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Abstract. The built environment is responsible for nearly 35% of energy consumption and is 
undergoing a digital transformation. Up to 30% of energy is consumed inefficiently due to 
inadequate setup and/or incomplete utilization of available data. An efficient fault detection and 
diagnosis (FDD) strategy for air handling units is key to addressing this gap. Even though 
numerous FDD approaches have been published, real-world applications are far more complex 
and rarely discussed. This paper deals with FDD tool prototyping and integration aspects and 
discusses its development for air handling units deployed at 2 case-study buildings located in the 
Netherlands. The design and development of the FDD tool follows a structured 4 step process. 
Firstly, literature research is utilized to narrow the design space and establish a complete use 
case for developing the FDD tool. Secondly, the developed use case is handled utilizing a data-
driven strategy to generate fault symptoms using a state-of-the-art extreme gradient boosting 
algorithm (XGBoost). Thirdly, the detected faults are isolated with a diagnostic Bayesian network. 
This way the fault detection and diagnosis aspects are separately handled. Lastly, integration of 
the prototyped tool with a commercially operated continuous monitoring system, currently being 
utilized to monitor 400 buildings, is discussed. Upon experimental validation, diagnosis 
specificity exceeding 90% is realized.  It is further observed that the prototyped FDD tool could 
prevent up to 33% of chiller consumed energy. Moreover, the results presented will contribute 
to the adoption and deployment of AI-based FDD strategies in commercial applications. 
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1. Introduction
The direct and indirect CO2 emissions from energy 
use in buildings surpassed 10GtCO2 in 2019, the 
highest recorded level [1]. Space cooling and heating 
applications are key drivers of this demand [1]. 
Despite the efficiency gains due to digitization 
realized in other sectors such as banking, media etc. 
this potential is underleveraged in buildings. Up to 
30% energy could be saved through the effective use 
of data collected through deployed continuous 
monitoring systems (CMS) [2]. 

Air-Handling Units (AHU) are the most widely 
studied sub-systems in the Heating, Ventilation, and 
Air-Conditioning (HVAC) system [2]. In their recent 
review of Automated Fault Detection and Diagnosis 
studies (AFDD), Shi et al. in [3] highlighted that there 
remain limited real-life applications despite much 
research. Further, the users that have currently 
adopted state-of-the-art FDD practices typify early 
adopters or innovators on the technology adoption 
curve [4].  

Considering these aspects, the direct contribution of 
this paper is to add to the limited real-life 
demonstrations of FDD and inspire its widespread 
adoption. More specifically, the design, development, 
and validation of an FDD tool prototype that utilizes 
artificial intelligence (AI) methods is discussed. 
Further, the tool is integrated with a commercially 
operated CMS that has been utilized to monitor over 
400 buildings in the Netherlands. 

2. Related Work
Granderson et al. in [5] surveyed commercially 
deployed and under development FDD tools. It can 
be observed from their survey that FDD tools being 
utilized by the industry typically rely on a 
combination of expert rules or first principles. For 
example, in [6] proposed a cloud-based AFDD tool for 
AHUs. Their tool utilizes AHU performance 
assessment rules (APAR) [7]. Some of the common 
issues identified with using this approach are listed 
below: 
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a) Rules-based systems heavily rely on the sensed 
information. Due to the sensitivity of building
owners to initial project costs, most building
installations only have sensors limited to their 
control functionality [8]. Due to the lack of this
additional information and the uncertainty
associated with deployed sensors, it is difficult
to develop reliable quantitative or qualitative 
models for FDD.

b) The limits utilized for generating alarms using
the rule-based approaches are typically set at a
higher threshold than desired to minimize the
number of false positives [2]. This reduces the
ability of an FDD system to detect faults with
lower severity. 

c) There is a lack of a unified framework for
developing generic key-performance indicators 
(KPIs) and associated detection rules [9].

Bayesian inference-based approaches have been 
successfully demonstrated by authors of [10] and 
[11] for HVAC applications. In general, these models
can handle circumstances when incomplete, 
uncertain, or conflicting information is presented as
their outputs are fault probabilities instead of
Boolean fault outcomes [11].

