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Abstract. This study is an initial step for a creation of smart platform for schools in Estonia which 

will model, analyze, and evaluate the real energy performance of school buildings. Energy meters 

provide electricity consumption data which can be used to understand energy usage patterns and 

finally improve building energy management. First, data preparation is made. On the following 

step hierarchical clustering is applied to identify the outliers of weekly electricity load profiles. 

Finally, daily electrical load patters are clustered and similar profiles are grouped using K-means 

centroids.  
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1. Introduction

The building sector is crucial for achieving the EU’s 

energy and environmental goals. In general, 

buildings are responsible for approximately 40% of 

final energy consumption [1]. The first step towards 

sustainable transformations is understanding of the 

underlying factors influencing energy demand. 

Beside formal information above mentioned 

documents do not provide information how to 

support a sustainable change in the end-user 

behavior. Influence of occupants’ behavior on energy 

consumption is getting more and more significant as 

the overall energy demand of the new or renovated 

buildings is substantially decreasing [2]. 

Development of the smart technologies and metering 

devices together with a concept of Industry 4.0 has 

opened new perspectives in monitoring occupants’ 

behavior. Obtained data can be used for different 

purposes such as end-user behavioral modelling, fine 

tuning of certain values or load forecasting. 

Moreover, clear understanding of energy 

consumption is the key for timely decisions to reduce 

energy consumption. In addition, improvement of 

energy efficiency of public buildings promotes 

significance of culture of energy efficiency to the local 

society [3], [4].   

Several studies related to energy consumption and 

efficiency of school buildings have been conducted 

[5]–[7]. Advanced metering infrastructure measures 

and collects electricity consumption data. Readings 

help to understand the characteristics of energy use 

behaviors and potentially prevent energy waste. 

Energy consumption of the buildings can be 

influenced by the various parameters: building 

characteristics, energy use profile and occupants’ 

behavior. Energy use includes space heating/cooling, 

lighting, ventilation and plug loads. Occupants’ 

behavior consists of turning off the lights, air 

conditioners and other equipment then not in use. 

The aim of this work is to find out what is the 

occupants’ behavior and what are the consumption 

profiles of air handling units.  This is preliminary step 

for creation of a smart platform for schools which 

further will automatically classify current 

consumption and forecast it based on already known. 

The difficulties for the automation of the profiles 

clustering based on available data caused by the fact 

that non-classical behavior during so-called COVID-

19 periods should be considered. Pattern differences 

are caused by the fact that legislation for handling 

ventilation units has been changed. Secondly, 

occupation of the schools during those times is 

changing drastically [8], [9].  
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2. Methodology and data

2.1 The case study building 

Metered data was retrieved from one of the schools 

in Tartu, Estonia, which renovation have been 

finished by August 2020. 

2.2 Data preparation 

The data is gathered from the following 

measurement points: kitchen, air-conditioning and 

main meter. The school facility management collects 

energy data with hourly resolution. Non-air-

conditioning loads (plugs and lighting) were found 

by subtracting sum of all HVAC systems from the 

readings of main meter. 

Fig. 1 - General consumption of the school: air-

conditioning plus plugs and lighting consumptions 

First, electricity meter data was transformed into the 

electricity consumption time series, shown in Fig. 1. 

Additional data engineering and analysis are needed, 

since smart meter data from buildings can be very 

noisy with gaps of missing values and typically 

contains outliers. In general case, where a lot of 

different objects are studied, obtained values should 

be normalized since we mostly interested in 

capturing of temporal variation rather than absolute 

values of magnitudes [10]. Here we are focused on a 

single building and therefore normalization step can 

be skipped.  

We reshape raw time series to be used by data 

segmentation. To identify Typical Electricity Load 

Patterns (TELPs) available data was segmented 

using weekly cycles. Tracking changes in energy 

performance by week may help to understand is 

there some specifics in days-of-the-week and how 

does the electricity usage behavior differ during 

weekends [11].  

