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Abstract: Completeness of data is vital for the decision making and forecasting on Building Management 
Systems (BMS) as missing data can result in biased decision making down the line. This study creates a 
guideline for imputing the gaps in BMS datasets by comparing four methods: K Nearest Neighbour algorithm 
(KNN), Recurrent Neural Network (RNN), Hot Deck (HD) and Last Observation Carried Forward (LOCF). The 
guideline contains the best method per gap size and scales of measurement. The four selected methods are 
from various backgrounds and are tested on a real BMS and metereological dataset. The focus of this paper is 
not to impute every cell as accurately as possible but to impute trends back into the missing data. The 
performance is characterised by a set of criteria in order to allow the user to choose the imputation method 
best suited for its needs. The criteria are: Variance Error (VE) and Root Mean Squared Error (RMSE). VE has 
been given more weight as its ability to evaluate the imputed trend is better than RMSE. From preliminary 
results, it was concluded that the best K‐values for KNN are 5 for the smallest gap and 100 for the larger gaps. 
Using a genetic algorithm the best RNN architecture for the purpose of this paper was determined to be Gated 
Recurrent Units (GRU). The comparison was performed using a different training dataset than the imputation 
dataset. The results show no consistent link between the difference in Kurtosis or Skewness and imputation 
performance. The results of the experiment concluded that RNN is best for interval data and HD is best for both 
nominal and ratio data. There was no single method that was best for all gap sizes as it was dependent on the 
data to be imputed.
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1 Introduction
Missing data is a common occurrence in time
series data, possible causes include faulty sensors
or errors in data storage. Missing data can cause
downstream applications to malfunction and can
thus have serious consequences. Missing data in
Building Management Systems (BMS) can cause
underperforming building services e.g., lower
comfort of living or higher power usage, or in
worst‐case scenarios building breakdown as sys‐
tem control decisions are based on the collected
data.

Imputation methods evaluated in this paper
are selected from previous research that has been
done into the imputation of time series data. The
methods that are selected for evaluation are: Last
Observation Carried Forward (LOCF), K‐Nearest
Neighbour algorithm (KNN), Recurrent Neural
Network (RNN) and Hot Deck (HD).

HD can be outperformed by machine learning

as seen in (Sree Dhevi,2014)[1] ] but it is appli‐
cable when there are similar units available for
study. The time series imputation performance of
different types of RNN’s has been studied before
in Che et al. (2018) [2]. The study concluded that
when a Gated Recurrent Units (GRU) architecture
is properly set up “it pulled signiϔicantly ahead of
non‐deep learning methods” [2].

Pazhoohesh et al.(2019) [3]found that for datasets
where 10% to 30 % of the data is missing, the
KNN algorithm does great compared to eight other
methods. Poloczek et al. 2014 [4] analysed the use
of KNN regression and LOCF and found that both
did well for the study, but that KNN regression
outperformed other methods.

There are limited studies to clarify how to
deal with missing data in BMS datasets. Previous
research has focused on lighting and occupancy
[3] data or created a generic framework for
imputing data from multiple sensors [5]. In the
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case of (Zhang,2020) it is advised that a more
generic plug‐n‐play framework is to be further
studied. This study does not build on the frame‐
work created by (Zhang,2020) but tries to give
a guideline on when to use what method. The
research focused on imputing trends rather than
accurately imputing data in a single moment in
time.

This paper aims to evaluate and compare the
imputation performance of the following meth‐
ods: KNN algorithm, LOCF, RNN and Hot Deck.
The imputation performance has been evaluated
by making use of various criteria to facilitate
the choice of the most suitable method for each
scenario. Aside from the most suited scenario, the
imputation method’s ability to impute trends is
also evaluated.

The method section contains a description of
the datasets, description of the pipeline, imputa‐
tion methods and the criteria used for evaluation.
The result section presents the imputation re‐
sults and a recommended action for each data
measurement scale and gap size.

