Based Controller (RBC), 
an improved RBC and a MPC in terms of comfort and energy use. The result is a reduction from 
an average of 1.1°C to 0.2°C for the worst thermal zone meaning 80% reduction of the 
discomfort with respect to the baseline and a slight increase of the electrical consumption 
of the heat pump (less than 5%). 
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DOI: https://doi.org/10.34641/clima.2022.331

1. Introduction
HVAC systems account for 20% of the primary 
energy consumption in MEF countries [1]. Within 
the perspective of reducing energy consumption 
and fight climate changes, radiant floor heating 
applications are becoming more and more used [2]. 
An important characteristic of standard radiant 
floor systems is the high thermal inertia which 
causes a delay between the heat supply and the 
response in the internal air temperature. For 
concrete core radiant floors this has been estimated 
to be 1 to 3 hours [3]. This slow response can create 
underheating or overheating issues and consequent 
discomfort and/or waste of energy.  In order to 
assess which are effectively the discomfort periods, 
the standard EN 12098-1:2017 [4] defines the time 
and temperature tolerances to guarantee the 
comfort levels inside the thermal zone.  

A solution to compensate the slow response of the 
radiant floor system and reduce the consequent 
discomfort could be the use of advanced control 
strategies such as Model Predictive Control (MPC). 
The benefit of predictive controllers is that the heat 
supply can be adjusted in advance thanks to heat 
demand forecasts [5]. Even if it was proven that 
MPC can be a good solution to reduce the energy 
consumption of the HVAC systems, as reported in 
[6] most buildings today use rule-based controllers
to manage the indoor conditions. This is related to
the fact that there are different challenges that must
be faced to implement MPC in buildings [7] and one
of this is the availability of the proper hardware and
software infrastructure. For example, model
predictive control requires a high computational
power that is not available in standard heating
systems micro controllers for residential buildings.
As reported in [8], MPC can be adopted for complex 
new commercial buildings while it may not be as
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solution for residential buildings because it could be 
too expensive.  

This paper proposes a methodology to extrapolate 
the monthly pre-on and pre-off parameters to be 
implemented on a micro controller, starting from 
the results of an optimization problem. This 
methodology can be deployed as a cloud service, 
where the pre-on and pre-off parameters can be 
updated remotely on the micro controller. 

This work is part of the Merezzate+ project co-
founded by EIT Climate-KIC. The project focuses on 
sustainability issues from a social, environmental, 
and economic point of view, adopting measures in 
the sectors of energy, mobility and circular economy 
that are the ones with the highest impact on climate 
change. The project included the construction of 
around 800 apartments, one of them was chosen as 
a simulation case study for this work. It is in Milan 
and is characterized by two rooms and a bathroom. 
The detailed description is reported in Section 3. 

2. Method
An optimal control problem was formulated to 
obtain the floor heating pre-on and pre-off 
parameters. In this case, the objective of the 
optimization problem was to find the control 
strategy that allows to maximize the comfort of the 
considered thermal zones. 

Starting from the resulting optimal control 
trajectory, the pre-on and pre-off parameters can be 
estimated and included in the rule-based controller.  

In order to couple the optimization problem with 
the detailed apartment model at the base of this 
study, the BOPTEST framework [9] was chosen. It 
allows to create an API interface between the 
detailed physics-based model we created using the 
Modelica Buildings [10] and IBPSA [11] libraries 
and the optimization problem implemented in a 
Python code using the Pyomo toolbox [12].  

This Section is structured in two sub-sections. In 
Section 2.1 it has been described the optimization 
problem and the feature extrapolation. In Section 
2.2 it is described the co-simulation environment 

2.1 Optimization problem and feature 
extrapolation  

The model predictive control scheme is reported in 
Fig. 1. 

Fig. 1 – Model predictive control scheme. 

In order to find the control strategy that allows to 
achieve the goal, it is necessary to create a 
simplified model that can capture the correct 
dynamics of the system. Then, starting from the 
response of this simplified model subjected to 
various disturbances (e.g. weather, setpoints, 
occupation and prices forecasts), the solver 
calculates the best control trajectory to achieve the 
“objective function”, which is shown in eq. 1. In this 
case, the forecast is assumed to be deterministic, 
which means that the forecast adopted during the 
optimization process is identical to the input of the 
detailed model of the building. The optimization 
horizon is 24h and the control signal obtained 
solving the optimization problem is updated in the 
detailed model every 15 minutes.  

