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Abstract. Occupant behavior is a highly stochastic phenomenon, which is known as a key 

challenge for the optimal control of residential energy systems. With the increasing share of 

renewable energy in the building sector, the volatile nature of renewable energy is also another 

key challenge for optimal control. It is challenging and time-consuming to develop a rule-based 

or model-based control algorithm that can properly take into account these stochastic 

parameters and ensure an optimal operation. Rather, a learning ability can be provided for the 

controller to learn these parameters in each specific house, without the need for any model. This 

research aims to develop a model-free control framework, based on Reinforcement Learning, 

which takes into account the stochastic occupants' behavior and PV power production and tries 

to minimize energy use while ensuring occupants' comfort and water hygiene. This research, for 

the first time, integrates a model of Legionella growth to ensure that energy saving is not with the 

cost of occupants' health. Hot water use data of three different residential houses are measured 

to evaluate the performance of the proposed framework on realistic occupants' behavior. The 

measurement campaign was during the COVID-19 pandemic, which would further highlight the 

adaptability of the Reinforcement Learning framework to the unusual situation when the 

prediction of occupants’ behavior is even more challenging. Results indicate that the proposed 

framework can successfully learn and predict occupants' behavior and PV power production, and 

significantly reduce energy use without violating comfort and hygiene aspects. 
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1. Introduction

Optimal operation of building energy systems is 
challenging as there are several stochastic and time-
varying parameters that affect building energy use. 
One of these parameters is occupant behaviour, 
which is highly stochastic, can change from day to 
day, and therefore is very hard to predict [1]. The 
occupant behaviour of each building is unique, and 
thus there is no universal model which can be 
embedded in the control system of various buildings 
at their design phase. To cope with this highly 
stochastic parameter, current control approaches 
are usually too conservative to ensure the comfort of 
occupants regardless of their behaviour. An example 
is hot water production, where huge volume of hot 
water with high temperature is produced in advance 
and stored in a tank to make sure enough hot water 
is available whenever it is demanded [2,3].   

Another stochastic parameter affecting building 
operation is renewable energy. The share of 
renewable energy in the building sector is increasing, 
and is expected to get doubled by 2030 [4]. Due to the 
volatile nature of renewable energy sources, it will 
also increase the complexity of optimal energy 
management in buildings [5]. There are several other 
stochastic parameters, such as weather condition or 
electric vehicles charging that all affect the building 
energy use. The control logic of buildings should 
properly take into account these stochastic 
parameters to guarantee an optimal operation.  

To integrate these stochastic parameters, a possible 
option is Model Predictive Control (MPC) that uses a 
model of the system, together with the predictions of 
stochastic parameters, to determine the optimal 
control actions for an upcoming horizon. Despite its 
potential benefits, MPC relies on a model of the 
system. However, developing an accurate model for 
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the building is extremely time-consuming, and 
therefore, not practical in most cases. Moreover, 
even if an accurate model of the system is developed, 
it can become fairly inaccurate over time due to, for 
instance, renovation or aging of the system. 
Furthermore, similar to the other model-based 
approaches, MPC requires a high computational 
power to optimize the model of the system. Last but 
not least, as MPC is based on a model of the building 
and the prediction of stochastic parameters, it is 
building-specific and not easily transferrable to 
other buildings [6].  

Uniqueness of occupant behaviour in each building 
makes it challenging to program a rule-based or 
model-based control logic that can be easily 
transferred to many other buildings. Rather than 
hard programming a rule-based or model-based control 

method, a learning ability can be provided to the 
controller such that it can learn and adapt to the 
specifications of that building and maintain an 
optimal operation. Reinforcement Learning (RL) is a 
method of Machine Learning that can provide this 
learning ability to the controller. In RL, a learning 
agent interacts with its environment, and uses 
feedback from the environment to determine the 
best possible action to maximize a pre-defined 
metric called reward [7]. RL provides two main 
benefits over the rule-based and model-based 
control methods. First of all, RL does not require a 

complex thermodynamic model of the system, as 
agent can learn the system model only by interacting 
with the system [8]. This is a great advantage over 
MPC, especially in case of complex systems that 
require a lot of time and effort for modelling [9]. 
Secondly, RL can continuously learn and adapt to the 
changes in system such as variating weather 
conditions, volatile renewable energy, or stochastic 
occupants behaviour [9]. These two benefits can 
ensure the transferability of RL to several buildings 
and provide the potential of a wide-spread 
implementation.  