Besides, for the deployment of advanced algorithms 
from the machine learning (ML) domain lack of 
labelled faulty data is a key impediment [12]. 
Regression model-based or residual generation 
approaches offer an alternative to working with 
labelled data [2]. 

Often, the published research methods utilizing 
novel FDD techniques start with utilizing a prepared 
dataset. However, the practical application of these 
methods with operational CMS is rarely discussed. 
Granderson et al. [13], in their survey of 14 
commercially deployed tools noted that whilst their 
software stack was proprietary several vendors offer 
application programming interface (API) to support 
integration. 

Some desirable characteristics proposed by authors 
of [3] and [14] for an FDD system are categorized as 
functional and realization design requirements [15], 
(see Tab. 1). They serve as guiding indicators for the 
prototyped FDD tool. 

3. Design Methodology
The design methodology for the tool is based on the 
systems thinking approach. For its software level 
deployment, Python is utilized as it is now the most 
popular programming language and has a large 
collection of continuously maintained packages 
supporting AI-based development. Further, the 
proposed software architecture is modular and can 
be expanded in-depth and at scale. This addresses 
the scalability and interoperability aspects stated in 
Tab. 1. 

Tab. 1 - Desirable characteristics for an FDD system 

Functional Aspects Realization Aspects 

High accuracy Adaptability 

Quick detection and 
diagnosis  

No need for handcrafted 
AFDD algorithms 

Robustness Low Cost 

Explanation facility Interoperability 

Isolability - ability to 
distinguish between 
multiple failures 

Low storage and 
computational 
requirements 

Novelty identifiability Limited modelling 
requirements 

Heuristic 
observations as 
evidence 

Automation level in 
configuration 

Multiple fault 
identifiability 

Evaluation and decision 
support capabilities 

In section 3.1, the overall software architecture for 
the proposed tool is introduced. In section 3.2, the 
business layer of the proposed tool is revealed, and 
in section 3.3, the integration aspects are discussed. 

3.1 FDD Tool Overview 

The overall architecture of the FDD tool is presented 
in Fig. 1. Herein, the implemented workflow is 
represented with solid arrows. The architecture 
comprises several layers namely data acquisition, 
pre-processing, business, post-processing, and 
visualization. The data acquisition layer is where all 
aspects concerning data transactions, protocol, and 
security are maintained.  

The design of the FDD tool hereafter can be 
envisioned as user agnostic and user specific as 
shown in Fig. 1. The user agnostic development 
concerns design of data preparation and data mining 
operations on acquired data. The data preparation is 
carried out using Python libraries such as Pandas, 
and NumPy. For data mining, the business layer that 
wraps the fault detection and diagnosis approach is 
dwelled upon in section 3.2.  

The user specific development is to help users 
efficiently realize outputs from the FDD business 
layer and enable human-in-the-loop diagnostics. The 
outputs are post-processed in an intermediary layer 
before being parsed through to the data visualization 
layer. The objective of this layer is to provide limited 
yet valuable evaluation and decision support 
capabilities for the user as identified in Tab. 1. The 
data visualization layer is designed using an open-
sourced web development framework called Dash by 
Plotly. It wraps underlying layers of HTML, 
JavaScript, and CSS code blocks in a Pythonic syntax. 
Using this approach, an end-to-end Python-based 
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tool that’s reliable, scalable, customizable, and 
quickly deployable is realized. 

Fig. 1 - FDD tool prototype architecture 

3.2 FDD business layer 

For the design of the FDD business layer, 4S3F (four 
symptoms and three faults) framework is utilized 
(see Fig. 2) [16]. The 4S3F framework combines 
systems thinking approach with Bayesian 
probabilistic models. It addresses key aspects such as 
robustness, isolability, and early fault detection and 
diagnosis as identified in Tab. 1. At its core, the 
framework is aligned with the design and 
implementation of the HVAC system, thus making the 
designed FDD business layer interpretable. 