The general form of the objective function can be: 

𝒎𝒎𝒎𝒎𝒎𝒎 𝑱𝑱𝒕𝒕𝒕𝒕𝒕𝒕 (𝒕𝒕) = � �𝑘𝑘𝑖𝑖𝐽𝐽𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

𝒅𝒅𝒕𝒕
𝒕𝒕𝒇𝒇

𝒕𝒕0
 0 ≤ 𝑘𝑘𝑖𝑖 ≤ 1 (1) 

Where 𝐽𝐽𝑖𝑖(𝑡𝑡) represents the various objectives and 𝑘𝑘𝑖𝑖 
the weighting factor associated with the i-th 
objective. 
In this work, the following combination of objective 
functions has been adopted:  

min� (𝑘𝑘1 𝐽𝐽1(𝑡𝑡) + 𝑘𝑘2 𝐽𝐽2(𝑡𝑡)) 𝒅𝒅𝒕𝒕
𝒕𝒕𝒇𝒇

𝒕𝒕0
 (2) 

𝐽𝐽1(𝑡𝑡) = ��𝑇𝑇𝑟𝑟(𝑡𝑡) − �𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 + 𝛿𝛿��−�2 (3) 

𝐽𝐽2(𝑡𝑡) =
�̇�𝑄ℎ𝑠𝑠(𝑡𝑡)
𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) (4) 

Where 𝐽𝐽1(𝑡𝑡) represents the squared difference 
between the room air temperature and its setpoint, 
only in case of under heating. Furthermore, a 
constant offset δ is added to the setpoint to give a 
more robust result that will make the parameters 
work even in a particularly cold day. The value of δ 
is a tuning parameter that depends on how 
frequently the pre-on/off parameters will be 
updated.  The solver will try to minimize the 
differences between these two temperatures to 
improve the thermal comfort of the users. 𝐽𝐽2(𝑡𝑡) 
represents the main electric power needed by the 
heating system, in this case study represented by a 
heat pump.  In order to minimize this objective, the 
solver will try to minimize the thermal power 
�̇�𝑄ℎ𝑠𝑠(𝑡𝑡) but also to maximize the heat pump 
Coefficient of Performance (𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)) shifting the 
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heat demand from colder to warmer periods and 
working at partial load with a lower supply 
temperature.  

The control strategy adopted in this paper tries to 
maximize the comfort in a specific time interval and 
to extrapolate some simplified rules to be applied 
on the energy management system installed in field. 
The weighting factors adopted in the objective 
function are 𝑘𝑘1 = 1 and 𝑘𝑘2 = 0.05. 

The result of the optimization problem described 
above will be a control that switches on and off the 
heat pump to guarantee the thermal comfort of the 
users. Starting from the results of the optimized 
simulation it is possible to extrapolate some 
simplified rules that allow to find the pre-on and 
pre-off parameters to be implemented on a rule-
based controller in field. In particular, the pre-on 
and pre-off parameters are monthly averages. For 
the months of April and October they take the 
average only of the days that belong to the heating 
season, which are respectively the period from the 
1st to the 15th for April and the days from the 15th to 
the 31st for October. They have been obtained 
starting from the calculation of the supplied energy 
to the radiant floor distinguishing between the pre-
on phase and the normal operation. These two 
values (𝑄𝑄𝑠𝑠𝑟𝑟𝑠𝑠ℎ𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑄𝑄ℎ𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) correspond to the 
orange and red areas in Fig. 2. Then the mean 
supply heat rate was estimated for the two phases 
(�̇�𝑄𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠 and �̇�𝑄𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑚𝑚𝑚𝑚). The two areas (orange and 
red), underneath the thermal power curve, are 
respectively equal to the areas of the two rectangles, 
in which the two heights are �̇�𝑄𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠 and �̇�𝑄𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑚𝑚𝑚𝑚  
and the two widths are ∆𝑡𝑡𝑒𝑒𝑠𝑠 and ∆𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 − ∆𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚 .  
Thus, inverting the following formulas, it is possible 
to obtain the two parameters ∆𝑡𝑡𝑒𝑒𝑠𝑠 and ∆𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚: 