2 Methodology

2.1 Dataset description

BMS datasets store sensor data such as ϐluid
temperature, power usage, ϐlow rate, opera‐
tional mode, solar radiation and outdoor temper‐
ature. Two datasets have been used: BMS data
of hundred‐twenty residential Net‐Zero energy
houses and data of twenty‐ϐive weather stations
from the Royal Netherlands Meteorological Insti‐
tute (KNMI) [6]. TheNZEBBMS time series dataset
contains data from 2019 and has a ϐive‐minute in‐
terval data measurements (105096 rows). The
KNMI dataset contains data from2018 to 2020 and
it is measured at hourly intervals (17545 rows).
The only change made to the original datasets was
converting the timestamps to Python Date Time
objects.

2.2 Columns selected for imputation
Seven columns have been selected from the two
datasets to evaluate the imputation performance.
The selected features from the BMS dataset are
power usage (power), CO2 level measurements
(CO2), heat pump ϐlow temperature (ϐlow_temp)
and operational mode (op_mode). The features
selected from the KNMI datasets are solar radia‐
tion (global radiation), temperature (temperature)
and relative atmospheric humidity (Relative atmo‐
spheric humidity). The BMS features were se‐
lected for their datameasurement scale. The KNMI
columns were selected for the strong correlation
between the features.

3 Pipeline
A pipeline has been developed to evaluate the per‐
formance of imputation methods under the same
reproducible conditions. The pipeline performed
the following tasks: loading the data, creating gaps,
imputing the artiϐicial gaps, calculating imputation
performance, and storing the evaluation results.
The pipeline code and trainedmodels can be found
in the references.

3.1 Gap creation
To evaluate the performance of each imputation
method, artiϐicial gaps have been created in both
datasets. The gaps come in different sizes to eval‐
uate the performance of each imputation method
on different amounts of missing sequential data.
The gaps have been createdmaking use of the rules
stated in Tables [2‐3] and are generated using a set
random seed. The set random seed is also used in
order to determine gap location and the size of the
gap. The gap sizes and locations are the same for
every feature and method tested.

Tab. 2 ‑ BMS artiϐicial gap rules
Nr. Min size Max size % of data
1 5 min 60 min 15%
2 1 hour 6 hours 5%
3 6 hours 24 hours 1.5%
4 24 hours 72 hours 0.5%
5 72 hours 168 hours 0.01%

Tab. 1 ‑ Columns with the dataset of origin, device, unit of measurement and measurement

Column name Dataset Device Unit of measurement Measurement scale
Temperature KNMI ‐ C (in 0.1c) Interval
Global Radiation KNMI ‐ j per cm² Ratio
Humidity KNMI ‐ % Ratio
Flow_temp BMS Alklima Heat Pump C Interval
op_mode BMS Alklima Heat Pump 0‐6 modes Nominal
Power BMS Smartmeter W Ratio
C02 BMS C02 Sensor PPM Ratio
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Tab. 3 ‑ KNMI artiϐicial gap rules
Nr. Min size Max size % of data
1 1 hour 6 hours 15%
2 6 hour 24 hours 5%
3 24 hours 72 hours 1.5%
4 72 hours 168 hours 0.005%

4 Imputation methods
Four imputation methods are compared in this pa‐
per: Hot Deck, Recurrent Neural Network (RNN),
Last Observation Carried Forward (LOCF) and K‐
Nearest Neighbour algorithm (KNN). The methods
have been selected from previous literature and
aim to have awide scope of imputation approaches
to facilitate each method’s characterizations, ad‐
vantages and disadvantages.

4.1 KNN algorithm
KNN algorithm is a nonparametric imputation
method that works by taking the average of a
gap’s K‐number of neighbours. Treating every
neighbouring value equally, simple KNN would
make it more vulnerable to outliers. To mitigate
this, KNN is set up to weigh the nearer neighbours
of a gap heavier than further away values.

The K‐values tested are: 1,5,10,15,20,100. The
K‐value selection has been done by evaluating the
results gotten from imputation using the Variance
Error. From the results of the evaluation, it can be
concluded that K=5 is best for the gap size 1 and
K=100 for gap sizes 2 to 5.