The proposed approach isolates fault diagnosis or 
root-cause elimination process from fault detection 
or anomaly detection process. This separation 
between layers is highly recommended as it allows 
for multiple techniques from various domains and 
sub-domains to be combined in a common 
framework. For example, in this paper, an advanced 
AI algorithm called XGBoost (extreme gradient 
boosting) is utilized in the fault detection process 
[17]. The detected anomalies using XGBoost are then 
isolated in the diagnosis process. 

In the 4S3F framework, the relationship between the 
faults and the symptoms are characterized using a 
belief network or also alternatively referred to as the 
Diagnostic Bayesian network (DBN) [18]. Here the 
operational state (OS) symptom nodes represent a 
deviation in the operational state from its expected 
state. The OS symptoms can be derived from building 
management system (BMS) data and are further 
classified as control-based OS indicators and design-
based OS indicators [9]. For the demonstrated 
prototype both control-based and design-based OS 
indicators have been utilized. The other three kinds 

of symptom nodes namely Energy Performance (EP), 
Energy Balance (EB), and Additional (Add.) symptom 
nodes have been left out of the scope of this paper.  

Fig. 2 - FDD Business Layer 

DBN is a directed acyclic graph that encapsulates 
causal relationships between faults and symptoms in 
its structure. The DBN structure is further explained 
by initial beliefs mapped as prior and conditional 
probability tables [17]. For the faults studied, the 
prior probabilities are derived using literature 
research [10]. The conditional probabilities are 
derived using HVAC expert knowledge. Once, a DBN 
is finalized the posterior fault probabilities are 
inferred using the Bayes theorem. Using a sensitivity 
analysis authors of [18] revealed that if the 
probability values are reasonably set, the likely 
diagnosis is not affected by their magnitude.  

Faults to be included for developing the initial DBN 
structure can be prioritized considering the impact 
of the fault. For AHUs, Gunay et al. in [19] surveyed 
over 20 years of literature for most studied faults and 
categorized them by their impact on energy and 
comfort. From this list, faults namely stuck or leak 
control valve, fouled or leaking duct, fouled or 
broken filter, stuck or complete fan failure, and 
inappropriate supply air setpoints are shortlisted as 
faults for prototyping the FDD tool. These faults have 
been prioritized for development considering their 
high energy impact.  

The fault detection layer comprises a modelling layer 
and a fault evaluation layer. A fault is an unpermitted 
deviation of at least one characteristic property or 
feature of the system from an acceptable, usual, 
standard condition [20]. To realize these acceptable, 
usual, or standard conditions fault detection models 
are prepared. These fault detection models can be 
classified into data-driven and knowledge-driven 
based methods [9]. The knowledge driven-based 
methods in this classification are non-AI based 
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methods. Amongst, the data-driven based 
approaches regression-based approach has been 
utilized due to the unavailability of fault labels 
apriori.  

For regression modelling, XGBoost is utilized given 
its superior performance [21]. To select relevant 
features for the XGBoost algorithm an iterative 
process is utilized beginning with a coarse feature 
selection process. This is followed by a wrapper-
based feature selection method known as recursive 
feature elimination and cross-validation (RFECV). 
Lastly, Shapley additive explanations (SHAP) 
framework is invoked at the end to further drop 
features [22]. Minimal possible features are selected 
to prevent the uncertainty in sensor measurements 
from spilling over to the inference process. 

The FDD business layer is validated by artificially 
introducing faults in the case study buildings 
discussed in section 4. For validation of the 
prototyped FDD tool refer to section 5.2. 

3.3 FDD Tool Integration 

Besides the veracity of the business logic, a robust 
coupling between the FDD tool and the deployed 
CMS is key to its usefulness. The data is acquired over 
an API, enabled at the server end by the project 
partner (see Fig. 1). For interfacing with remote 
servers, Python’s requests package is utilized and is 
implemented in the data acquisition layer. Here, data 
is acquired over secure HTTPS. The data acquisition 
layer has been customized to the case-study 
buildings, however, it can be expanded to interface 
directly with on-premises servers or Internet of 
Things (IoT) gateways. This is the first step toward 
ensuring the interoperability of the designed system 
(see Tab. 1). 