�̇�𝑄𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠 =
𝑄𝑄𝑠𝑠𝑟𝑟𝑠𝑠ℎ𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

∆𝑡𝑡𝑒𝑒𝑠𝑠
(5) 

�̇�𝑄𝑚𝑚𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑚𝑚𝑚𝑚 =
𝑄𝑄ℎ𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

∆𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 − ∆𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚
(6) 

where ∆𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠  is the difference of time between the 
setpoint changes and ∆𝑡𝑡𝑠𝑠𝑚𝑚𝑚𝑚  is the time difference 
between the time at which the power goes below a 
threshold and the lower setpoint change.  

Fig. 2 – Visualization of ∆𝑡𝑡𝑒𝑒𝑠𝑠 and ∆𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚 calculation 
procedure. 

In this way, starting from the control trajectory it is 
possible to obtain the two values of ∆𝑡𝑡𝑒𝑒𝑠𝑠 and ∆𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚  
for each pre-on and pre-off and finally calculate the 

average of these values for each month. 

2.2 Implementation 

For this work, the Modelica “Buildings” and “IBPSA” 
libraries were used to develop the detailed model of 
a three-zone apartment with radiant floor described 
in Chapter 3. 

In particular, for the floor heating modelling, the 
model called “SingleCircuitSlab” of the “Buildings” 
library [10] was adopted. It models the radiant slab 
as a thermal resistance network and uses a fictitious 
resistance to compute the temperature of the plane 
that contains the pipes. The same method is 
implemented in TRNSYS 17 [13]. The rule-based 
controller used is a tuned PI controller with 0.4 °C 
hysteresis on the setpoint and a tuned climatic 
curve on the heat pump supply temperature. 
From the detailed model of the building - HVAC 
system a simplified model was derived through an 
identification process performed with the MATLAB 
Identification Toolbox. The simplified model is a 
grey box, where a thermal electrical analogy is used. 
This allows to identify a circuit of resistances and 
thermal capacities (R-C network) to represent the 
most significant temperatures of the building and 
HVAC system (Fig. 3), starting the identification 
from the data contained in the detailed model. The 
methodology followed for the model identification 
is described in [14].  In summary each thermal zone 
has a 7R3C circuit and they are all connected to each 
other. 

Fig. 3 – R-C network - in red are the temperature nodes 
T, Gi are the conductances, ∅𝑖𝑖  are the disturbances 
(solar, appliances), Ai are the wall and windows area, �̇�𝐻  
are the inlet and outlet heat flow rate in the floor and 
a,b,c are the tuning constants. 

After this phase, the simplified model and the 
optimization problem were implemented in Python 
using the Pyomo toolbox. 
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Fig. 4 – Co-simulation environment, on the left the 
Modelica detailed model and on the right the 
optimization environment in Python-Pyomo. In 
between the BOPTEST software is used as a 
wrapper for the detailed model allowing an API 
input/output exchange with Python 

Finally, the detailed model developed in Modelica 
interfaces with the optimization problem through 
the BOPTEST framework. The BOPTEST framework 
allows a way to easily compile the detailed Modelica 
model and wrap it around a Docker container. In 
this way the model can freely run through an easy-
to-use API interface, that can be used to obtain 
sensor signals from the detailed model and provide 
control trajectories from the optimization routine in 
Python through APIs. 
All these steps are summarized in Fig. 4. 

3. Case study
The case study chosen for this work is a two rooms 
one bathroom apartment reported in Fig. 5. It is in 
Milan (Italy) and shares two walls with two adjacent 
apartments (in green), a wall with the landing (in 
red) while the rest faces towards outside (in 
yellow).  

Fig. 5 – Floor Plan of apartment 
It is equipped with an air source heat pump, a 
radiant floor, a DHW tank and PV panels installed on 
the roof of the building. The heat is used for both 
space heating and DHW production, giving priority 
to the latter. The most important characteristics of 
the above-mentioned system are reported in Tab. 1. 
Tab. 1 – Characteristics of the system. 