4.2 LastObservationCarriedForward
Last Observation Carried Forward works by ϐilling
in the gap with the last valid before the gap ob‐
servation forwards. LOCF can introduce substan‐
tial bias in datasets that do have high volatility in
values [7]. Columns such as power usage are most
likely to suffer themost from this due to the unpre‐
dictability in datawhich is expected toworsenwith
larger gaps in the data. Nevertheless, LOCF is still
in common use nowadays and has been compared
before in time series imputation performance [3,
5].

4.3 Hot deck
Hot Deck imputation is a method for handling
missing data in which each missing value from a
recipient is replaced with an observed value from
a similar unit (the donor). This method applies
perfectly to this study since there are multiple
units (different houses or different weather sta‐
tions’ data).
HD is a well‐knownmethod, but the theory behind
the Hot Deck is not as well developed as the theory
of other imputation methods, leaving researchers

with limited guidance on how to apply it. Themain
challenge is selecting donors.
In some versions, the donor is selected randomly
from a set of potential donors, which is called the
donor pool. In other more deterministic versions,
a single donor is identiϐied, and values are imputed
from that case usually, the “nearest neighbour”
based on a dataset‐dependent metric (i.e.: the
mean when imputing temperature time series).

In the case of this research, the donor selec‐
tion was based on pattern recognition. It works
by taking an extract containing data before and
after a series of missing values (a gap) found in
the recipient. To ϐind the best matching segment
of data from a donor, the recipient’s extract would
then be compared to similarly‐sized extracts from
the same time period in a donor.

Using the difference in the mean of the donor’s
extracts and recipient’s extract, the values from
the donor’s extracts can be shifted towards those
of the recipient except when imputing categor‐
ical data. The sum of the absolute difference
between the extracts can now be used to sort the
comparisons: the smaller the sum is, the better
the pattern matches. The operation can then be
repeated throughout each donor of the donor pool,
for each gap, to ϐind the best possible match before
ϐinally importing data into the recipient.

4.4 Recurrent Neural Network
Recurrent Neural Networks have been proven
to perform well when working with time series
data [8] and in [2] it pulled signiϐicantly ahead of
non‐deep learning methods. RNN’s beneϐits from
having an internal memory, unlike other NNs, this
helps them to preserve context which is useful
with the imputation of BMS time series data. The
internal memory of the RNN architecture is useful
for the purpose of imputing time series data as
the missing values are highly depend on the trend
before and after a gap.

Two different architectures of RNN’s were
compared on performance in time series imputa‐
tion: Long‐ Short term Memory (LSTM) and Gated
Recurrent Units (GRU). Both architectures use
long‐short term memory, but the key difference
is that LSTM uses three gates: forget, input and
output, whilst GRU uses two: update and reset.
Another difference between the two is that GRU
exposes the entire memory including hidden
layers whilst LSTM keeps them hidden.

Both architectures were compared using a genetic
algorithm, random conϐigurations are generated
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Fig.1 ‑ Correlation matrix BMS data

by changing the GRU or LSTM. Architectural parts
that were randomized are the number (1 – 5) and
size (2 – 100) of hidden layers, input sequence size
(2 – 12) and the loss‐function (MSE or Huber).

The best architecture conϐiguration found during
testing was a GRU RNN conϐigured with 1 hidden
layer of size 95, input sequence length 12 and
the using the MSE loss function. The ϐinal GRU
was conϐigured as listed before in addition a fully
connected layer was added. This was done to
transform the GRU layer output into prediction.
The GRU‐based RNNwas trained for every column
that was to be imputed.

RNN results are drastically improved when
using multiple correlated columns as input. To
select the most correlated columns a correlation
matrix (Figure 1) is used to display both positive
and negative correlations. From Figure 1 the best
correlators were chosen to train each model with.
The implementation of the current GRU‐based
model has two major limitations. First, it only

imputes one value at a time based on the X‐number
of preceding values. This means that with a sufϐi‐
ciently large gap it uses its own values to impute
further. Using previously imputed values can
result in biases in the imputation since one im‐
putation error impacts all following imputations.
Another limitation is that the current GRU RNN
version trained using Mean Squared Error (MSE)
may not line up with the goal of imputing trends
back into missing data.