As the proposed tool utilizes an AI-based approach, 
the software architecture needs to attune to this 
atypical programming environment. Emmanuel 
Ameisen in [23] discussed how the development of 
ML applications at their core comprises two 
pipelines namely training and inference. For 
instance, for deploying the XGBoost fault model two 
data pipelines are stitched. The training pipeline 
starts with data acquisition over the API. 
Downstream, includes a key step of filtering out data 
for AHU’s cooling mode operation. Besides, the 
model is trained until a satisfactory performance is 
achieved. Cross-validation root mean squared error 
(CV-RMSE) is utilized as KPI to determine the 
model’s accuracy [24].  

In the inference pipeline, data is requested over the 
same API and results are inferred using a saved 
model from the training pipeline. Given the use case, 
the data pipeline unfolds into two data streams. One 
is utilized for plotting results from the trained model 
for visual diagnosis and the other passes straight 
through to the fault evaluator (ref. Fig. 2) and further 
into the diagnosis pipeline. The training and 

inference pipelines for other ML models as well as 
the Bayesian network are designed using a similar 
approach. To encode the proposed DBN in Python, 
pomegranate package is utilized [25]. 

4. Case Study Description
For validating the prototyped FDD tool two case 
study buildings located in the Netherlands are 
utilized. In section 4.1, the first case study, a medium-
sized office type building located in the city of Breda 
is discussed. In section 4.2, the second case study, an 
educational building located in Nijmegen is 
discussed. 

Fig. 3 - P&ID Breda office building - North and 
Canteen Zone 

4.1 Case study 1: Breda office building 

The office building was commissioned in 1993 and 
renovated in 2009. The heating and cooling demand 
for the building is fulfilled by an onsite gas boiler and 
electric chiller unit respectively. The central AHU 
supplies three centrally conditioned zones. This 
constant air volume (CAV) AHU contains a supply 
and return fan, heating coil, supply, and return filter, 
and heat recovery wheel (HRW).  

Fig. 4 - DBN Breda office building 

In the air path of the AHU post supply fan, three 
individual cooling coils have been placed for each of 
the supply zones. A portion of the P&I diagram for 
zones North & Canteen is shown in Fig. 3. For this 
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paper, this zone and cooling operation of the AHU is 
considered. The design of the DBN contained in the 
FDD business layer emanates from this P&ID 
subsection. The component fault nodes are depicted 
in purple in the DBN shown in Fig. 4 and are in line 
with the prioritized faults discussed in section 3.2. 
The airflow fault node is an abstraction for any 
upstream air side faults in components such as ducts, 
fans, or filters that can alter the supplied airflow to 
the zone. Reduced supply air temperature (SAT) and 
cooling coil valve (CCV) stuck nodes depict reduced 
setpoint and cooling coil control valve stuck faults 
respectively.  

Tab. 2 – DBN symptom nodes and states description 

# Symptom 
node 

Symptom 
state 

Rules for 
setting the state 

1 Airflow
Comparison 

High Fact-Fpred >Θ 

Low Fact-Fpred<-Θ 

Fault-free Fact-Fpred<=Θ 

2 
SAT 
Desired 
Comparison 

Negative Tset-Tset,des<-Θ 

Fault-free Tset-Tset,des<=Θ 

3 CCV
Prediction 

Positive Xccv-Xccv,pred>Θ 

Negative Xccv-Xccv,pred<-Θ 

Fault-free Xccv-Xccv,pred<=Θ 

4 

RAT 
Setpoint 
Comparison 

Positive Tra-Tra,set>Θ 

Negative Tra-Tra,set<-Θ 

Fault-free Tra-Tra,set<=Θ 

5 

SAT 
Setpoint 
Comparison 

Positive Tsa-Tsa,set>Θ 

Negative Tsa-Tsa,set<-Θ 

Fault-free Tsa-Tsa,set<=Θ 

Key: 

F - Flow Rate in m3/s, T - Temperature in °C, X - 
Control Position in %, Θ – Threshold, act – Actual, 
pred – Predicted, ccv – Cooling coil valve, des – 
Desired, sa – Supply air, ra – Return Air, set – 
Setpoint 

The symptom nodes depicted in yellow in Fig. 4 are 
generated using a combination of multiple modelling 
approaches. The rules for passing evidence to the 
symptom nodes are enlisted in Tab. 2. Airflow 
comparison node and CCV position prediction nodes 
are activated using predictions from a statistical and 
ML model respectively. Features selected for training 
the ML model are provided in Tab. 3. 