Parameter Value and unit 
of measurement 

Floor area 44.45 m2 

Zones height 2.7 m 

Number of occupants 

HP nominal electrical power 

HP nominal thermal power  

PV panels area 

PV panels peak power 

1 

1.33 kW* 

4 kW* 

5.5 m2 

0.8 kWp 

*Nominal conditions (-7°C, 35°C)
For the simulation of the considered apartment, the

occupation profiles were arranged as shown in Fig. 
6 and Fig. 7.  The first one is used for all the 
weekdays, while the other is used to simulate the 
weekends.  
The other input data chosen for these simulations 
are function of the above-described occupation 
profiles. In particular, a setpoint temperature of 
20°C has been chosen for occupied periods, while a 
setback temperature of 18°C is applied for the rest 
of the considered day. In the same way the shading 
systems of each room are fully closed when it is 
unoccupied while they are half opened when the 
considered room is occupied.  

Fig. 6 – Occupation profile weekdays 

Fig. 7 – Occupation profile weekend 
In addition, there are the internal gains related to 
the presence of people, appliances, and lighting.  
Specifically, the sensible internal gain due to the 
presence of people is defined per person while the 
others are defined per unit area.  
In this case study the following values have been 
chosen:  

�̇�𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 60
𝑊𝑊
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (7) 

�̇�𝑄𝑒𝑒𝑠𝑠𝑠𝑠𝑎𝑎𝑖𝑖𝑒𝑒𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 = 2.5
𝑊𝑊
𝑚𝑚2 (8) 

�̇�𝑄𝑎𝑎𝑖𝑖𝑙𝑙ℎ𝑠𝑠𝑖𝑖𝑠𝑠𝑙𝑙 = 4
𝑊𝑊
𝑚𝑚2

(9) 

In particular, the sensible heat produced by a 
person respects the standard UNI EN 13779 [15] 
while the other two values are due to specific 
assumptions. In fact, since the apartment is small 
and new, the authors considered to have few and 
efficient appliances. In addition, they chose led 
lamps that emit a thermal power of about 80 W for 
each thermal zone. 
In this case, only one user is present inside the 
apartment as reported in Fig. 6 and Fig. 7. 
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All these contributions are different than zero only 
when the considered thermal zone is occupied. In 
addition, the lighting contribution is set to zero from 
8 a.m. to 5 p.m. thanks to daylight availability.  

Finally, the parameters related to the mass 
exchange with the external environment are 
summarized in Tab. 2. In particular, the value of the 
air changes related to infiltrations has been chosen 
considering high quality windows while the value 
related to mechanical ventilation takes into account 
the sanitary regulation of the Municipality of Milan 
[16] which imposes at least 20 m3/h/pers. In this
case it was chosen to apply 30 m3/h/pers and 24 
m3/h/pers respectively for the DayZone and the
NightZone. 

Tab. 2 – Infiltration and mechanical ventilation 

4. Results
For this work, three different simulations were 
performed: a first simulation with a normal rule-
based control (baseline), a second simulation based 
on model predictive control and a final simulation 
with a rule-based control with pre-on and pre-off 
parameters obtained averaging the results of the 
second simulation. 

In Section 4.1 are reported the pre-on and pre-off 
parameters obtained from the calculations 
described in Section 2.1. In section 4.2 it is possible 
to observe which are the effects of the activation of 
the pre-on and pre-off strategies on the air 
temperature and the thermal power delivered by 
the heat pump in the three cases, while in Section 
4.3 are summarized the Key Performance Indicators 
(KPI) of the three simulations.  

4.1 Monthly pre-on and pre-off parameters 

The results of the calculation reported in detail in 
section 2.1 are summarized in Tab. 3 and Tab. 4. In 
particular, in the DayZone (Tab. 3), the pre-on is not 

required for the periods that go respectively from 
the 1st to the 15th of April and from the 15th to the 
31st of October.  