Consumption calculated from the readings of the 

“Main meter” is shown in Fig. 2. Consequent weeks 

have close colors, after one-year colors repeat. Such 

an approach gives possibility to see common 

patterns of the subsequent weeks and observe if 

behavior repeats at the same week in the next year. 

Additionally, this helps during validation stage when 

clusters found with machine learning techniques are 

approved. Fig. 2 shows that several behavioral 

patterns can be extracted from the obtained results. 

For better understanding of the energy use and its 

correlation with occupants’ behavior, the following 

analysis is made separately for air-conditioning and 

non-air-conditioning units. 

Fig. 2 - Main meter with weekly segmentation  

2.3 Extraction of typical electricity patterns 

To find typical electricity patterns hierarchical 

clustering was applied. Namely, Agglomerative 

Clustering with bottom-up approach, where separate 

clusters are merge using the minimization of the 

maximum distance between all observations of pairs 

of clusters with Euclidian metrics. 

Fig. 3 - Dendrograms, where numbers on the right site 

represent ‘yyww’: week (‘w’) of a year (‘y’).   Left plot 

shows all plugs and lighting consumption at school. 

Right plot represents ventilation units of all classes  

Fig. 3  illustrates that in every case weeks 28-33 from 

the year 2020 are separated to independent cluster 

and considered as outliers: baseline of those signals 

is higher than others. Additionally, there is a high 

consumption at the weekends (see Fig. 2 yellow and 

orange lines after 125 hours). On the other hand, 

lines of the same color which represent exactly the 

same time period from the next year, have different 

pattern.  This is caused by the fact that data obtained 

during first six weeks should be removed from 

further analysis since ventilation worked in a test or 

special mode caused by the completion of repair 

works and school preparation for a new academic 

year.  

On the next step Nearest Centroid or K-Means 

Clustering proposes centroids for each group of 

clusters and typical representatives of behavioral 

patterns are found (see Fig. 4). First, it is seen that 

there is no difference in ventilation behavior during 

2 of 5



the working days.  It is working according to the 

schedule and does not depend on the occupancy of 

the room, in other words, ventilation is not 

controlled by CO2 level measurements.    

Fig. 4 - Weekly Clustering of a) a typical ventilation unit 

on example of “Teachers' room” and b) “Plugs and 

Lighting” for the whole period 

Moreover, through the year behavior of the system 

has changed a lot. Some patterns were valid for a 

longer period, others – not. Additionally, it is set that 

clusters having less than three weeks are not taken 

into account. In general, clustering procedure should 

be automated, thus other additional parameters and 

conditions should be considered.  

First, unlike other (for example office) buildings on 

business days schools may have vacations. At those 

times some patterns are close to non-working days, 

but since school workers are visiting buildings, have 

meetings, consultations with some students, etc. 

those patterns make separate class. Occupancy of the 

building is lower, that should as well decrease the 

consumption and ventilation loads.  

All above mentioned leads to the conclusion that 

Daily Electricity Load Patterns (DELPs) can be 

studied. Initially data was split into three periods: 

business days, business days on vacations and 

weekends with holidays. Unfortunately, behavioral 

patterns during business days differ too much and 

automatic clustering procedure cannot guarantee 

satisfying result.  Thus, it was suggested to split 

working days into two categories: normal working 

days then school has original occupational load and 

so-called COVID period, where occupation can vary 

from fully closed, occupied by some personnel, 

elementary school and graduation students. In 

addition, other legislation procedures were applied 

to control of ventilation units (working hours and 

loads). This explains why there are several base lines 

for electricity consumption. 

Finally, four different time periods were studied for 

clustering: normal working days (see Fig. 5, Fig. 9), 

vacations working days (see Fig. 6 and Fig. 10), 

weekends plus holidays (Fig. 7 and Fig. 11) and 

COVID-19 working days (Fig. 7 and Fig. 12).  