4.5 Imputation evaluation criteria
The aim of this paper is to create a selection of
the most suitable imputation methods for certain
scenarios with measurement scales and gap
sizes. To select the best method for each scenario
evaluation criteria are required. In this paper the
selected criteria are Variance Error (VE) and Root
Mean Squared Error (RMSE).

VE is used to give insight into the imputation
method’s ability to impute trends back into the
missing data since that is one of the focal points of
this research. The VE is calculated by calculating
the difference in variance between the original
and imputed data for each gap and then averaging
it out if multiple gaps are present. To get the
difference in variance in a gap, the pandas method
“pandas.var” has been used.

In previous literature [3, 8, 9] RMSE has been
used to evaluate the performance of imputation
on time series data. RMSE is calculated to give
a comparison point for imputations done in this
paper compared to results in previous research.
The RMSE was calculated by taking the square
root of the Mean Squared Error.

In this study normality testing of the datasets
is done to measure the impact of a change in
the distribution on imputation. Kurtosis and

Tab. 4 ‑ List of methods included in this paper

Method Abbreviation Category Description Library used

Last Observation Carried Forward LOCF Simple Use the last cell before
the gap to ϐill a gap. pandas.DataFrame.ϐillna

KNN regression KNN Simple
Take the weighted
average K‐number
of nearest neighbours.

sklearn.impute.KNNImputer

GRU RNN RNN Neural Network RNN considers past
to impute missing data. torch.nn.GRU

Hot deck HD Statistical
Take data from a
different unit with a
similar trend.

None
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Skewness are used to test the normality of data
because according to [9] it is signiϐicant to model
development. According to the central limit theo‐
rem, the distribution of data can be ignored with
hundreds of observations [10]. But according to
[11] statistics such as Kurtosis and Skewness can
be used to measure the normality of continuous
data with sample sizes higher than 50.

5 Results and discussion
With the developed pipeline and datasets as
described in the methodology, an experiment ran
with the settings of Tables 2 and 3 to determine
the best imputation method per gap size and
measurement scale.

The imputation target for the experiment was
unit 099 for BMS data and de Bilt weather station
as KNMI climate data. To train the models RNN
used unit 054 and Rotterdam KNMI weather sta‐
tion. RNN and KNN both imputed op_mode with
decimal values and should thus be ignored. Whilst
op_mode is numerical, the performance of RNN
and KNN wouldn’t represent the performance on
other text‐based data.

The pipeline evaluated each imputation method
based on the evaluation metrics listed under the
evaluation criteria per gap and feature. The impu‐
tation performance is mainly be evaluated based
on the VE metric as mentioned in the evaluation

criteria. RMSE is also calculated to evaluate impu‐
tation performance as seen in previous literature.

Based on the information in Tables 6 ‐ 10,
several conclusions can be made by comparing
the performance of the imputation method over
various gap sizes and measurement scale:

• The RMSE results show that the imputation
performance as judged by traditional metrics
is poor. However, since the focus of this pa‐
per is to impute trends the comparison point
should be the VE between methods instead of
the RMSE.

• HD tends to scorebetter on theKNMIdatasets,
thismight be due to themore similar previous
trends found in the datasets. In both VE and
RMSE, HD tends to outperform RNN in imput‐
ing temperature data across all gaps. This per‐
formance doesn’t transition to other interval
data such as ϐlow_temp as HD’s performance
in both VE and RMSE is worse than expected
in this column.

• RMSE and VE do not always align when it
comes to trend prediction in imputed data.
CO2 sensor data gap 3 and 4 have a rela‐
tively close RMSE while their VE scores fur‐
ther apart. When visualising the data in Fig‐
ure 1 it can be seen that HD tries to impute a
trend thatmatches relativelywell according to

Fig. 2 ‑ CO2 sensor trend imputation performance comparison
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the VE. However, RNN has a more stable line
without anybig noticeable trends. In this case,
RMSE seems to punish imputing trends and
reward imputing a stable line of data without
trends.