Recent studies evaluated RL on different aspects of 
buildings, such as joint control of thermal comfort 
and air quality [10], thermal comfort and electric 
vehicle charging [11] or lighting system [12]. Several 
studies have evaluated RL to provide a balance 
between occupants comfort and energy use in air 
conditioning systems. In these studies, RL agent is 
usually supposed to learn how to minimize the 
energy use while maintaining occupants comfort. For 
instance, Brandi et al. [13] investigated the 
application of RL to make a balance between energy 
use and comfort by a water-based space heating 
system in an office building. It was indicated that RL-
based control provides 5% to 12% energy saving 
with an enhanced indoor temperature compared to 
the rule-based control. Considering that highly 
stochastic occupants behavior is a key challenge for 
efficient hot water production [3], few studies have 
evaluated model-based [14] and model-free RL [2] 
for occupant-centric hot water production. These 
studies indicated that while hot water use behavior 

of occupants is highly stochastic, RL can continuously 
learn and adapt the control strategy to the occupants’ 
behavior and provide a significant energy saving. 
Although space heating and hot water production are 
usually combined, only few studies have evaluated 
RL for their combination. Lissa et al. [15] proposed a 
framework for optimal control of space heating and 
hot water system integrated to the PV solar panels. 
The proposed framework aimed to reduce the energy 
consumption by optimizing the operation of heat 
pump and maximizing the PV self-consumption, 
while keeping the occupants comfort. However, hot 
water use profiles were not used in this work and 
only random temperature drops for the tank were 
used to simulate a hot water demand.  

Another key challenge in hot water systems is 
Legionella, which is a water-born bacteria that grows 
in the hot water with a temperature between 20 ℃ 
and 50 ℃ [16]. It be transferred to occupants by 
breathing in the contaminated water droplets and 
cause a respiratory disease [16]. To prevent the 
growth of this bacteria in the tank, conventional 
control methods usually maintain the tank 
temperature above 60 ℃, which results in higher 
energy consumption [17]. To propose a realistic 
control method the hygiene aspect of hot water tank 
is very important to be considered. However, based 
on the literature review performed in this study, this 
aspect has been neglected in the previous studies on 
RL for hot water systems. Only a recent study by 
authors included the hygiene aspect in an RL 
framework for hot water production systems [2]. 
The hygiene aspect in this recent study was 
considered by following a simple rule stating that the 
hot water tank should be heated to 60 ℃ at least once 
a day [17].   

The aim of this research is to develop an intelligent 
control framework that takes into account the 
stochastic hot water use behavior of occupants, and 
variating solar power production, and learns how to 
optimally operate the system to minimize energy 
usage while preserving the comfort and hygiene 
aspects. Case study energy system is the combined 
space heating and hot water production, assisted by 
Photovoltaic (PV) panels.    

The main novelties of the proposed framework are: 

Integration of water hygiene: While the pervious 
study by authors [2] followed a simple rule to respect 
hygiene aspect, this study for the first time integrates 
a temperature-based model that estimates the 
concentration of Legionella in hot water tank at each 
time step. Estimation of Legionella concentration in 
real-time enables the agent to spend as minimum 
energy as required for maintaining the hygiene 
aspect.      

Investigation on real-world hot water use 
behavior: In this research, hot water demand of 3 
residential houses is monitored to assess the 
performance of agent on real-world hot water use 
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behavior of occupants. 