3. Results

Once profiles are set the following analysis was 

made. At the beginning of a school year rooms are 

ventilated with high constant air flow (“light blue 

line” in Fig. 5).  

Fig. 5 - DELPs of ventilation unit for A-building 

Westside classes in normal working conditions 

After that scheduled technique is applied: all air units 

are starting from 7.00 and reaching its highest load 

by 8.00. At 18.00 ventilation is turned off and reaches 

its base line after one hour. In some classes after 

beginning of the heating season high load was 

increased (see “green and blue lines” in Fig. 5). Rise 

of the top load mostly depends on the fact if this part 

of the building belongs to “sunny side” or not.  

At the beginning of December 2020 COVID situation 

in Estonia became worser, thus ventilation schedule 

was changed from 5.00 till 21.00. In second part of 

May 2021 when all students returned to schools, 

gradual increase of the ventilation load was applied. 

Such an approach was used only in this part of the 

building and, most probably, caused by the fact that 

it belongs to the “sunny side” where through the day 

temperature increases drastically. 

During weekends common situation can be 

described as: preparation for a new academic year, 

low season base line, high season base line.  

In general, ventilation levels are set to minimal 

during the vacations, but during hot summer of 2021 

it was working on high load from 5.00-20.00 (Fig. 6). 
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Fig. 6 - DELPs of ventilation unit for A-building 

Westside classes on weekends and holidays 

Fig. 7 - DELPs of ventilation unit for A-building 

Westside classes during vacations (working days only). 

On 14.12.2020 schools were closed for all students; 

thus, ventilation was switched back for shorter 

working hours (“light blue line” Fig. 8).  Then only 

elementary school studied, or building was closed, 

ventilation worked at minimum level. When 

graduation classes returned, ventilation worked with 

maximum load 5.00-21.00. 

Fig. 8 - DELPs of ventilation unit for A-building 

Westside classes under COVID-19 working conditions 

 Plug and Lighting consumption strictly corresponds 

to the occupancy of the school and daylight period. 

This can be seen from most of the figures: during high 

season outside lighting works for a longer period and 

then electricity consumption drops to a lower level. 

This can be explicitly seen during weekends and 

holidays in Fig. 11. During normal working days level 

drops near by 5 o’clock in the morning before people 

come to school and after that plugs loads drastically 

rise. It can be observed in Fig. 9.  

Fig. 9 - DELPs of Plugs and Lighting in normal working 

conditions 

Fig. 10 - DELPs of Plugs and Lighting during vacations 

(working days) 

Fig. 11 - DELPs of Plugs and Lighting weekends and 

holidays 

Fig. 12 - DELPs of Plugs and Lighting under COVID-19 

working conditions 

Occupancy of the building during COVID period can 

be derived from patterns presented in Fig. 12. By 

comparing with Fig. 9 one can observe a significant 

decrease of occupancy level of the building during 

this period.   
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Another point that should be mentioned, starting 

from 02.04.20 (with amendments on 29.11.20) 

ventilation with normal occupancy of the building 

must be turned on full power 2 hours before 

occupational hours and turned off 2 hours after those 

(if occupancy is less than 50%, then with the above-

mentioned timing ventilation load allowed to be 50% 

of full power).  

In Fig. 13 Plug and lighting profiles, which are 

presented by red lines, are overlaid on ventilation 

profiles. Assuming that plug loads to some extend 

represent occupancy of the building, it can be 

observed from timing comparison that sometimes 

air handling units’ schedules were not set according 

to the new standards. 

Fig. 13 – Plug and Lighting profiles correspondence to 

ventilation schedules in normal working period 

4. Conclusions

Initial step for creation of smart platform for schools 

has been made. Automatic finding DELPs at schools 

differs from other buildings profiles. Instead of 

business days and weekends for high and low 

seasons, school vacations should be considered as 

well. Additionally, COVID-19 brought variety of 

settings for air handling units’ schedules. The 

effectiveness was demonstrated by comparison of 

found clusters and timing of events happened in 

Estonia. 
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