4.2 Case study 2: Nijmegen school 

The second building is a school located in Nijmegen. 
It was commissioned in the year 2010. The HVAC 
installation at the building comprises an Aquifer 

Thermal Energy Storage (ATES) system supported 
by a heat pump on the generation side. On the 
distribution side, two AHUs are installed. The AHUs 
operate with a CAV control strategy. Their supply air 
temperature is maintained using two-way control 
valves that throttle supply water through a common 
cooling and heating coil. In comparison with the 
discussed office building, here a single casing houses 
all of the AHU components.  

Tab. 3 - XGBoost model features 

Breda office building Nijmegen school 

Supply air 
temperature (central 
AHU), Chiller 
entering water 
temperature, Supply 
air temperature 
setpoint (Zone 
north), Supply air 
temperature setpoint 
(central AHU), Chiller 
leaving water 
temperature, Supply 
air pressure, Week of 
year 

Supply water 
temperature (coil), 
Suction air temperature, 
Return water 
temperature (coil), 
Supply air temperature 
(SAT) post-HRW, SAT 
setpoint, Supply & 
Return pressure drop, 
Supply airflow speed, 
Week of year, SAT post 
supply fan, Return air 
temperature, SAT post 
coil, Control HRW, HRW 
(on/off) 

As with case study 1, the operation of the AHU in its 
cooling mode operation is considered. The DBN for 
the cooling operation emanates from the P&ID of the 
installed HVAC system. Despite the differences in 
HVAC configuration between the two case studies, 
the DBN structure does not differ beyond the 
Reduced SAT fault node shown in Fig. 4. This 
alteration is required since the supply air 
temperature setpoint is feed-forward controlled 
based on the outdoor air temperature alone. In 
contrast at the Breda office, the zone supply air 
temperature setpoint is controlled using two 
variables return air and outdoor air temperatures. 
From the symptom nodes listed in Tab. 2, the RAT 
setpoint comparison node is excluded, and the rest 
are retained in the developed DBN for this case. 

5. Designed FDD tool and its
experimental validation

In this section, an early prototype of the FDD tool is 
presented. In section 5.1, the dashboard layout is 
shown. Thereafter in section 5.2, results from 
experimental validation of the underlying FDD 
business layer are discussed. Lastly in section 5.3, a 
savings analysis to estimate the benefit of deploying 
the FDD tool is presented. 

5.1 FDD Tool 

The developed FDD application utilizes the React.js 
framework in its underlying layers and is accessed 
using a standard web browser interface. 
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 Fig. 5 - Designed FDD Dashboard - Case study one 

The application is currently deployed locally, 
however, is extensible to a cloud environment. A 
dashboard for the cooling coil diagnosis at Breda 
with its key performance indicators are presented 
across multiple widgets in Fig. 5. The data presented 
in the figure is for representation purposes alone. In 
the summary widget, summary statistics describing 
the faults diagnosed by the FDD tool across various 
time horizons such as year to date (YTD) are shown. 
In widget 1, faults diagnosed by the FDD tool are 
presented as alarms for users. Alongside each alarm, 
qualitative information such as fault priority, 
category, type, description about the raised alarm is 
provided. Further, the user is equipped with filtering, 
searching, and sorting functionalities for an 
enhanced user experience. In widget 2, the 
probabilities of various fault states are plotted as 
time series. In widget 3 using a heat map 
representation, the intensity of the residual 
generated using the XGBoost model can be found. 
Widgets 2 & 3 have been developed to augment the 
capabilities of a building manager to quickly identify 
anomalies and aid human-in-the-loop diagnostics. 