Stochastic offline training to ensure occupants 
comfort and health: An RL control framework 
always starts with a training process, in which the 
agent starts a learning curve by interacting with the 
environment. As during this phase the agent is not 
experienced enough, and even has to perform 
random actions to explore the environment, it is very 
probable that it perform non-optimal actions that 
violates the comfort of occupants, or endanger their 
health by not maintaining the hygiene aspect of hot 
water. In practice, a control strategy that endangers 
the health of occupants would never be acceptable. 
Frequent violations of comfort aspect at the training 
phase also can reduce the satisfaction of occupants 
and their willingness to use the intelligent controller. 
To ensure that agent would quickly learn the optimal 
behavior with a minimum risk of violating comfort 
and hygiene aspects, an offline training phase is 
designed in this study. This offline phase integrates a 
stochastic hot water use model to emulate the 
realistic occupants' behavior. Also it includes a 
variety of climatic conditions and system sizes to 
provide a comprehensive experience to the agent.  

The remainder of this paper is organized into four 
sections: Section 2 describes the research 
methodology, ssection 3 presents the results, and 
Section 4 concludes the paper. 

2. Methodology

Fig. 1 shows the interactions of agent and 
environment in an RL problem. In RL, agent observes 
the current state (𝑠𝑡) of the environment. According 
to the observed state, it selects an action and 
performs it on the environment ( 𝑎𝑡 ). Due to this 
action, environment would transit to the next state 
(𝑠𝑡+1), and agent would receive a reward (𝑟𝑡+1) that 
quantifies how good was the performed action. The 
goal of agent is then to maximize the cumulative 
rewards during an entire episode. Therefore, 
different from Supervised Learning where a labelled 
dataset is required to train a model, in RL an 
interaction between agent and environment should 
be provided to enable the agent to learn optimal 
control strategy. In this section, the design of 
environment and agent are first explained. Then, the 
design of state, action, and reward space is described. 
Finally the monitoring campaign and training 
procedure are presented.    

Fig. 1: Interaction of agent and environment in 
Reinforcement Learning [18]  

2.1 Environment design 

Layout of residential energy system in this study is 

shown in Fig. 2. This system uses an air-source heat 
pump to provide hot water in a tank, which is used 
for both hot water production and space heating 
through radiators. PV panels are also connected to 
the heat pump. PV panels are grid-connected, so the 
surplus power can be supplied to the grid. A dynamic 
model of the system is developed in TRNSYS.   

Fig. 2: Layout of solar-assisted space heating and 
hot water production system 

2.2 Agent design 

The agent is developed in Python using Tensorforce 
library [19]. An improved version of Deep Q-Network 
(DQN), known as Double DQN is used as it is proved 
to solve the issue of overestimation by typical DQN. 
Specifications of agent are provided in Tab. 1.   

Tab. 1: Selected parameters for the agent 

Parameter Value 

Learning rate 0.003 

Batch size 24 

Update frequency 4 

Memory 48×168 

Discount factor 0.9 

2.3 State, action and reward space 

Proper design of state, action and reward space is 
very important to obtain a good performance by RL 
framework. Parameters included in the state are 
presented in Tab. 2. Each parameter is a vector 
including the value of that parameter during one or 
multiple previous hours. The demand ratio is the 
ratio of total hot water demand of the current day 
until the current hour, to the total demand of the 
previous day. Hour of day is a value between 1-24 
indicating what is the upcomming hour of day. Day of 
week, similarly, indicates the current day as a value 
between 1-7, where 1 represents Monday. The values 
are normalized to a vlue between 0 to 1.  
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Tab. 2: Parameters included in the state vector 

Parameter Length of look-
back vector 

Hot water demand 6 

Demand ratio - 

Outdoor air temperature (℃) 1 

Indoor air temperature (℃) 3 

PV power (kW) 6 

Heat pump outlet temperature 
(℃) 

1 

Legionella concentration 
(CFU/L) 

1 

Tank temperature (℃) 1 

Hour of day - 

Day of week - 

Possible actions should allow the agent to exploit the 
possibility of energy storage in hot water tank and in 
thermal mass of building, by regulating the tank and 
indoor air temperatures. To this aim, at each hour 
agent can select between four possible actions: 
Turning ON the heat pump, Turning OFF the heat 
pump, selectig the indoor air temperature setpoint of 
21 ℃ (as an energy-saving setpoint) or 23 ℃ (as an 
energy-storing setpoint). Based on the selected 
indoor air temperature setpoint by the agent, a two-
point controller with a dead-band of 2 ℃  tries to 
maintain the specified setpoint during the next hour.  