• As seen in Table 11, a high difference in Kur‐
tosis was found between training and imputa‐
tion target data. This might explain RNN’s be‐
haviour in the imputation results of the CO2
sensor data as seen in Figure 1 and Tables
6 ‐10. However, no consistent link has been
found between Kurtosis and trend imputation
performance. In Figure 2 the imputation of
a ϐlow_temp gap is shown, in the ϐigure RNN
tracing a trend is observed. RNN has a com‐
paratively better performance in ϐlow_temp
than in power despite having a higher differ‐
ence in both Kurtosis and Skewness. The nor‐
mality of the distribution does not seem to ex‐
plain the difference inRNN imputation perfor‐
mance from interval to ratio data.

• In the achieved results (Tables 6 ‐ 10) no
strong link can be found between having mul‐
tiple strong correlators and a good RMSE or
VE score. Flow_temp has two strong corre‐
lators in return temperature (0.94) and heat
pump power usage (0.81) and gets good im‐

putation results. Power and CO2 data seem
to contrast these ϐindings as power has two
strong correlators (‐0.56 and 0.86) and CO2
one decent correlator (0.44) but both get bad
imputation results.

To sum up, the results as seen in Tables 6 ‐ 10
and discussed before there is no single imputation
method for all data measurement scales. Based on
the results it can be concluded that there is no im‐
putation method that works well for all gap sizes.
HD tends to score better on KNMI data acrossmea‐
surement scales RNNdoes not do the same. VE and
RMSE don’t always align and VE is in some cases
the better indicator for the ability of an imputation
method to follow the trend displayed in Figures 1
& 2. The difference in Kurtosis was not as big of a
factor as initially thought.

6 Conclusion
This paper proposes a guideline to impute BMS
nZEB data based on gap size and different scales
of measurement. The problem with missing
data in BMS is becoming a bigger problem in an
era where buildings depend on data. Previous
research has been done about imputing BMS time
series data; this paper tries to build on that by
creating a comprehensive guideline to follow for

Fig. 3 ‑ Trend performance RNN on interval ϐlow_temp data
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certain scenarios. To create a guideline 4 methods
were chosen from previous literature: GRU RNN,
Hot Deck, KNN algorithm and LOCF. During the
research, imputing trends back into missing data
became the focal point of this study which is
why Variance Error (VE) was used instead of a
more traditional metric like Root Mean Squared
Error (RMSE). The guideline that resulted from
this experiment is listed down below in Table 5.
Performance was evaluated using both RMSE and
VE but metrics concluded the same methods as
best for each gap type anddatameasurement scale.

From the results of both VE and RMSE can be
concluded that there is no single best imputation
method for all gap sizes and measurement scales.
The best method for a gap size is dependent on
the measurement scale of the to be imputed data.
No consistent crossover was found between the
gap size and measurement scale as can be seen in
Table 5.

Tab. 5 ‑ Guideline for what method to use based on VE
Gap type 1. Gap type 2. Gap type 3. Gap type 4. Gap type 5.

Nominal HD HD HD HD HD
Ratio HD HD HD HD HD
Interval RNN RNN RNN RNN RNN

When comparing RMSE scores achieved in
this paper to previous research it seems the impu‐
tation performance is poor. The focal point of this
paper however was to impute trends back into
data and seeing the VE score and visualisations a
good starting point was made.

An important thing to note for this paper is
the use of HD, due to this research having large
amounts of similar data units HD was uniquely
applicable. With no similar data HD will not be
applicable and even with fewer external data sets
HD might suffer a performance hit.

In future work, the focus of research should
be less on evaluating imputation with metrics
based on the error and more on the impact of
forecasting using imputed data. The effect on
forecasting performance ought to be evaluated as
it can provide a more complete view of imputation
performance.

The data sets used for this study contain only
numerical data and no ordinal data. To get a
full view of the imputation performance on text‐
based categorical data further research is required.

The GRU RNN architecture used in the research
had clear limitations based on how it was set up.
To evaluate the full potential of imputation using
RNN the architecture should be changed to an
encoder‐decoder sequential based design. This

would remove the potential bias of imputation
using its own imputed values.