Tab. 3 – Average values for pre-on and pre-off 
parameters in the DayZone 

Period Pre-on [h] Pre-off [h] 

1st-31st Jan 1.56 0.00 

1st-28th Feb 1.22 0.00 

1st -31st Mar 

1st-15th Apr 

15th-31st Oct 

1st-30th Nov 

1st-31st Dec 

0.20 

0.00 

0.00 

0.80 

1.40 

0.20 

1.30 

0.60 

0.10 

0.10 

Tab. 4 – Average values for pre-on and pre-off 
parameters in the NightZone 

Period Pre-on [h] Pre-off [h] 

1st-31st Jan 4.00 0.20 

1st-28th Feb 3.60 0.30 

1st -31st Mar 

1st-15th Apr 

15th-31st Oct 

1st-30th Nov 

1st-31st Dec 

3.00 

2.20 

1.00 

2.60 

3.40 

1.70 

2.20 

1.90 

0.80 

0.20 

4.2 Time series analysis 

To understand the benefits related to the 
application of the pre-on and pre-off strategies, in 
this section a detailed analysis of two days is shown 
(Friday, 19th of January and Saturday, 20th of 
January).  

In Fig. 8 and Fig. 9 are represented the trend of the 
air temperature with respect to the setpoint 
respectively in the DayZone and NightZone, while in 
Fig. 10 is reported the trend of the thermal power 
provided by the heat pump to heat up the two 
thermal zones. 

Air changes DayZone NightZone 

Infiltrations [1/h] 0.05 0.05 

Mechanical 
ventilation [1/h] 

0.5 0.5 
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Fig. 8 – DayZone air temperature trend for sample days including weekend 

Fig. 9 – NightZone air temperature trend for sample days including weekend 

Fig. 10 – Thermal power provided by the heat pump for sample days including weekend 

From the first two figures (Fig. 8 and Fig. 9) it can 
be seen that, while with the normal rule-based 
control (represented by the red line) the 
temperature reaches the desired setpoint after 
about 3 hours, the rule-based control with the pre-
on and pre-off parameters (blue curves) is able to 
follow the change of the setpoint, reducing a lot the 
periods of discomfort that occur in the baseline 
case. Finally, from the same graphs it is visible that 
the temperature obtained with the model predictive 
control strategies is consistently higher than the 
setpoint. This is done because the MPC is targeting 
the setpoint temperature plus δ °C to have a more 
conservative result when finding the pre-on and 
pre-off parameters.  The big gap between the rule-
based and the other controllers can be explained by 
the fact that in this simulation the baseline rule-
based controller turns on the heat pump when the 
difference between the room and setpoint 
temperature is lower than minus the hysteresis 
value. This control strategy will inevitably lead to 
underheating. So, what expert users usually do is 
manually insert a pre-on / pre-off parameter based 
on experience. Less expert users instead will keep 
the systems always on, leading to a big waste of 
energy. 

Then, from Fig. 10, it is clearly visible that the 
thermal power provided by the heat pump, in the 

case of application of the pre-on and pre-off strategy 
(blue line), has been anticipated (shifted towards 
left) with respect to the normal rule-based control 
(red line), while MPC keeps the system on for a 
longer period at a lower mean power. This is due to 
the fact that, as reported in eq. 1, the objective 
function not only promote the thermal comfort 
achievement but also tries to reduce the electric 
power consumption. 

4.3 KPIs analysis 

Finally, some Key Performance Indicators (KPI) 
were defined with the aim of evaluating the overall 
performance of the advanced control strategies. 