Reward function includes 4 different terms. An 
energy term to penalize the agent for net energy use, 
hot water comfort term to penalize the agent if a hot 
water demand is supplied with a temperature less 
than 40 ℃, which is considered as the lower limit of 
comfort for hot water uses [2], space heating comfort 
term to penalize the agent if the indoor air 
temperature is out of the comfort region of 20 ℃-24 
℃, and a hygiene term if the estimated concentration 
of Legionella is above the maximum threshold of 
500 × 103 CFU/L recommended for residential 
houses [20]. Equations 1-4 shows the formulation of 
energy, hot water comfort, space heating comfort, 
and hygiene terms. 

𝑅𝑒𝑛𝑒𝑟𝑔𝑦 = −𝑎 × |𝐻𝑃𝑝𝑜𝑤𝑒𝑟 − 𝑃𝑉𝑝𝑜𝑤𝑒𝑟| (1) 

𝑖𝑓 𝑇𝑡𝑎𝑛𝑘 ≥ 40: 𝑅𝐷𝐻𝑊𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = 0 𝑒𝑙𝑠𝑒 − 𝑏 (2) 

𝑖𝑓 20 ≤ 𝑇𝑖𝑛𝑑𝑜𝑜𝑟 ≤ 24: 𝑅𝐼𝑛𝑑𝑜𝑜𝑟𝑐𝑜𝑚𝑓𝑜𝑟𝑡

= 0 𝑒𝑙𝑠𝑒 − 𝑐 

(3) 

𝑖𝑓 𝐶𝑜𝑛𝑐 ≤ 𝐶𝑜𝑛𝑐𝑚𝑎𝑥 , 𝑅𝐻𝑦𝑔𝑖𝑒𝑛𝑒 = 0 𝑒𝑙𝑠𝑒 − 𝑑 (4) 

Where 𝐻𝑃𝑝𝑜𝑤𝑒𝑟  and 𝑃𝑉𝑝𝑜𝑤𝑒𝑟  are the power use of heat 

pump and power production of PV panels (kW), 𝑇𝑡𝑎𝑛𝑘 
and 𝑇𝑖𝑛𝑑𝑜𝑜𝑟  are the tank and indoor air temperature, 
𝐶𝑜𝑛𝑐  and 𝐶𝑜𝑛𝑐𝑚𝑎𝑥 are the current and maximum 
concentration of Legionella in the tank (CFU/L), 
𝑅𝑒𝑛𝑒𝑟𝑔𝑦 ,  𝑅𝐷𝐻𝑊𝑐𝑜𝑚𝑓𝑜𝑟𝑡 , 𝑅𝐼𝑛𝑑𝑜𝑜𝑟𝑐𝑜𝑚𝑓𝑜𝑟𝑡  and 𝑅𝐻𝑦𝑔𝑖𝑒𝑛𝑒 . 

𝑎, 𝑏, 𝑐 and 𝑑 are set to 1, 12, 10 and 10 determined by 
a sensitivity analysis. The total reward is therefore 
the summation of all these terms.  

2.4 Monitoring campaign 

It is challenging to directly test the performance of 
the proposed RL controller on a real-world 
residential building because if it fails to learn the 
behavior of occupants it can violate their comfort. On 
the other hand, it is important to investigate its 
performance on the realistic behavior of occupants. 
To perform a realistic test without disturbing the 
occupants, hot water use behavior of people is 
monitored and the collected data are used in TRNSYS 
model to emulate the real hot water demand. For the 
current framework, as shown in Fig. 2, only one 
single sensor at the tank outlet is enough to measure 
the hot water demand. In this study, to collect a 
comprehensive dataset which can be used also for 
future research, the hot and cold water demand is 
monitored at all the end uses in the case study 
buildings. The hourly hot water use data are then 
summed to represent the total hourly demand. Fig. 3 
shows the example of sensor installation on a faucet 
and a shower. LoRaWAN-based low power IoT flow 
sensors (with an integrated temperature sensor) are 
used to enable monitoring for a long duration 
(several months) with a single battery.    