7 Appendix A
Tab. 6 ‑ gap size 1
Field Method HD RNN KNN LOCF

Temperature VE 60.13 63.738 92.126 92.701
RMSE 14.07 12.31 38.19 22.352

FLOW_TEMP VE 8.67 7.20 10.76 10.76
RMSE 5.29 3.21 5.34 6.79

op_mode VE 0.08 0.08 0.08 0.08
RMSE 0.49 0.45 0.45 0.56

Global Radiation VE 337.621 369.87 620.279 620.85
RMSE 25.16 29.84 66.47 53.02

Humidity VE 15.38 15.45 20.71 20.80
RMSE 6.78 6.19 14.52 9.88

Power VE 137217 151494 158763 158763
RMSE 686.24 798.725 632.54 800.01

C02 VE 372.92 393.49 420.02 420.02
RMSE 44.41 40.34 35.29 43.03

Tab. 7 ‑ gap size 2
Field Method HD RNN KNN LOCF

Temperature VE 264.83 290.36 604.13 609.78
RMSE 17.61 17.19 38.72 45.14

FLOW_TEMP VE 32.892 21.36 39.59 39.631
RMSE 8.03 3.78 8.43 10.28

op_mode VE 0.28 0.32 0.33 0.33
RMSE 0.84 0.84 0.83 0.99

Global Radiation VE 1086.88 1427.15 2902.85 2904.88
RMSE 32.52 45.92 67.81 91.24

Humidity VE 51.67 59.07 108.11 108.60
RMSE 9.08 9.45 15.12 18.78

Power VE 357663 425962 494539 504114
RMSE 895.32 1258.1 1176.21 1181.55

C02 VE 1393.59 1587.98 1782.42 1747.18
RMSE 53.07 66.71 78.15 74.81
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Tab. 8 ‑ gap size 3
Field Method HD RNN KNN LOCF