In particular, the KPI related to the discomfort of the 
i-th thermal zone (𝐷𝐷𝐷𝐷𝑝𝑝𝑒𝑒𝑇𝑇𝑖𝑖) is defined as the integral 
of the difference between the setpoint (𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖,𝑒𝑒𝑇𝑇𝑖𝑖) and
the room air temperature (𝑇𝑇𝑒𝑒𝑖𝑖𝑟𝑟,𝑖𝑖,𝑒𝑒𝑇𝑇𝑖𝑖) for the heating
season (from the 15th of October to the 15th of April),
subdivided for the number of occupied hours
(𝑛𝑛𝑠𝑠𝑎𝑎𝑎𝑎 ℎ𝑠𝑠𝑜𝑜𝑟𝑟𝑠𝑠) in the same period. The integral at the
numerator is calculated only in the occupied hours
of each day and only when the indoor air
temperature is lower than the setpoint temperature
minus the hysteresis (ℎ𝑦𝑦𝑝𝑝 = 0.4°𝐶𝐶), as reported
below:
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𝐷𝐷𝐷𝐷𝑝𝑝𝑒𝑒𝑇𝑇𝑖𝑖 =
∫ �𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖,𝑒𝑒𝑇𝑇𝑖𝑖 − ℎ𝑦𝑦𝑝𝑝 − 𝑇𝑇𝑒𝑒𝑖𝑖𝑟𝑟,𝑖𝑖,𝑒𝑒𝑇𝑇𝑖𝑖�

+𝑑𝑑𝑡𝑡𝑠𝑠𝑓𝑓
𝑠𝑠0

𝑛𝑛𝑠𝑠𝑎𝑎𝑎𝑎 ℎ𝑠𝑠𝑜𝑜𝑟𝑟𝑠𝑠
(10) 

Then it is reported the average air temperature 
(𝑇𝑇𝑒𝑒𝑖𝑖𝑟𝑟𝑎𝑎𝑎𝑎𝑙𝑙,𝑒𝑒𝑇𝑇𝑖𝑖) of each thermal zone calculated 
considering the entire heating season and the 
related thermal energy need (𝐸𝐸𝑠𝑠ℎ,𝑆𝑆𝑆𝑆)  that has to be 
provided by the heat pump in order to maintain 
those conditions inside the various thermal zones. 
They are mathematically expressed as:  

𝑇𝑇𝑒𝑒𝑖𝑖𝑟𝑟𝑎𝑎𝑎𝑎𝑙𝑙,𝑒𝑒𝑇𝑇𝑖𝑖 =
∑ 𝑇𝑇𝑒𝑒𝑖𝑖𝑟𝑟,𝑗𝑗,𝑒𝑒𝑇𝑇𝑖𝑖
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
(11) 

𝐸𝐸𝑠𝑠ℎ,𝑆𝑆𝑆𝑆 = � �̇�𝑄𝑠𝑠ℎ,𝑆𝑆𝑆𝑆(𝑡𝑡) 𝑑𝑑𝑡𝑡
𝑠𝑠𝑓𝑓

𝑠𝑠0
 (12) 

Where: 

• 𝑇𝑇𝑒𝑒𝑖𝑖𝑟𝑟,𝑗𝑗,𝑒𝑒𝑇𝑇𝑖𝑖  is the air temperature of the
thermal zone 𝑇𝑇𝑇𝑇𝐷𝐷 registered at the j-th
time;

• 𝑁𝑁 is the number of elements of the
temperature vector during the heating
season;

• �̇�𝑄𝑠𝑠ℎ is the thermal power provided by the
heat pump for space heating at a specific 
time. 

Finally, it is introduced a KPI which describes the 
electrical energy consumption of the heat pump 
(𝐸𝐸𝑠𝑠𝑎𝑎,𝑆𝑆𝑆𝑆)   for providing heat to the radiant floor 
(space heating), that is equal to:  

𝐸𝐸𝐸𝐸𝑎𝑎,𝑆𝑆𝑆𝑆 = � �̇�𝐶𝑠𝑠𝑎𝑎,𝑆𝑆𝑆𝑆(𝑡𝑡) 𝑑𝑑𝑡𝑡
𝑠𝑠𝑓𝑓

𝑠𝑠0
 (13) 

Where: 

• 𝐶𝐶𝑠𝑠𝑎𝑎,𝑆𝑆𝑆𝑆 is the electrical power consumption
of the heat pump for space heating at a
specific time. 

The summary of these KPIs is reported in Tab. 5. 