Fig. 3: Example of IoT flow and temperature sensor 
installation on a faucet  

2.5 Training procedure 

Interaction of agent and environment is provided by 
integrating Python and TRNSYS software. A Python 
code calls the TRNSYS simulation with the desired 
control actions, runs the simulation for a timestep, 
and reads the desired outputs to form the state and 
reward functions. Training and deployment stages 
are shown in Fig.  4. To ensure occupants' comfort 
and health, first, the agent is trained on an offline 
training process. In this stage, a virtual environment 
is provided to enable the agent to gain enough 
experience before being implemented on the target 
house. In this stage, a hot water use model [21] is 
used to emulate the hot water use behavior of 
occupants. This model is developed based on data 
from 77 residential buildings, and therefore is a great 
tool to provide a prior experience to the agent. In this 
stage, it is desired that the agent also experience a 
good variety which can help it to generalize its 
knowledge and quickly adapt to new cases. To this 
aim, the offline training phase is repeated for 10 

4 of 7



years, and at each year the agent is interacting with a 
different size of the system (heat pump, tank, 
building area, etc), the weather condition of a 
different city, and a different hot water use profile 
generated by the stochastic model. After these 10 
years, the agent is then trained on the target house 
for 16 weeks. The aim of training on the target house 
is to let the agent adapt to the specific characteristics 
of the target house, such as occupants' behavior, 
systems sizes, or weather conditions.  To simulate 
the target house, in online training stage the collected 
hot water use data, and also the weather data 
collected from a weather station near the case study 
is used. After the online training on the target house, 
the training process can be stopped and the agent 
starts the deployment stage, in which agent is no 
longer learning but only controlling the system. 
Although to take the full power of RL the training 
process should be always continued, it makes it 
computationally expensive and agent should be 
always on the cloud. But once the training is stopped, 
the saved agent can be uploaded on a cheap 
hardware and control the system locally. Duration of 
deployment phase is 4 weeks.   

Fig.  4: Training and deployment process 

3. Results

The stability of the reward function indicates that the 
agent is converged to an optimal control policy. Fig. 

5 shows the evolution of reward function during the 
offline training phase, and also online training on 
each of the case studies. 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 method with a 
linear decay is used to impose exploration at the 12 
first weeks of the offline training phase. During the 
last 90 weeks of the offline training stage, the reward 
function is almost stable. During the online training 
on the target houses, the reward function is stable 
since the very first week. The existing variations 
compared to the potential variations of reward 
function are very small and mainly due to the energy 
use, which is not avoidable. It shows that the offline 
training stage has provided a generalizable 
experience for the agent, and since the beginning of 
implementation on the target houses, the agent can 
provide energy saving while maintaining comfort 
and hygiene aspects. 

Fig. 6 shows the control signal, PV power production, 
and tank temperature over the deployment stage on 
three case studies. The deployment stage of houses 1 
and 2 is during December, while the deployment 
stage of house 3 is during July. Therefore the PV 
power production of the third case study is higher 
than others. In all of the case studies, it can be seen 
that the agent is trying to adapt the control signal to 
the PV power production and reduce the power use 
from the grid, by turning ON the heat pump more 
frequently during the hours of PV power production. 
This adaptation can be seen very well on house 3, 
where PV power production is significantly higher 
and the agent tries to turn ON heat pump only when 
there is a PV power production. In all of the case 
studies, the agent has learned how to keep tank 
temperature above 40 ℃ to respect the comfort of 
occupants. It shows that agent could successfully 
learn and adapt to the occupants behavior, because 
none of the demands reduced the tank temperature 
below 40 ℃.   