Temperature VE 328.88 381.24 901.32 912.82
RMSE 14.39 17.19 37.874 45.98

FLOW_TEMP VE 53 32.168 65.99 65.99
RMSE 10.35 3.87 9.26 11.58

op_mode VE 0.62 0.544 0.63 0.63
RMSE 1.20 0.93 0.96 1.34

Global Radiation VE 1138.15 2380.38 4392.39 4396.39
RMSE 28.90 57.54 68.1 96.89

Humidity VE 69.05 89.98 176.42 177.53
RMSE 7.64 10.26 14.75 18.64

Power VE 579467 1.15e+06 1.36e+06 1.36e+06
RMSE 997.66 1516.92 1725.46 1906.12

C02 VE 3862.98 4608.09 5272.42 5282.86
RMSE 109.88 100.2 113.50 115.28

Tab. 9 ‑ gap size 4
Field Method HD RNN KNN LOCF

Temperature VE 415.57 407.244 1220.58 1228.37
RMSE 14.67 18.23 42.08 52

FLOW_TEMP VE 54.81 33.72 73.699 73.701
RMSE 9.59 3.76 9.37 11.75

op_mode VE 0.47 0.67 0.78 0.78
RMSE 1.20 0.98 0.96 1.34

Global Radiation VE 735.97 1715.78 4221.93 4222.48
RMSE 22.94 64.08 65.86 97.46

Humidity VE 67.07 95.86 187.31 187.40
RMSE 7.12 11.46 15.21 19.94

Power VE 760667 1.59e+06 1.96e+06 1.96+06
RMSE 843.932 1744.81 1759.17 1992.42

C02 VE 6316.95 8492.07 9311.84 9315.94
RMSE 115.84 116.52 123.39 142.02

Tab. 10 ‑ gap size 5
Field Method HD RNN KNN LOCF

FLOW_TEMP VE 63.54 36.65 75.85 75.85
RMSE 9.12 3.95 9.48 12.60

op_mode VE 0.15 0.152 0.598 0.598
RMSE 0.89 1.02 1.59 0.92

Power VE 746953 1.81e+06 2.079e‐6 2.079e‐6
RMSE 778.901 1594.85 1628.55 2218.56

C02 VE 5956.65 9086.66 9902.27 9902.33
RMSE 105.32 122.10 114.78 131.26

Tab. 11 ‑ kurtosis and skewness diference

Column Kurtosis
difference

Skewness
difference

Temperature 0.04 0.03
Relative atmospheric
humidity 0.28 0.04

Global radiation 0.09 0.02
alklimaHeatPump
ϐlow_temp 0.45 0.25

alklimaHeatPump
op_mode 2.20 0.81

smartMeter power 0.31 0.07
co2sensor co2 5.41 0.57

[12]

References
[1] A.T. Sree Dhevi. “Imputing missing values

using Inverse Distance Weighted Interpola‐
tion for time series data”. In: 2014 Sixth In‐
ternational Conference onAdvanced Comput‐
ing (ICoAC). 2014, pp. 255–259. DOI: 10 .
1109/ICoAC.2014.7229721.

[2] Zhengping Che. “Recurrent Neural Net‐
works for Multivariate Time Series with
Missing Values”. In: Scientiϔic Reports
(2018). DOI: 10.1038/s41598-018-24271-
9.

[3] Mehdi Pazhoohesh, Zoya Pourmirza, and
Sara Walker. “A Comparison of Methods for
Missing Data Treatment in Building Sensor
Data”. In: 2019 IEEE 7th International Con‐
ference on Smart Energy Grid Engineering

(SEGE). 2019, pp. 255–259. DOI: 10.1109/
SEGE.2019.8859963.

[4] Kramer O. Poloczek J. Treiber N.A. “KNN
Regression as Geo‐Imputation Method
for Spatio‐Temporal Wind Data”. In: 299
(2014). DOI: 10.1007/978-3-319-07995-
0_19.

[5] Liang Zhang. “A Pattern‐Recognition‐Based
Ensemble Data Imputation Framework for
Sensors from Building Energy Systems”. In:
Sensors 20.20 (2020). ISSN: 1424‐8220. DOI:
10.3390/s20205947.

[6] KNMI. KNMI ‐ Uurgegevens van het weer
in Nederland. KNMI ‐ Hourly weather data
of Dutch climate. URL: https : / / www .
knmi.nl/nederland-nu/klimatologie/
uurgegevens.

[7] Roderick Little and Linda Yau. “Intent‐
to‐Treat Analysis for Longitudinal Studies
with Drop‐Outs”. In: Biometrics 52.4 (1996),
pp. 1324–1333. ISSN: 0006341X, 15410420.

[8] Jun Ma et al. “A bi‐directional missing
data imputation scheme based on LSTM
and transfer learning for building energy
data”. In: Energy and Buildings 216 (2020),
p. 109941. ISSN: 0378‐7788. DOI: 10.1016/
j.enbuild.2020.109941.

[9] Mel Keytingan M. Shapi, Nor Azuana Ramli,
and Lilik J. Awalin. “Energy consumption
prediction by using machine learning for
smart building: Case study in Malaysia”. In:
Developments in the Built Environment 5
(2021), p. 100037. ISSN: 2666‐1659. DOI:
doi.org/10.1016/j.dibe.2020.100037.

[10] Douglas G Altman and J Martin Bland.
“Statistics notes: The normal distribution”.
In:BMJ 310.6975 (1995), p. 298. ISSN: 0959‐
8138. DOI: 10.1136/bmj.310.6975.298.

[11] Singh U Mishra P Pandey CM. “Correlation
between earlobe crease and coronary artery
disease in Indian population‐ A multicentre
experience”. In: Annals of Cardiac Anaesthe‐
sia (2019). DOI: 10.4103/JCPC.JCPC_10_
20.

[12] Pipeline used in research(2021)[source code
results]. URL: https : / / github . com /
thuas-imp-2021/thuas-imp-2021.

One of the two datasets analysed during
the current study is available in the KNMI
repository, https://www.knmi.nl/nederland‐
nu/klimatologie/uurgegevens

8 of 8