Analysing the values reported in Tab. 5 it appears 
that the value of the discomfort related to the 
DayZone in the Baseline case is equal to 1.104 K, 
which is already a low value, but it is still higher 
than the temperature tolerance, which is fixed to 
±0.5𝐾𝐾, as reported in the standard EN 12098-
1:2017 [4]. Thus, with the use of the optimized 
control (PreOnOff Const and PreOnOff Var), the 
authors were able to respect this tolerance and to 
obtain a strong percentage reduction of the 
discomfort, higher than the 80%. For the NightZone, 
as it is possible to observe from Tab. 5 the Baseline 
was already able to respect the above-mentioned 
tolerance, but the percentage reduction of the 
discomfort is still important.  

In addition, the results in Tab. 5 show that the 
optimized rule-based controller, with constant pre-
on and pre-off parameters (PreOnOff Const), has 

comparable performance with respect to the results 
of the model predictive control (PreOnOff Var). 

Tab. 5 – KPI comparison. 
KPI Baseline PreOnOff 

Const 

PreOnOff 

Var 

𝐷𝐷𝐷𝐷𝑝𝑝𝐷𝐷𝑒𝑒𝐷𝐷𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
[K] 

1.104 0.191    
(-83%) 

0.006    
(-99%) 

𝐷𝐷𝐷𝐷𝑝𝑝𝑁𝑁𝑖𝑖𝑙𝑙𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
[K] 

0.155 0.006    
(-96%) 

0.011    
(-93%) 

𝑇𝑇𝑒𝑒𝑖𝑖𝑟𝑟𝑎𝑎𝑎𝑎𝑙𝑙,𝐷𝐷𝑒𝑒𝐷𝐷𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
[°C] 

19.7 20.0 
(+1.5%) 

20.9 
(+6.1%) 

𝑇𝑇𝑒𝑒𝑖𝑖𝑟𝑟𝑎𝑎𝑎𝑎𝑙𝑙,𝑁𝑁𝑖𝑖𝑙𝑙𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
[°C] 

19.6 19.8 
(+1.0%) 

20.4 
(+4.1%) 

𝐸𝐸𝑠𝑠ℎ,𝑆𝑆𝑆𝑆  [kWh] 1758 1808 
(+2.8%) 

2874 
(+63.5%) 

𝐸𝐸𝐸𝐸𝑎𝑎,𝑆𝑆𝑆𝑆 [kWh] 437 455 
(+4.0%) 

672 
(+53.6%) 

The average air temperature increases of the 1-
1.5% in the case with monthly constant parameters 
and of the 4-6% in the case of variable parameters 
(MPC). The increase of temperature obviously leads 
to an increase of the thermal energy needs and 
consequently of the electrical consumptions of the 
heat pump.  

This methodology can be deployed as a cloud 
service, where the pre-on and pre-off parameters 
can be updated remotely. In the Merezzate+ project 
some apartments could be used for testing the 
methodology. In terms of economic feasibility, it can 
be used for large residential complexes where the 
building envelope and HVAC systems can be 
modelled once and tweaked using data, introducing 
an economy of scale. For smaller residential 
buildings archetypes can be built and modelled, 
where the solution may not be optimal but still 
better than the baseline. 

5. Conclusions
In this paper it is proposed a methodology to extract 
pre-on and pre-off parameters that can be 
implemented in micro-controllers of residential 
buildings. This could help managing the radiant 
floor heating system and solve the problems of 
discomfort that could be caused by its slow 
response.  

From the control trajectory obtained solving the 
optimization problem, some simplified rules were 
extrapolated. They allow to obtain the monthly pre-
on and pre-off parameters to be implemented in the 
energy management system installed in field thanks 
to a cloud service.  
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Then, three simulation that consider respectively a 
normal rule-based control, model predictive control 
and a rule-based control with monthly pre-on and 
pre-off parameters have been performed. 
Comparing the results of the three simulations it is 
possible to observe that with both the constant and 
variable (MPC) pre-on and pre-off parameters, the 
time in which the air temperature is below the 
setpoint is strongly reduced and this is also 
confirmed by the KPI of the discomfort, that 
undergoes a reduction higher than the 80%. For the 
future development of this work, the authors will 
consider different feature extrapolation methods. 
Instead of monthly, the pre-on/pre-off parameters 
could be updated with a different frequency. 
Furthermore, depending on the sensors available 
locally or cloud forecast different heuristic metrics 
will be developed.  
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