Fig. 5: Evolution of reward function over the offline 
training phase and case studies 

To compare the performance of the proposed 
framework with the conventional methods, two 
conventional scenarios are modeled. The first 
method is Rule-based Conventional control (RC), 
where the tank temperature setpoint is 60 ℃ with a 
dead-band of 10 ℃. The second scenario is Rule-
based Energy-saving control (RE), in which with the 
aim of reducing energy usage the tank temperature 
setpoint is considered as 50 ℃. This method might 
not be practical because a constant setpoint of 50 ℃ 
for the tank can still impose the risk of Legionella 
growth. But this method is included in comparison to 
represent an extreme case of energy-saving by a rule-
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based method and to prove that the better 
performance of RL is not only due to a lower tank 
temperature. Main performance metrics over the 
deployment stage are shown in Tab. 3. In all the 
houses, RL has provided energy saving compared to 
the RC and RE methods. As expected, energy saving 
compared to the RC is higher than RE, because heat 
pump COP is RC is lower than RE. The energy saving 
in the houses 2 and 3 are around 7% and 8%, which 
represent the order of potential energy saving by RL 
method duirng the cold season. Energy savings in 
house 3 are much more, because PV power 
production in the hot season is much more an agent 
learns how to get the best use of PV power 
production to cover space heating and hot water 
energy use. This is a great example to highlight the 
importance of a controller that can learn and adapt 
to the changes, over a static and rigid controller. As 
expected, the comfort of occupants in case of space 
heating is always preserved because the possible 
choices for agent has been in the comfort range, and 
the tank temperature has been always high enough 
to provide the specified setpoint. The hygiene aspect 
is also preserved in all the houses because the 
maximum Legionella concentration in the tank in all 
the cases is below 5 × 105 CFU/L. 

Fig. 6: Control signal versus PV power production and 
tank temperature 

Tab. 3: Main performance metrics over different case 
studies 

House 

1 

House 

2 

House 

3 

Energy saving to RC (%) 28.9 40.4 75.7 

Energy saving to RE (%) 7.2 8.7 61.6 

Violated DHW comfort 
(%) 

8.1 5 1.7 

Average temperature of 
DHW comfort violations 
(℃) 

38.8 39 37.98 

Maximum Legionella 
concentration (CFU/L) 

2060 49704 6764 

To better highlight how RL could better exploit solar 
power production, the contribution of PV power 
production in the total power use of the heat pump is 
shown in Fig. 7. As can be seen, in all the case studies 
RL has used a higher contribution of PV power, 
compared to the RC and RE. In case of house 3, the 
contribution of PV power production is much higher 
than RC and RE, which is the why in this house the 
energy saving is much higher than other houses. It 
shows that a significant advantage of the proposed 
RL framework is to learn how to adapt the operation 
to the PV power production, and therefore potential 
energy-saving increases in regions with higher solar 
radiation.  

Fig. 7: Contribution of PV power production in power 
consumption of heat pump 

4. Conclusion

Optimal energy management in the buildings is 
affected by several stochastic parameters, such as 
weather conditions, occupants' behavior, or solar 
energy,  that vary by time and are hard to predict. It 
is therefore challenging and time-consuming to 
develop a rule-based or model-based control logic 
that can properly take into account all these 
parameters and maintain an optimal operation. 
Rather, a learning ability can be provided to the 
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controller, so in each specific building, it can learn 
these stochastic parameters and continuously adapt 
the system operation to their variations.  

This research proposed a model-free RL control 
framework that can learn the hot water use behavior 
of occupants and PV power production, and 
accordingly adapt the system operation to meet the 
comfort requirements with minimum energy use. 
Different from previous studies, where RL is 
supposed to make a balance between energy use and 
comfort, in this study RL tries to make a balance 
between energy use, comfort, and hygiene. Inclusion 
of hygiene aspect is very crucial to ensure the health 
of occupants. Real-world hot water use data is 
monitored in three residential case studies and used 
to evaluate the performance of the proposed 
framework over the realistic behavior of occupants. 
The RL framework is compared with two rule-based 
scenarios of RC and RE.  

Results indicate the proposed framework could 
provide a significant energy saving, mainly by 
learning how to get the best use of PV power 
production. Therefore the energy-saving potential is 
expected to be even more in regions with higher 
solar radiation than Switzerland. Also, the agent has 
successfully learned how to respect the comfort of 
occupants and water hygiene, so the potential energy 
saving is not with the cost of violating occupants' 
comfort or health.   

 Data statement 

The datasets measured during the current study are 
not publicly available but can be shared based on 
request.  
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