5.2 FDD Validation Results 

For validating the discussed FDD business layer (see 
section 3.2), experiments were carried out at both 
buildings. During these experiments, faults were 
artificially introduced into the system to simulate 
faulty behaviour. In this paper results from 
introducing two faults (one in each case study) are 
discussed.  

On 16th July 2021, an experiment was carried out and 
a stuck valve fault was introduced in the north zone 
cooling coil at Breda. The position of the three-way 
control valve that regulates the flow was fixed at 75% 
at 15:30 using a BMS override. It can be observed 
from Fig. 6 that the predicted valve position deviates 
significantly from the measured actual valve position 
post introduction of this fault and generates a large 
residual. Also, the computed probability of the fault 
state (Positive Stuck) changes from a low (less than 
5%) to a high likelihood (~70%) of fault presence. 
The user can observe this probability shift and 
change in residual using widget 2 and widget 3 
respectively presented in Fig. 5. An alarm generated 
automatedly under such an event can be found in 
widget 1 in Fig. 5. 

Fig. 6 - Stuck valve experiment at Breda 

On 3rd August 2020, the supply air setpoint was 
reduced to 17°C to simulate a reduced setpoint fault 
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scenario at AHU one at the Nijmegen school. As can 
be observed from Fig. 7 the desired setpoint given 
the prevailing outdoor air temperature should have 
neared 21°C under a normal scenario. However, the 
automated setpoint determining logic was manually 
overwritten in the BMS to introduce this fault. The 
designed DBN was able to confirm (with more than 
85% likelihood) this fault when a large positive 
residual is observed on the valve position prediction 
state.  

Fig. 7 - SAT setpoint experiment at Nijmegen 

Besides the reported experiments additional 
experiments spread over nearly two months were 
carried out to validate the prototyped tool across 
multiple faults scenarios at both locations. During 
this period, diagnosis sensitivity of 67% and 
specificity of 92% were recorded at the Breda office. 
At Nijmegen school diagnosis sensitivity of 84% and 
specificity of 94% were observed. The realized 
results validate the veracity of the developed FDD 
business layer for both locations.  

5.3 Potential Savings: Breda office building 

Through the validation process faults introduced in 
the system were successfully diagnosed with the 
tool. Using the case presented in Fig. 6, preventable 
energy waste is estimated. The fault was introduced 
late Friday afternoon and corrected the following 
Monday. The chiller’s energy consumption between 
the periods 16:00-17:00 was compared on both days 
to estimate the energy savings. Using an energy 
meter, a 63% increase in the chiller’s energy 
consumption was measured during the faulty 
operation. As faults were simultaneously introduced 
in all cooling coil control valves, the measured 
increase is apportioned in the ratio of airflow 
through each zone. Using this approach, nearly a 
33% increase in the chiller’s energy consumption is 
estimated as attributable to the stuck valve fault in 
the north zone’s cooling coil control valve.  

6. Conclusion
An early prototype of the proposed FDD tool along 
with its design architecture is presented. Further, 
integration with an operational CMS is demonstrated 
for two case study buildings. The business layer of 
the tool combines state-of-the-art techniques from 
the AI domain and automates the FDD process. The 
designed tool is scalable, reliable, rapidly deployable, 
and interoperable. DBN structure and modelling 

processes are scaled for both the studied cases 
possessing different HVAC characteristics. Hence, 
alluding to generalizability. 

Upon experimentally validating the designed tool, 
encouraging results (diagnosis specificity exceeding 
90%) across two use-case environments are 
obtained. The continuous monitoring setup at these 
installations can be augmented with the prototyped 
tool and energy penalties due to faults can be 
avoided. At the cooling coil installation at Breda, 
nearly 33% of energy savings are estimated, and 
consequent additional emissions are thus 
preventable.  

For further development of the tool following areas 
have been identified: 
• The presented tool does not feature any

framework for uniformly identifying building
metadata such as Project Haystack or Brick
Schema, which is highly desirable for addressing 
large scale deployments.

• Currently, the DBN model doesn’t exhibit any
learning character which can be improved by
updating conditional probabilities dynamically.
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